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NEW BOUNDS FOR SHANNON, RELATIVE

AND MANDELBROT ENTROPIES VIA

ABEL–GONTSCHAROFF INTERPOLATING POLYNOMIAL

SAAD IHSAN BUTT ∗ , NASIR MEHMOOD, -DILDA PEČARIĆ AND JOSIP PEČARIĆ

(Communicated by J. Jakšetić)

Abstract. The Jensen’s inequality has tremendous implications in many fields of modern analy-
sis. It helps computing useful upper bounds for several entropic measures used in information
theory. We use discrete and continuous cyclic refinements of Jensen’s inequality and extend
them from convex to higher order convex function by using new Green functions and Abel-
Gontscharoff interpolating polynomial. As an application of our work, we establish connection
among new entropic bounds for Shanon, Relative and Mandelbrot entropies.

1. Introduction

Information theory is a mathematical representation of the conditions and param-
eters which govern the transmission and processing of information. It is an evolving
discipline getting huge attention from experimentalists and theorists of various disci-
plines like computer science, physics, pattern recognition, ecology, accounting, fuzzy
set theory etc.
Jensen’s inequality for differentiable convex functions has significant applications in
information theory. It is used to obtain upper bounds for several quantitative measures
arising from information theory for continuous random variable. It also helps comput-
ing several useful bounds for joint entropy, conditional entropy and mutual informa-
tion. It provides different counterpart inequalities of Shanon entropy which is one of
the major tools used in information theory and hence helps solving many problems in
accounting, economics, psychology, statistics, ecology, computer science etc.

We give some fundamental results regardingAbel-Gontscharoff interpolating poly-
nomial.

Let −∞ < α1 < α2 < ∞ and let α1 � ξ1 < ξ2 < · · ·ξn � α2 be the given points.
For φ ∈Cn[α1,α2] , Abel-Gontscharoff interpolating polynomial AP of degree (n−1)
satisfying Abel-Gontscharoff conditions

AP(σ)(ξσ+1) = φ (σ)(ξσ+1), 0 � σ � n−1
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exists uniquely [8, 9]. This condition in particular includes two point right focal condi-
tions.

AP(σ)
(2) (ξ1) = φ (σ)(ξ1), 0 � σ � t,

AP(σ)
(2) (ξ2) = φ (σ)(ξ2), t +1 � σ � n−1, α1 � ξ1 < ξ2 � α2.

First we give representation of Abel-Gontscharoff interpolating polynomial:

THEOREM 1. [1] Abel-Gontscharoff interpolating polynomial AP of function φ
can be expressed as

AP(z) =
n−1

∑
σ=0

Λσ (z)φ (σ)(ξσ+1), (1)

where Λ0(z) = 1 and Λσ , 1 � σ � n−1 is the unique polynomial of degree σ satis-
fying

Λ(l)
σ (ξl+1) = 0, 0 � l � σ −1,

Λ(σ)
σ (ξσ+1) = 1

and it can be written as

Λσ (z) =
1

1!2! · · ·σ !

∣∣∣∣∣∣∣∣∣∣
1 ξ1 ξ 2

1 . . . ξ σ−1
1 ξ σ

1
0 1 2ξ2 . . . (σ −1)ξ σ−2

2 σξ σ−1
2

. . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . (σ −1)! σ !ξσ
1 z z2 . . . zσ−1 zσ

∣∣∣∣∣∣∣∣∣∣
=
∫ z

ξ1

∫ z1

ξ2

∫ z2

ξ3

· · ·
∫ zσ−1

ξσ
dzσ dzσ−1 · · ·dz1, (z0 = z). (2)

In particular, we have

Λ0(z) = 1,

Λ1(z) = z− ξ1,

Λ2(z) =
1
2
[z2−2ξ2z+ ξ1(2ξ2− ξ1)].

COROLLARY 1. The two point right focal interpolating polynomial AP(2)(z) of
the function φ can be written as

AP(2)(z)=
t

∑
σ=0

(z− ξ1)σ

σ !
φ (σ)(ξ1)+

n−t−2

∑
w=0

[ w

∑
σ=0

(z−ξ1)t+1+σ (ξ1−ξ2)w−σ

(t +1+ σ)!(w−σ)!

