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POPOVICIU TYPE INEQUALITIES FOR HIGHER ORDER

CONVEX FUNCTIONS VIA LIDSTONE INTERPOLATION

JOSIP PEČARIĆ AND MARJAN PRALJAK ∗

(Communicated by S. Varošanec)

Abstract. We use Lidstone’s interpolating polynomials to obtain Popoviciu-type inequalities
containing sums ∑m

i=1 pi f (xi) , where f is an n -convex function with even n .
We also give integral analogues of the results, some related inequalities for n -convex

functions at a point and bounds for integral remainders of identities associated with the obtained
inequalities.

1. Introduction

Pečarić [4] proved the following result (see also [7, p. 262] and [5]):

PROPOSITION 1. The inequality

m

∑
i=1

pi f (xi) � 0 (1)

holds for all convex functions f if and only if the m− tuples x = (x1, . . . ,xm), p =
(p1, . . . , pm) ∈ R

m satisfy

m

∑
i=1

pi = 0 and
m

∑
i=1

pi|xi− xk| � 0 for k ∈ {1, . . . ,m}. (2)

Since
m

∑
i=1

pi|xi− xk| = 2
m

∑
i=1

pi(xi − xk)+ −
m

∑
i=1

pi(xi − xk),

where y+ = max(y,0) , it is easy to see that condition (2) is equivalent to

m

∑
i=1

pi = 0,
m

∑
i=1

pixi = 0 and
m

∑
i=1

pi(xi − xk)+ � 0 for k ∈ {1, . . . ,m−1}. (3)
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Let A denote the linear operator A( f ) = ∑m
i=1 pi f (xi) , let w(x,t) = (x− t)+ and

x(1) � x(2) � . . . � x(m) be the sequence x in ascending order. Notice that A(w(·,xk)) =
∑m

i=1 pi(xi − xk)+ . For t ∈ [x(k),x(k+1)] we have

A(w(·,t)) = A(w(·,x(k)))+ (x(k)− t) ∑
{i:xi>x(k)}

pi,

so the mapping t �→ A(w(·,t)) is linear on [x(k),x(k+1)] . Furthermore, A(w(·,x(m)) = 0,
so condition (3) is equivalent to

m

∑
i=1

pi = 0,
m

∑
i=1

pixi = 0 and
m

∑
i=1

pi(xi − t)+ � 0 for every t ∈ [x(1),x(m−1)]. (4)

It turns out that condition (4) is appropriate for extension of Proposition 1 to the
integral case and the more general class of n -convex functions.

DEFINITION 1. The n -th order divided difference of a function f : I → R , where
I is an interval in R , at distinct points x0, . . . ,xn ∈ I is defined recursively (see [7]) by

f [xi] = f (xi), (i = 0, . . . ,n)

and

f [x0, . . . ,xn] =
f [x1, . . . ,xn]− f [x0, . . . ,xn−1]

xn− x0
.

The function f is said to be n -convex on I , n � 0, if for all choices of (n+1) distinct
points in I, the n -th order divided difference of f satisfies

f [x0, . . . ,xn] � 0.

The value f [x0, . . . ,xn] is independent of the order of the points x0, . . . ,xn . If f (n)

exists, then f is n -convex if and only if f (n) � 0. For 1 � k � n−2, a function f is
n -convex if and only if f (k) exists and is (n− k)-convex.

The following result is due to Popoviciu [8, 9] (see [11, 7, 6] also).

