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GENERALIZATION OF WEIGHTED OSTROWSKI TYPE
INEQUALITIES BY ABEL-GONTSCHAROFF POLYNOMIAL

ANDREA AGLIC ALJINOVIC, LIILJANKA KVESIC, JOSIP PECARIC
AND SANJA TIPURIC-SPUZEVIC

(Communicated by J. Jakseti¢)

Abstract. We present a weighted generalization of Ostrowski type inequality for continous func-
tions presented by Abel-Gontscharoff interpolating polynomial

1. Introduction

The well known Ostrowski inequality states:

a+b)2

'f(X)—bia/ubf(t)dt'< }ﬁ((b_—)z

1 b-a)|lf|..- (1.1)

It holds for every x € [a,b] whenever f : [a,b] — R is continuous on [a,b] and dif-
ferentiable on (a,b) with bounded derivative. Ostrowski proved it in 1938. in [8]
and since then it has been generalized in a number of ways. Over the last decades some
new inequalities of this type have been intensively considered and applied in Numerical
analysis and Probability (see [6], [7]).

The aim of this paper is to give a weighted generalization of Ostrowski type in-
equality for functions presented by Abel-Gontscharoff interpolating polynomial. For
this purpose we will first introduce Abel-Gontcharoff interpolation.

Let -co <a < b <o, and a < a; < ... <a, <D be given knots. We denote
a=(ay,...,ay). Itis well known, that for f € C"[a,b] a unique polynomial Py ()
of degree (n—1) exists (see [1] ), fulfilling one of the following Abel-Gontcharoff
conditions: _

P (ar01) = fD (a101); 0<i<n—1. (1.2)

The associated error ey (7) can be represented in terms of the Green’s function
Ga, (t,s) of the boundary value problem

() =0
2 (a1:1) =0,0<i<n—1
b
en(t) = / Gan (1,5) ) (s)ds, 1 € [a,b]
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and it is given by

k—1
Tat() n—i—1
1 - ) < <t
lz(,)(n_l_l) (@it1—5) ap s
Gan(t,5) o T(t) n—i—1 (1.3)
lk(n_i_l),(am—S) < S < gy
k=0,...,n
where agp = a, a,+1 = b and
1 a a% a’ll a"l
1 0 1 2a...(i—1)as?iah!
Ta,(l‘):m = (1.4)
0 0 ... (i—1) l!ai
1 ¢ ... ¢! tl
1 ti—
—// /dtdtl 1...dty (fo=1).
ap ap
The first few are
ao(t)=1,
al(t)=t—ai,
2(1‘): /2[1 —2a2t+a1(2a2—a1)]
- —das —ay —as —day)—\ay—as
a3 (t)=1/2|(t—as)* /3 ) (t—ar) — ( )’

The following result holds (see [1]).

THEOREM 1. Let f € C"[a,b] and let Py be its Abel-Gontscharoff interpolating
polynomial. Then for a=ap < a; < ... < a, < ap+1 = b it holds

f():PA()+€A() (1.5)
—ZTal a,+1 +/ Gants)f()(s)ds
where G, is the Green’s functions, defined by (1.3) .
We will also need the weighted Montgomery identity, obtained by J. Pecari¢ in [9]
f(x):/ubw(t)f(t)dt—i— " Py et) £ (1) (1.6)

where w : [a,b] — [0,0) is some normalized weight function i.e. integrable function
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satisfying /w(t)dt =1,

0, t<a,
t

W)= /w()c)d)c,te[a,b]7

1, t>Db.
and P, (x,t) is the weighted Peano kernel

W(t), a<t<x,
P, (x,1) = (1.7)
W()—1,x<r<b.

In Section 2 we present weighted generalization of the Montgomery identity by
using Abel-Gontscharoff interpolating polynomial. In Section 3 we derive Ostrowski
type inequality for differentiable functions of class C". Finally, we obtain special cases
n =2 for uniform weighted function, as well as for normalized weight functions w () =

—Nllj,te (—L1)yiw()=2V1—22te[~1L1: w(t) =37, 1 €[0,1] and w (1) =

ﬁ , t € (0, 1]. For some other applications of Montgomery type identities for integral
Ostrowski type inequalities we refer interested reader to [2], [3], [4], [5], [6].