]
φ (t+1+w)(ξ2).

(3)
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The associate error Error(z) = φ(z)−AP(z) can be represented in terms of the Green
function AG(z,r;n) of the boundary value problem

y(n) = 0, y(σ)(ξσ+1) = 0, 0 � σ � n−1

and appears as (see [1]):

AG(z,r;n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l−1

∑
σ=0

Λσ (z)
(n−σ −1)!

(ξσ+1− r)(n−σ−1), ξl � r � z,

−
n−1

∑
σ=l

Λσ (z)
(n−σ −1)!

(ξσ+1− r)(n−σ−1), z � r � ξl+1,

l = 0,1, ...,n (ξ0 = α1,ξn+1 = α2).

(4)

Corresponding to the two point right focal conditions, Green function AG(2)(z,r;n)
of the boundary value problem

y(n) = 0, y(σ)(ξ1) = 0, 0 � σ � t,y(σ)(ξ2) = 0, t +1 � σ � n−1

is given by (see [1]):

AG(2)(z,r;n) =
1

(n−1)!

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t

∑
σ=0

(
n−1

σ

)
(z− ξ1)σ (ξ1− r)n−σ−1, α1 � r � z,

−
n−1

∑
σ=t+1

(
n−1

σ

)
(z− ξ1)σ (ξ1 − r)n−σ−1, z � r � α2.

(5)

Further, for ξ1 � r , z � ξ2 the following inequalities hold

(−1)n−t−1 ∂ σ AG(2)(z,r;n)
∂ zσ � 0, 0 � σ � t, (6)

(−1)n−σ ∂ σ AG(2)(z,r;n)
∂ zσ � 0, t +1 � σ � n−1. (7)

THEOREM 2. Let φ ∈Cn[α1,α2] , and let AP(·) be its Abel-Gontscharoff interpo-
lating polynomial. Then

φ(z) = AP(z)+Error(z) =
n−1

∑
σ=0

Λσ (z)φ (σ)(ξσ+1)+
α2∫

α1

AG(z,r;n)φ (n)(r)dr, (8)

where Λ(·) is defined by (2) and AG(z,r;n) is defined by (4).
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THEOREM 3. Let φ ∈ Cn[α1,α2] , and let AP(2)(·) be its two points right focal
Abel-Gontscharoff interpolating polynomial . Then

φ(z) =AP(2)(z)+Error(z)

=
t

∑
σ=0

(z− ξ1)σ

σ !
φ (σ)(ξ1)+

n−t−2

∑
w=0

[ w

∑
σ=0

(z− ξ1)t+1+σ (ξ1 − ξ2)w−σ

(t +1+ σ)!(w−σ)!

]
φ (t+1+w)(ξ2)

+
α2∫

α1

AG(2)(z,r;n)φ (n)(r)dr,

(9)

where AG(2)(z,r;n) is defined by (5).

For j = 1, . . . ,5, consider the well known Lagrange Green function along with new
Green functions Gj : [α1,α2]× [α1,α2] → R defined as

G1(z,r) =

{
(α2−z)(α1−r)

α2−α1
, α1 � r � z,

(α2−r)(α1−z)
α2−α1

, z � r � α2.
(10)

G2(z,r) =
{

α1 − r, α1 � r � z,
α1 − z, z � r � α2.

(11)

G3(z,r) =
{

z−α2, α1 � r � z,
r−α2, z � r � α2.

(12)

G4(z,r) =
{

z−α1, α1 � r � z,
r−α1, z � r � α2.

(13)

G5(z,r) =
{

α2 − r, α1 � r � z,
α2 − z, z � r � α2.