PROPOSITION 2. Let n � 2 . Inequality (1) holds for all n-convex functions f :
[a,b]→ R if and only if the m− tuples x ∈ [a,b]m , p ∈ R

m satisfy

m

∑
i=1

pix
k
i = 0, for all k = 0,1, . . . ,n−1 (5)

m

∑
i=1

pi(xi − t)n−1
+ � 0, for every t ∈ [a,b]. (6)

In fact, Popoviciu proved a stronger result - it is enough to assume that (6) holds
for every t ∈ [x(1),x(m−n+1)] and then, due to (5), it is automatically satisfied for every
t ∈ [a,b] . The integral analogue (see [10, 7, 6]) is given in the next proposition.
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PROPOSITION 3. Let n � 2 , p : [α,β ] → R and g : [α,β ] → [a,b] . Then, the
inequality ∫ β

α
p(x) f (g(x))dx � 0 (7)

holds for all n-convex functions f : [a,b]→ R if and only if

∫ β

α
p(x)g(x)k dx = 0, for all k = 0,1, . . . ,n−1

∫ β

α
p(x)(g(x)− t)n−1

+ dx � 0, for every t ∈ [a,b].
(8)

In this paper we will prove inequalities of type (1) and (7) for n -convex functions
by making use of the Lidstone interpolation. Lidstone’s series is a generalization of
Taylor’s series and it approximates a given function in the neighborhood of two points
(instead of one). For f ∈ C(2n)([0,1]) there exists a unique polynomial PL of degree
2n−1 such that

P(2i)
L (0) = f (2i)(0), P(2i)

L (1) = f (2i)(1), 0 � i � n−1.

The polynomial PL can be expressed with the Lidstone polynomials. The Lidstone
polynomials Λn are polynomials of degree 2n+1 defined by the relations

Λ0(t) = t,

Λ′′
n(t) = Λn−1(t), (9)

Λn(0) = Λn(1) = 0, n � 1.

Some explicit expressions of the Lidstone polynomials are (see [1])

Λn(t) = (−1)n 2
π2n+1

∞

∑
k=1

(−1)k+1

k2n+1 sinkπt,

Λn(t) =
1
6

[
6t2n+1

(2n+1)!
− t2n−1

(2n−1)!

]
−

n−2

∑
k=0

2(22k+3−1)
(2k+4)!

B2k+4
t2n−2k−3

(2n−2k−3)!
,

Λn(t) =
22n+1

(2n+1)!
B2n+1

(
1+ t

2

)
,

where B2k+4 is the (2k + 4)-th Bernoulli number and B2n+1
( 1+t

2

)
is the Bernoulli

polynomial. The error term eL(t) = f (t)−PL(t) of the interpolation can be expressed
in the integral form using Green’s function. Widder [12] proved the following lemma.

LEMMA 1. If f ∈C(2n)([0,1]) , then

f (t) = PL(t)+ eL(t)

=
n−1

∑
k=0

[
f (2k)(0)Λk(1− t)+ f (2k)(1)Λk(t)

]
+

∫ 1

0
Gn(t,s) f (2n)(s)ds, (10)
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where

G1(t,s) = G(t,s) =
{

(t−1)s, if s � t,
(s−1)t, if t � s.

(11)

is homogeneous Green’s function of the differential operator d2

ds2
on [0,1] , and with the

successive iterates of G(t,s)

Gn(t,s) =
∫ 1

0
G1(t,u)Gn−1(u,s)du, n � 2. (12)

The Lidstone polynomial can be expressed in terms of Gn(t,s) as

Λn(t) =
∫ 1

0
Gn(t,s)sds. (13)

For more on the Lidstone polynomials and interpolation see [1].
The outline of the paper is as follows: in Section 2 we will use Lidstone’s interpo-

lation (10) and properties of Green’s function (12) to obtain inequalities of type (1) and
(7) for n -convex functions. In Section 3 we will give related inequalities for n -convex
functions at a point, a generalization of the class of n -convex functions introduced in
[6]. In Section 4 we will give bounds for the integral remainders of identities obtained
in earlier sections by using Čebyšev type inequalities.