2. Generalization of weighted Montgomery identity

THEOREM 2. Suppose n>2, f €C"la,b] and w:[a,b] — [0,°) is some normal-
ized weight function. Then for a=by < by < ... <b,_1 <b,=b, b= (by,...,b,_1),
the following identity holds

b
f(x>=/ w(t)f dt+2f’“ t+1/P () T (1) i @.1)

+/ (/ Gpn—1(t,5)P, (xt)dt>f()()d

Proof. 1If we take n— 1 knots b; < ... < b, instead of n and apply (1.5) to
function f’(r), we get the following identity

ETb bisi +/ Gy 1 (1,5) £ (s) ds (22)

By putting (2.2) in (1.6) we get identity (2.1). O
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THEOREM 3. Suppose f € C"[a,b] and w: [a,b] — [0,0) is some normalized
weight function. Then for a=ag < a; < ... < ap < ayr1 = b following identity holds

1) [ wisa = 'gf(f) @) (Bt [womaar) e
[ (Gunkoss) = [ wi0Gan(t)ar) £ 0)as
Proof. 1f we multiply (1.5) with w(z) and integrate from « to b, we get
[ onta =S 1 a) [ w00 4
+/ / (t)Gan(t,s)f™ (s)dsdt.

Also, for the a = (ay,...,a,) we have

n—1

£ = Tai(0)fD (@) + / Gan(x, )£ (5)ds. 2.5)

i=0
From (2.4) and (2.5) we obtain (2.3). O

COROLLARY 1. Suppose f € C"[a,b] and w: [a,b] — [0,0) is some normalized
weight function. Then following identity holds

n—1
70~ [ s0d =3, /i) [ Bt ) 26
a i—0 a

+ / ’ ( / bpw(x,z)%Gw(z,s) dt) 70 () ds.

Proof. By applying the weighted Montgomery identity for the T ;(r) and Ga ,(x,s)
we obtain next two identities

Taﬂ-(x):/a Thi( dt+/ Py (x,1) T/ 2.7)

b
Gan(x,s) = / W(t)Gan(t,s)dt + / Pw(x,t)%Gw(z,s)dz. 2.8)
By putting (2.7) and (2.8) into (2.3) we obtain (2.6). O

REMARK 1. Identities (2.1) and (2.6) coincide for n > 2, if we choose knots
bi=aj+1, (i=1,...,n—1). Namely, from the (1.4) for b; = a;+; we can conclude
that the following holds

T]i(t) = Toi1 (1), i>1 (2.9)

d
EGa,n(Zas) = Gb7n71(t,s), 12 1
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Since that for i = 0 holds T}, ;(r) = 0, the first term in the sum in identity (2.6) is equal
to zero. Also, for the same choice of knots we have

FObr) = D (ai), i1

which proves assertion. Further, (2.3) and (2.6) for n = 1 coincide with weighted
Montgomery identity. Thus, for further generalizations we will use (2.1).

3. Ostrowski type inequalities

Here and hereafter for p > 1 we denote

nﬂu=(Lﬂfmpm);

1f]l.. = ess sup |f(1)[-

t€la,b]

and

DEFINITION 1. A pair of two real numbers (p,q) are called conjugate exponents
if 1 <p,q <o and %+é = 1. Formally, we will also define p =1 as conjugate to
g = o= and vice versa.

THEOREM 4. Suppose that all the assumptions of the Theorem 2 hold. Addi-
tionally assume (p,q) is pair of conjugate exponents 1 < p,q < . Then following
inequality holds

n—2

1)~ [ w3 o) [P0 d

i=0

(3.1)

<kl 7]

where .
K(s,x) = / Gt (£,5)Py(x.1) di.
a

Proof. Applying Holder inequality to the (2.1) we get (3.1). U

3.1. Case n =2 for uniform weight function w (1) = ;1,1 € [a,b]

COROLLARY 2. Assume (p,q) is pair of conjugate exponents and 1 < q < oo,
1 < p <o If f €C?[a,b] then for every x € {a,b) following inequality holds