2. Main results

THEOREM 1. Let n ∈ N , f : [a,b] → R be 2n-convex and let x ∈ [a,b]m and
p ∈ R

m be m-tuples such that

m

∑
i=1

piGn

(
xi −a
b−a

,
s−a
b−a

)
� 0, for every s ∈ [a,b], (14)

where Gn is Green’s function given by (12). Then

m

∑
i=1

pi f (xi) �
m

∑
i=1

n−1

∑
k=0

(b−a)2k
[
pi f

(2k)(a)Λk

(
b− xi

b−a

)
+ pi f

(2k)(b)Λk

(
xi−a
b−a

)]
.

(15)
If the inequality in (14) is reversed, then (15) holds with the reversed sign of inequality.

Proof. Let us first assume f ∈C(2n)([a,b]) . By Widder’s lemma we have

f (x) =
n−1

∑
k=0

(b−a)2k
[

f (2k)(a)Λk

(
b− x
b−a

)
+ f (2k)(b)Λk

(
x−a
b−a

)]

+(b−a)2n−1
∫ b

a
Gn

(
x−a
b−a

,
s−a
b−a

)
f (2n)(s)ds. (16)
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Applying (16) at xi , multiplying the obtained identity by pi and adding up we get

m

∑
i=1

pi f (xi) =
m

∑
i=1

n−1

∑
k=0

(b−a)2k
[
pi f

(2k)(a)Λk

(
b− xi

b−a

)
+ pi f

(2k)(b)Λk

(
xi−a
b−a

)]

+(b−a)2n−1
∫ b

a

m

∑
i=1

piGn

(
xi−a
b−a

,
s−a
b−a

)
f (2n)(s)ds. (17)

Assumption (14) and f (2n) � 0 yield the stated inequality. The inequality for general
f follows since every 2n -convex function can be obtained, by making use of Bern-
stein polynomials, as a uniform limit of 2n -convex functions with a continuous 2n -th
derivative (see [7]). �

COROLLARY 1. Let j,n ∈ N , 1 � j � n, let f : [a,b] → R be 2n-convex and let
m-tuples x ∈ [a,b]m and p ∈ R

m satisfy (5) and (6) with n replaced by 2 j . If n− j is
even, then

m

∑
i=1

pi f (xi) �
m

∑
i=1

n−1

∑
k= j

(b−a)2k
[
pi f

(2k)(a)Λk

(
b− xi

b−a

)
+ pi f

(2k)(b)Λk

(
xi−a
b−a

)]
,

(18)
while the reversed inequality holds if n− j is odd.

Proof. From (11) and (12) by induction one can conclude that (−1)nGn � 0. Fur-

thermore, from (12) one can get ∂ 2

∂ t2
Gn(t,s) = Gn−1(t,s) and, hence, by induction

∂ 2i

∂ t2i Gn(t,s) = Gn−i(t,s) for 0 � i � n− 1. Therefore, the function t �→ Gn(t,s) is
2 j -convex if n− j is even and 2 j -concave if n− j is odd for 0 � j � n−1, while the
statement for j = n follows since t �→ G1(t,s) is convex.

By Proposition 2, assumption (14) in Theorem 1 is satisfied, so (15) holds. More-
over, due to assumption (5), ∑m

i=1 piP(xi) = 0 for every polynomial P of degree �
2 j−1 and since Λk is a polynomial of degree 2k+1, the first j terms in the inner sum
in (15) vanish, i. e., the right hand side of (15) under the assumptions of this corollary
is equal to the right hand side of (18). �

When j = n in (18), the notation means that the inner sum is void, i. e., ∑n−1
k=n · · ·=

0. In particular, inequality (18) with j = n is inequality (1).

COROLLARY 2. Let j,n ∈ N , 1 � j � n, let f : [a,b] → R be 2n-convex, let
m-tuples x ∈ [a,b]m and p ∈ R

m satisfy (5) and (6) with n replaced by 2 j and denote

H(x) =
n−1

∑
k= j

(b−a)2k
[

f (2k)(a)Λk

(
b− x
b−a

)
+ f (2k)(b)Λk

(
x−a
b−a

)]
. (19)

If n− j is even and H is 2 j -convex, then
m

∑
i=1

pi f (xi) � 0,

while the reversed inequality holds if n− j is odd and H is 2 j -concave.
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Proof. Applying Proposition 2 we conclude that the right hand side of (18) is
nonnegative for 2 j -convex H and nonpositive for 2 j -concave H . �

REMARK 1. Due to (9) we have Λ(2l)
k = Λk−l and, furthermore, (−1)nΛn � 0 due

to (13). Therefore, if the function f satisfies (−1)k− j f (2k)(a) � 0 and (−1)k− j f (2k)(b)
� 0 for j � k � n− 1, then the function H given by (19) is 2 j -convex, while if
(−1)k− j f (2k)(a)� 0 and (−1)k− j f (2k)(b)� 0 for j � k � n−1, then H is 2 j -concave.

As already mentioned before, the inequality in Corollaries 1 and 2 with j = n is
the same as the inequality in Proposition 2. Of course, in the proof of Corollary 1 we
have used Proposition 2 to prove that assumption (14) holds, so, due to circularity, we
didn’t obtain another proof of Popoviciu’s result. But, it is possible, as we will show
in the next lemma, to prove directly that conditions (5) and (6) imply (14), i. e., it is
possible to prove Corollary 1 independently of Proposition 2 and, thus, provide a new
proof of Popoviciu’s result for even n .

LEMMA 2. Let n � 2 and let m-tuples x ∈ [a,b]m and p ∈ R
m satisfy

m

∑
i=1

pix
k
i = 0, for all k = 0,1, . . . ,2n−1 (20)

m

∑
i=1

pi(xi − t)2n−1
+ � 0, for every t ∈ [a,b]. (21)

Then (14) holds.

Proof. Let s ∈ [a,b] be fixed and y = (s−a)/(b−a) . We will show, by induction,
that Gn is of the form

Gn(x,y) = Ps,2n−1(x)+
1

(2n−1)!
(x− y)2n−1

+ , (22)

where Ps,2n−1 is a polynomial of degree 2n− 1. Hence, similarly as in the proof of
Corollary 1, from (20) we can conclude that

m

∑
i=1

piPs,2n−1

(
xi −a
b−a

)
= 0,

while (21) yields

m

∑
i=1

pi

(2n−1)!

(
xi −a
b−a

− s−a
b−a

)2n−1

+
=

1
(2n−1)!(b−a)2n−1

m

∑
i=1

pi(xi − s)2n−1
+ � 0.

Therefore, it is enough to show that (22) holds. From (11) we have

G1(x,y) = xy−min(x,y) = x(y−1)+ (x− y)+,
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so (22) holds for n = 1. Now, assume that (22) holds. Then (12) yields

Gn+1(x,y) =
∫ 1

0
(x(u−1)+ (x−u)+)

(
Ps,2n−1(u)+

1
(2n−1)!

(u− y)2n−1
+

)
du

= I + II + III,

where

I = x
∫ 1

0
(u−1)Gn(u,y)du = x · constant

II =
∫ 1

0
(x−u)+Ps,2n−1(u)du (23)

III =
1

(2n−1)!

∫ 1

0
(x−u)+(u− y)2n−1

+ du (24)

Integration by parts yields

II =
∫ x

0
(x−u)Ps,2n−1(u)du

= (x−u)
∫ u

0
Ps,2n−1(z)dz

∣∣∣u=x

u=0
+

∫ x

0

∫ u

0
Ps,2n−1(z)dzdu

= P̃s,2n+1(x)

where P̃s,2n+1 is a polynomial of degree 2n+1. Notice that

I + II = Ps,2n+1

is a polynomial of degree 2n+1 in the variable x . Clearly III = 0 for x � y , while for
x > y

III =
1

(2n−1)!

∫ x

y
(x−u)(u− y)2n−1du

=
1

(2n)!
(x−u)(u− y)

∣∣∣u=x

u=y
+

1
(2n)!