/4
a+b (x—a)* ™+ (b—x)2H! : "
N7 RUCCIC N<<(MHW@%V 171
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Proof. We apply Theorem 4 with uniform weight function w () = 7, t € [a,b]

and knots by = a, by = x, bp = b. Thus we have ¢

1 b
‘f(X)—b_a [ r0a—s) [ Penmo0a] < ikl 1,
where )
K(s,x) = / G (1,5)P(x,) di
a
and
0, a<s<tr<ux,
—1, a<t<s<x,
Goa(t5)=90 |7 y<s<i<b
0, x<t<s<b.
Since Ty () = 1 we have
b b X — b
/P(x,z)r,,@(t)dt:/ P(x7t)dt:/ : _at
and
t—>b
sx /Gblts dt+/ Gbll‘S) dt.
b—a
Ifs<x )
St—a (s—a)
K =— dt = —
(¥ == p=a 2(b—a)
and if s > x 5
br—b (s—b)
K = —dt =— .
(5:%) s b—a 2(b—a)

So the g-norm of K (s,x) with respect to variable s is

o 5%

((x—a)zq“—i—(b—x)z’”l) /

1/q
ds)

(2g+1)24(b—a)?
and the proofis done. [J

COROLLARY 3. If f € C*[a,b] then for every x € (a,b) following inequality
holds

' /f t)di—f'(x ( ﬂ)'<z(bil_a)max{(x—a)z,(b—x)z}Hf””l.
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Proof. We apply Theorem 4 with uniform weight function w () = 7, t € [a,b]

and knots bp =a, by =x, by =b and p=1 (g = o). Thus we have

1 b
05 [ 100 [ P o] < Il
where ,
K(5.0) = [ Gualt.5)Px)d
a
and
0, a<s<t<yx,
-1, x<t<s<x,
Goa(t5)=90 |7 ‘<s<i<b
0, x<r<s<b.
As in the proof of the previous corollary we have
b
/ P(XJ Ty o at
2
and
X b
s7x):/ Gy,i(t,s dt—I—/ Gy (t,s) dt
a X a
that is
- (.qu)z §<x
2(b—a)’
K (s,x) =
(s—b)?
—m, x <s.
So the eo-norm of K (s,x) with respect to variable s is
(s—a)’ (s—b)*
IK (- x)]l.. = sup |K(s,x)] = max { sup |— ; -
s€la,b] s€lax] 2 (b - a) s€x,b] 2 (b - a)

= ﬁmax{(x—a)z,(b—x)z}

and the proofis done. [J

COROLLARY 4. Assume (p,q) is pair of conjugate exponents and 1 < q < oo,
1 < p <oo. If f € C?[a,b] then following inequality holds

(_a)q+1 v 11
o= [Croal < () 1,

Proof. We take x = ‘lzib in the Corollary 2. [J
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COROLLARY 5. f € C?|a,b] then following inequality holds

1 b
b—a/a ft)dr

Proof. We take x = %2 in the Corollary 3. [J

b—a 1
O=D )1,

<

yw—

3.2. Case n =2 for weight function w(7) = —1,1)

1
—, !
/1-2’ < <

COROLLARY 6. If f € C?[—1,1] then for every x € (—1,1) following inequality
holds

10 [ s

TJ1+v1—-12

< (farcsinx—klv 1_x2+M) [l£]]; -
T T 2

Proof. We apply Theorem 4 with weight function w(r) = \/11—2, re(—11)
T —t

and knots bp = —1, by =x, by =1 and p=1 (g = ). Thus we have

1 1
'ﬂﬂ—l/ ! f@ﬁ—fw/gm@ﬁnmmhguK@@M”ﬂm

TJ-1y1—1¢2

where

1
K@@:/fmm@m@gm

and
0, —1<s<r <y,
-1 x<tr<s<x

Gb71([,s): ) ~X ~ ~X b)

1, x<s<r<1,
0, x<tr<s<l1.

Since Ty () = 1 we have

! I . T I . T
/ Py(x,1) Ty o(t)dt = —/ <arcsmt + —) dt + —/ <arcsmt - —) dr =x
—1 ’ TJ-1 2 T Jx 2

and

1 _ T I _ T
K (s,x) = E/q Gn,1(t,s) (arcsmt—f— 5) dr + E/ Gp,1 (arcsmt - 5) dt

that is

1 (sarcsins+ V1—s2+ %) , 8 < X,

T

K (s,x) =
% (—sarcsins— V1—s2+ %) , X <s.
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Let’s denote
1
o(s)= = <sarcsins+ 1—s2+ %) ;s €[=1,1]

and |
B(s)= - (—sarcsins— 1—s2+%> , s €[—1,1].