∫ x

y
(u− y)2n du =

1
(2n+1)!

(x− y)2n+1.

Therefore, III = (x− y)2n+1
+ /(2n+1)! , so (22) holds for n+1 as well, which finishes

the proof. �

Lemma 2 together with Theorem 1 gives the “if” part of Proposition 2. On the
other hand, the “only if” part is straightforward: since the functions ek(x) = xk are
both 2n -convex and 2n -concave for k = 0,1, . . . ,2n− 1, inequality (1) yields that
∑m

i=1 piek(xi) is both � 0 and � 0, so (20) holds. Similarly, the function w2n(x) =
(x− t)2n−1

+ is 2n -convex and inequality (1) applied to w2n yields (21).
In the remainder of this section we will give integral versions of the results. The

proofs are analogous to the discrete case and we will omit them.
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THEOREM 2. Let n ∈ N , f : [a,b] → R be 2n-convex and let the functions p :
[α,β ] → R and g : [α,β ] → [a,b] be such that

∫ β

α
p(x)Gn

(
g(x)−a
b−a

,
s−a
b−a

)
dx � 0, for every s ∈ [a,b], (25)

where Gn is Green’s function given by (12). Then

∫ β

α
p(x) f (g(x))dx �

∫ β

α
p(x)

n−1

∑
k=0

(b−a)2k
[

f (2k)(a)Λk

(
b−g(x)
b−a

)

+ f (2k)(b)Λk

(
g(x)−a
b−a

)]
dx. (26)

If the inequality in (25) is reversed, then (26) holds with the reversed sign of in-
equality.

COROLLARY 3. Let j,n ∈ N , 1 � j � n, let f : [a,b] → R be 2n-convex and let
the functions p : [α,β ] → R and g : [α,β ] → [a,b] satisfy (8) with n replaced by 2 j .
If n− j is even, then

∫ β

α
p(x) f (g(x))dx �

∫ β

α
p(x)

n−1

∑
k= j

(b−a)2k
[

f (2k)(a)Λk

(
b−g(x)
b−a

)

+ f (2k)(b)Λk

(
g(x)−a
b−a

)]
dx,

while the reversed inequality holds if n− j is odd.

COROLLARY 4. Let j,n, f , p and g be as in Corollary 3 and let H be given by
(19). If n− j is even and H is 2 j -convex, then

∫ β

α
p(x) f (g(x))dx � 0,

while the reversed inequality holds if n− j is odd and H is 2 j -concave.

LEMMA 3. Let n � 2 and let the functions p : [α,β ] → R and g : [α,β ] → [a,b]
satisfy

∫ β

α
p(x)g(x)k dx = 0, for all k = 0,1, . . . ,2n−1

∫ β

α
p(x)(g(x)− t)2n−1

+ dx � 0, for every t ∈ [a,b].

Then (25) holds.
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3. Related inequalities for n -convex functions at a point

In this section we will give related results for the class of n -convex functions at a
point introduced in [6].

DEFINITION 2. Let I be an interval in R , c a point in the interior of I and n∈N .
A function f : I → R is said to be n -convex at point c if there exists a constant K such
that the function

F(x) = f (x)− K
(n−1)!

xn−1 (27)

is (n− 1)-concave on I ∩ (−∞,c] and (n− 1)-convex on I ∩ [c,∞) . A function f is
said to be n -concave at point c if the function − f is n -convex at point c .

A property that explains the name of the class is the fact that a function is n -convex
on an interval if and only if it is n -convex at every point of the interval (see [2, 6]).
Pečarić, Praljak and Witkowski in [6] studied necessary and sufficient conditions on
two linear functionals A : C([a,c]) → R and B : C([c,b]) → R so that the inequality
A( f ) � B( f ) holds for every function f that is n -convex at c . In this section we will
give inequalities of this type for particular linear functionals related to the inequalities
obtained in the previous section.

Let ei denote the monomials ei(x) = xi , i∈ N0 . For the rest of this section, A and
B will denote the linear functionals obtained as the difference of the left and right hand
sides of inequality (15) applied to the intervals [a,c] and [c,b] , respectively, i. e., for
x ∈ [a,c]m , p ∈ R

m , y ∈ [c,b]l and q ∈ R
l let

A( f ) =
m

∑
i=1

pi f (xi)−
m

∑
i=1

n−1

∑
k=0

(c−a)2k
[
pi f

(2k)(a)Λk

(
c− xi

c−a

)

+pi f
(2k)(c)Λk

(
xi −a
c−a

)]
, (28)

B( f ) =
l

∑
i=1

qi f (yi)−
l

∑
i=1

n−1

∑
k=0

(b− c)2k
[
qi f

(2k)(c)Λk

(
b− yi

b− c

)

+qi f
(2k)(b)Λk

(
yi − c
b− c

)]
. (29)

Notice that, using the newly introduced functionals A and B , identity (17) applied
to the intervals [a,c] and [c,b] can be written as

A( f ) = (c−a)2n−1
∫ c

a

m

∑
i=1

piGn

(
xi −a
c−a

,
s−a
c−a

)
f (2n)(s)ds, (30)

B( f ) = (b− c)2n−1
∫ b

c

l

∑
i=1

qiGn

(
yi − c
b− c

,
s− c
b− c

)
f (2n)(s)ds. (31)
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THEOREM 3. Let x ∈ [a,c]m , p ∈ R
m , y ∈ [c,b]l and q ∈ R

l be such that

m

∑
i=1

piGn

(
xi−a
c−a

,
s−a
c−a

)
� 0, for every s ∈ [a,c], (32)

l

∑
i=1

qiGn

(
yi − c
b− c

,
s− c
b− c

)
� 0, for every s ∈ [c,b], (33)

∫ c

a

m

∑
i=1

piGn

(
xi−a
c−a

,
s−a
c−a

)
ds =

(
b− c
c−a

)2n−1 ∫ b

c

l

∑
i=1

qiGn

(
yi − c
b− c

,
s− c
b− c

)
ds, (34)

where Gn is Green’s function given by (12), and let A and B be the linear functionals
given by (28) and (29). If f : [a,b] → R is (2n+1)-convex at point c , then

A( f ) � B( f ). (35)

If the inequalities in (32) and (33) are reversed, then (35) holds with the reversed sign
of inequality.

Proof. Let F = f − K
(2n)!e2n be as in Definition 2, i. e., the function F is 2n -

concave on [a,c] and 2n -convex on [c,b] . Applying Theorem 1 to F on the interval
[a,c] we have

0 � A(F) = A( f )− K
(2n)!

A(e2n) (36)

and applying Theorem 1 to F on the interval [c,b] we have

0 � B(F) = B( f )− K
(2n)!

B(e2n). (37)

Identities (30) and (31) applied to the function e2n yield

A(e2n) = (2n)!(c−a)2n−1
∫ c

a

m

∑
i=1

piGn

(
xi−a
c−a

,
s−a
c−a

)
ds,

B(e2n) = (2n)!(b− c)2n−1
∫ b

c

l

∑
i=1

qiGn

(
yi− c
b− c

,
s− c
b− c

)
ds.

Therefore, assumption (34) is equivalent to A(e2n) = B(e2n) . Now, from (36) and (37)
we obtain the stated inequality. �

REMARK 2. In the proof of Theorem 3 we have, actually, shown that

A( f ) � K
(2n)!

A(e2n) =
K

(2n)!
B(e2n) � B( f ).