Since o is negative and decreasing on [—1,1] and f is negative and increasing on
[—1,1] the eo-norm of K (s,x) with respect to variable s is

K(~,X)||m=maX{ sup |er(s)], sup IB(S)} = max{—a(x),—B (x)}

s€[—14] s€lx,1]

1 . X7 ) X7
= —max{(xarcsm)H— 1—x2+ —) ,xarcsinx+ /1 —x% — —}
Vs 2 2

1 V4
== (xarcsinx—i— VI1—x2+ XT) . 0O

COROLLARY 7. If f € C?[—1,1] then for every x € (—1,1) following inequality

holds
-1 [ s < (54 52) 1.

TJ1v1—1¢2

Proof. We apply Theorem 4 with weight function w (7) = \/%, te(—1,1) and
T —t

knots bp = —1, by =x, by =1 and p = (¢g=1). Similar as in previous corollary
we have

1
101 [ a7 )| < K0l ).

1—1¢2

and

—% (sarcsins+ V1—s2+ %) , 8§ < X,
% (—sarcsins— V1—s2+ %) , X <s.

The 1-norm of K (s,x) with respect to variable s is

L T 1 /! T
K0 == [ |sarcsins+v1—s2+ 2" |ds+ = [ |sarcsins+v/1— 52— 2| ds
1
mJ1 2 Ty 2

1 1,
=—+—x. O
4+2x

3.3. Case n =2 for weight function w (1) = 2\/1—12, 1 € [~ 1,1]

COROLLARY 8. If f € C*[—1,1] then for every x € (—1,1) following inequality
holds

2
‘f(x)— %/i VI1—2f(t)dt —x f'(x)| < (%arcsinx—k 23+—7:\/1—x2+%) £, -
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Proof. We apply Theorem 4 with weight function w(¢) = 2v/1—12, 1 € [~1,1]
and knots bp = —1, by =x, by =1 and p=1 (g = ). Thus we have

‘f(x)—%/llx/l—tzf(t)dt / Pt T (1) dt| <

where

1K Gl |71y

K (s5,%) = L 11 G (t,5)Py(x, 1) dt.

Since Ty () = 1 we have
1 X 1 1
/ Py (x,0)Tp (1) dt = / narcsmH— =t 1—t2+ dt
-1
1 1
+/ ( arcsint + —t\/ 1—12— E) dt =x

and
1
(s,x) / Gn,1(t,s) arcsmt+—t 1—t2+ dt
1
+/ Gbl ( arcs1nt+—t\/1—t2——>dz
that is

<—lsarcsms——\/l—s l—sz—%s>,s<x,
K (s,x) =

(—lsarcsms——\/l—s 2\/ §2 4 s) x <s.
Let’s denote
1 2 1 1
o (s) = ——sarcsins — —+/1 —s2 — —s\/1 —s2— =5, s € [-1,1]
V3 3r 3r 2
and
1 2 1 1
B(s) = —sarcsins — - v/1- 22— -2V 1=52 4 35, s € [-1,1].

Since o is negative and decreasing on [—1,1] and B is negative and increasing on
[—1,1] the eo-norm of K (s,x) with respect to variable s is

IIK(nX).x,:maX{ sup |o(s)[, sup B(S)I} = max{—o(x),—p (x)}

s€[—1,x] s€x,1]

X . 24x? 5,1 x . 2+4-x7 5 1
= max q — arcsinx+ 1 —x*+=x, — arcsinx—+ 1—x*—=x
n 3 2 r 3

2 2
= L aresinx+ i\/ 1—x2+ Ll
b4 3n 2
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COROLLARY 9. If f € C?[—1,1] then for every x € (—1,1) following inequality
holds 5 1 .
‘f(x) —2 [ Vi=Rd—x g )| < (— 5% ) 17l

Proof. We apply Theorem 4 with weight function w(¢) = 2v/1—12, 1 € [-1,1]
and knots bo=—1, by =x, by =1 and p=oco (¢ = 1). Similar as in previous corollary

we have 5
102 [ VTP )] < Kl ).
and
<—%sarcsins—% 1— 52— s 1—s2—%5>,s<x,
K (s,x) =

<—lsarcsms——\/l—s 21— 2+ s) X< s.

The 1-norm of K (s,x) with respect to variable s is

1K (G0l —/ l——sarcsms—_m 2y/1—52— _S
_—sarcsins——m__s2m+_s Js
T 3 3r 2

1 1,
—§+§x.

ds

O

3.4. Case n =2 for weight function w(r) = 3/, 1 € [0,1]

COROLLARY 10. If f € C?[0,1] then for every x € (0,1) following inequality
holds

03 [ Vi e (x-3) < (3 emacfod -} 1),

Proof. We apply Theorem 4 with weight function w(r) = 3/, € [0,1] and
knots bp =0, by =x, by =1 and p=1 (g = o). Thus we have

3 ol /1
3 [ irwar- /p () Too (1) di| < 1K (0l 7]

where X
K(m):/ G (1,5)Py (x,1) dr.
0

Since Ty () = 1 we have

/()le(x,t)Tho(t)dt:/Oxx/t_3dt+/x1 (\/t—3— 1)dt:x—§
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and

K (s,x) = /()XGb71(t7s)\/t—3dt+/l G (Vi 1) ar

that is

—%\/SS, 5 < X,

—%\/s5+s—%7x<s.

So the eo-norm of K (s,x) with respect to variable s is

K (s,x) =

, sup
s€lx,1]

NG _zms_é'}

5 5

|K(-,x)||. = sup |K(s,x)| =max< sup
s€[0,1] s€[0,4]

2 2
:max{gﬁ,gvﬁ_ﬁg}. O

COROLLARY 11. If f € C*[0,1] then for every x € (0,1) following inequality
holds

103 [Viroa- ro (3] < (322 )1

Proof. We apply Theorem 4 with weight function w (t) = 3 /7, t € [0, 1]and knots
bp=0,by=x,by=1and p=-co (¢g=1). Similar as in previous corollary we have

10 -2 [ V== o) (v 2)| < Ik Col 1)

5

and

—%\/SS, 5 < X,

—%\/s5+s—%7x<s.

The 1-norm of K (s,x) with respect to variable s is

1
ds+/

3.5. Case n =2 for weight function w(7) = 2#\/; ,1€(0,1]

K (s,x) =

X2 2 3
K(- = — Vs — 2/ i =
1K 2l /O' ~Vs VST s 2|ds

COROLLARY 12. If f € C?[0,1] then for every x € (0,1) following inequality
holds

103 [ Srar- i (x-5)| < GV macdog -} 1),
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Proof. We apply Theorem 4 with uniform weight function w(r) = ﬁ, t€(0,1]
and knots by =0, by =x, by =1 and p=1 (g = o). Thus we have

IR

103 [ G107 [ o] < Kl

where |
K(s,x):/ G (1) Py (x, 1) dt.
0

Since Ty () = 1 we have

|
/P (6, ) Ti o) dt = /\/dt+/ f—1)dr=x—

and

K(s,x) = /OXG[,J(LS)\/;dt—i—/xl G (t,5) (Vi —1)dt

that is

—%\/53, 5 <X,
—%\/S3+S—%,X<S.

So the eo-norm of K (s,x) with respect to variable s is

K (s,x) =

2
205

, Sup
s€x,1]

2 1

|K(-,x)||., = sup |K(s,x)| =max< sup
.YG[O,I] NS <0,x]

2 2 1
:max{gv)?,g@_x+§}. 5

COROLLARY 13. If f € C*[0,1] then for every x € (0,1) following inequality
holds

103 [ Sra- i (x-5) < (52 3 1) 1.

Proof. We apply Theorem 4 with weight function w (1) = 3 \[, t € (0,1] and knots
bp=0,by=x,by=1and p=oc0 (¢g=1). Similar as in previous corollary we have

103 [ Zrar- 7 (x-5)| <1k CRl

and

—%\/s3, 5 < X,
—%\/s3+s—l7x<s.

K (s,x) =
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The 1-norm of K (s,x) with respect to variable s is

1
ds+/

Acknowledgement. The publication was supported by the Ministry of Education
and Science of the Russian Federation (the Agreement number No. 02.203.21.0008.)

1 1 1
ds==-x*——x+—. O

2
K(- - 23
|| (7x)H1 /O ’ 3 s 2 3 10

2 1
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