In fact, inequality (35) still holds if we replace assumption (34) with the weaker as-
sumption that K (B(e2n)−A(e2n)) � 0.
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COROLLARY 5. Let j1, j2,n ∈ N , 1 � j1, j2 � n, let f : [a,b] → R be (2n+1)-
convex at point c , let m-tuples x ∈ [a,c]m and p ∈ R

m satisfy (5) and (6) with n
replaced by 2 j1 , let l -tuples y ∈ [c,b]l and q ∈ R

l satisfy

l

∑
i=1

qiy
k
i = 0, for all k = 0,1, . . . ,2 j2 −1

l

∑
i=1

qi(yi − t)2 j2−1
+ � 0, for every t ∈ [y(1),y(l−n+1)]

and let (34) holds. If n− j1 and n− j2 are even, then

A( f ) � B( f ),

while the reversed inequality holds if n− j1 and n− j2 are odd.

Proof. See the proof of Corollary 1. �

4. Bounds for identities related to the Popoviciu-type inequalities

Let f ,h : [a,b] → R be two Lebesgue integrable functions. We consider the
Čebyšev functional

T ( f ,h) =
1

b−a

∫ b

a
f (x)h(x)dx−

(
1

b−a

∫ b

a
f (x)dx

)(
1

b−a

∫ b

a
h(x)dx

)
. (38)

The following results can be found in [3].

PROPOSITION 4. Let f : [a,b] → R be a Lebesgue integrable function and h :
[a,b]→ R be an absolutely continuous function with (·−a)(b−·)[h′]2 ∈ L[a,b] . Then
we have the inequality

|T ( f ,h)| � 1√
2

(
1

b−a
|T ( f , f )|

∫ b

a
(x−a)(b− x)[h′(x)]2 dx

) 1
2

. (39)

The constant 1√
2

in (39) is the best possible.

PROPOSITION 5. Let h : [a,b] → R be a monotonic nondecreasing function and
let f : [a,b] → R be an absolutely continuous function such that f ′ ∈ L∞[a,b] . Then
we have the inequality

|T ( f ,h)| � 1
2(b−a)

‖ f ′‖∞

∫ b

a
(x−a)(b− x)dh(x). (40)

The constant 1
2 in (40) is the best possible.
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For m− tuples p = (p1, . . . , pm) ∈ R
m , x = (x1, . . . ,xm) ∈ [a,b]m and the function

Gn given be (12), denote

δ (s) =
m

∑
i=1

piGn

(
xi−a
b−a

,
s−a
b−a

)
, for s ∈ [a,b]. (41)

Similarly, for functions g : [α,β ] → [a,b] and p : [α,β ] → R denote

Δ(s) =
∫ β

α
p(x)Gn

(
g(x)−a
b−a

,
s−a
b−a

)
dx, for s ∈ [a,b]. (42)

Now, we are ready to state the main results of this section.

THEOREM 4. Let n ∈ N , f : [a,b] → R be such that f (2n) is an absolutely con-
tinuous function with (·− a)(b− ·)[ f (2n+1)]2 ∈ L[a,b] and let Gn , T and δ be given
by (12), (38) and (41) respectively. Then

m

∑
i=1

pi f (xi) =
m

∑
i=1

n−1

∑
k=0

(b−a)2k
[
pi f

(2k)(a)Λk

(
b− xi

b−a

)
+ pi f

(2k)(b)Λk

(
xi−a
b−a

)]

+(b−a)2n−2
(

f (2n−1)(b)− f (2n−1)(a)
)∫ b

a
δ (s)ds+R1

n( f ;a,b), (43)

where the remainder R1
n( f ;a,b) satisfies the estimation

|R1
n( f ;a,b)| � (b−a)2n− 1

2√
2

|T (δ ,δ )| 1
2

(∫ b

a
(s−a)(b− s)[ f (2n+1)(s)]2 ds

) 1
2

. (44)

Proof. If we apply Proposition 4 for f → δ and h → f (2n) , then we obtain

∣∣∣∣ 1
b−a

∫ b

a
δ (s) f (2n)(s)ds−

(
1

b−a

∫ b

a
δ (s)ds

)(
1

b−a

∫ b

a
f (2n)(s)ds

)∣∣∣∣
� 1√

2

(
1

b−a
|T (δ ,δ )|

∫ b

a
(s−a)(b− s)[ f (2n+1)(s)]2 ds

) 1
2

. (45)

From (17) and (43) we obtain

(b−a)2n−1
∫ b

a
δ (s) f (2n)(s)ds

= (b−a)2n−2
(

f (2n−1)(b)− f (2n−1)(a)
)∫ b

a
δ (s)ds+R1

n( f ;a,b),

where the estimate (44) follows from (45). �

The following integral version of the previous theorem is proven analogously.
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THEOREM 5. Let n ∈ N , f : [a,b] → R be such that f (2n) is an absolutely con-
tinuous function with (·− a)(b− ·)[ f (2n+1)]2 ∈ L[a,b] and let Gn , T and Δ be given
by (12), (38) and (42) respectively. Then

∫ β

α
p(x) f (g(x))dx

=
∫ β

α
p(x)

n−1

∑
k= j

(b−a)2k
[

f (2k)(a)Λk

(
b−g(x)
b−a

)
+ f (2k)(b)Λk

(
g(x)−a
b−a

)]
dx

+(b−a)2n−2
(

f (2n−1)(b)− f (2n−1)(a)
)∫ b

a
Δ(s)ds+R2

n( f ;a,b), (46)

where the remainder R2
n( f ;a,b) satisfies the estimation

|R2
n( f ;a,b)| � (b−a)2n− 1

2√
2

|T (Δ,Δ)| 1
2

(∫ b

a
(s−a)(b− s)[ f (2n+1)(s)]2 ds

) 1
2

.

By using Proposition 5 we obtain the following Grüss type inequality.

THEOREM 6. Let n ∈ N , f : [a,b] → R be such that f (2n) is an absolutely con-
tinuous function with f (2n+1) � 0 and let δ be given by (41). Then we have the repre-
sentation (43) and the remainder R1

n( f ;a,b) satisfies the bound

|R1
n( f ;a,b)| � (b−a)2n‖δ ′‖∞

[
f (2n−1)(b)+ f (2n−1)(a)

2

− f (2n−2)(b)− f (2n−2)(a)
b−a

]
. (47)

Proof. If we apply Proposition 5 for f → δ and h → f (2n) we obtain

∣∣∣∣ 1
b−a

∫ b

a
δ (s) f (2n)(s)ds−

(
1

b−a

∫ b

a
δ (s)ds

)(
1

b−a

∫ b

a
f (2n)(s)ds

)∣∣∣∣
� 1

2(b−a)
‖δ ′‖∞

∫ b

a
(s−a)(b− s) f (2n+1)(s)ds.

Since

∫ b

a
(s−a)(b− s) f (2n+1)(s)ds =

∫ b

a
(2s−a−b) f (2n)(s)ds

= (b−a)
[
f (2n−1)(b)+ f (2n−1)(a)

]
−2

[
f (2n−2)(b)− f (2n−2)(a)

]
, (48)

using identities (17) and (48) we deduce (47). �
Again, we only state the integral version of the previous result.
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THEOREM 7. Let n ∈ N , f : [a,b] → R be such that f (2n) is an absolutely con-
tinuous function with f (2n+1) � 0 and let Δ be given by (42). Then we have the repre-
sentation (46) and the remainder R2

n( f ;a,b) satisfies the bound

|R2
n( f ;a,b)|� (b−a)2n‖Δ′‖∞

[
f (2n−1)(b)+ f (2n−1)(a)

2
− f (2n−2)(b)− f (2n−2)(a)

b−a

]
.
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[5] J. PEČARIĆ, M. PRALJAK, Hermite interpolation and inequalities involving weighted averages of
n -convex functions, Math. Inequal. Appl. 19, 4 (2016), 1169–1180.
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