(14)

All these functions are convex and continuous w.r.t. both variables and the following
Lemma holds:

LEMMA 1. [20] Let φ ∈C2[α1,α2] , then the following identities hold:

φ(z) =
α2− z

α2 −α1
φ(α1)+

z−α1

α2 −α1
φ(α2)+

α2∫
α1

G1(z,r)φ ′′(r)dr, (15)

φ(z) = φ(α1)+ (z−α1)φ
′
(α2)+

α2∫
α1

G2(z,r)φ
′′
(r)dr, (16)

φ(z) = φ(α2)+ (α2− z)φ
′
(α1)+

α2∫
α1

G3(z,r)φ
′′
(r)dr, (17)

φ(z) = φ(α2)− (α2−α1)φ
′
(α2)+ (z−α1)φ

′
(α1)+

α2∫
α1

G4(z,r)φ
′′
(r)dr, (18)
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φ(z) = φ(α1)+ (α2−α1)φ
′
(α1)− (α2− z)φ

′
(α2)+

α2∫
α1

G5(z,r)φ
′′
(r)dr. (19)

REMARK 1. The Green function G1(·, ·) is called Lagrange Green function (see
[25]). The new Green functions Gj(·, ·), ( j = 2,3,4,5), were introduced by Pečarić
et al. in [20]. The result (16) given in the Lemma 1 represents a special case of the
representation of the function using the so-called ’two-point right focal’ interpolating
polynomial in case when n = 2 and p = 0 (see [1]).

The most important inequality concerning convex functions is the classical Jensen’s
inequality (see [12]). We present some recent work on cyclic refinements of classical
and discrete Jensen’s inequalities (see [11]). To make statements of that work simple,
we need the following hypothesis:

(H1 ) Let 2 � k � m be integers, and let p1, . . . , pm and λ1, . . . ,λk represent positive
probability distributions.

(H2 ) Let C be a convex subset of a real vector space Z and φ be a real valued convex
function defined on C .

THEOREM 4. Assume (H1 ) and (H2 ). If z := z1, . . . ,zm ∈ C, p := (p1, . . . , pm)
and λ := (λ1, . . . ,λk) , then

φ

(
m

∑
u=1

puzu

)
� Cdis = Cdis (φ ,z,p,λ ) (20)

:=
m

∑
u=1

(
k−1

∑
v=0

λv+1pu+v

)
φ

⎛⎜⎜⎝
k−1
∑

v=0
λv+1pu+vzu+v

k−1
∑

v=0
λv+1pu+v

⎞⎟⎟⎠�
m

∑
u=1

puφ (zu) ,

where u+ v means u+ v−m in case of u+ v > m.

Theorem 4 can be considered as the weighted form of Theorem 2.1 in [2]. To refine the
classical Jensen’s inequality, we first introduce some hypotheses and notations.

(H3 ) Let (Z,B,δ ) be a probability space.

Let l � 2 be a fixed integer. For j = 1, · · · , l, the σ -algebra in Zl generated by the

projection mappings pr j : Zl → Z defined by

pr j (z1, . . . ,zl) := z j

is denoted by Bl . δ l is the product measure on Bl . This measure is uniquely (δ is
σ -finite) specified by

δ l (B1× . . .×Bl) := δ (B1) . . .δ (Bl) , Bj ∈ B, j = 1, . . . , l.
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(H4 ) Let f be a δ -integrable function on Z having values in an interval I ⊂ R .

(H5 ) Let φ be a convex function on I such that φ ◦ f is δ -integrable on Z .

Under the conditions (H1 ) and (H3 -H5 ) we define

Cint = Cint (φ , f ,δ ,p,λ )

:=
m

∑
u=1

(
k−1

∑
v=0

λv+1pu+v

)∫
Zm

φ

⎛⎜⎜⎝
k−1
∑

v=0
λv+1pu+v f (zu+v)

k−1
∑

v=0
λv+1pu+v

⎞⎟⎟⎠dδm (z1, . . . ,zm) , (21)

and for t ∈ [0,1]

Cpar (t)
=Cpar (t,φ , f ,δ ,p,λ )

:=
m

∑
u=1

(
k−1

∑
v=0

λv+1pu+v

)
·
∫
Zm

φ

⎛⎜⎜⎝t

k−1
∑

v=0
λv+1pu+v f (zu+v)

k−1
∑

v=0
λv+1pu+v

+(1−t)
∫
Z

f dδ

⎞⎟⎟⎠dδm(z1, . . . ,zm) ,

(22)

where u+ v means u+ v−m in case of u+ v > m .

REMARK 2. Lemma 2.1 (b) in [10] assures that the integrals in (21) and (22) exist
and are finite.

THEOREM 5. Assume (H1 ) and (H3 -H5 ). Also let p := (p1, . . . , pm) and λ :=
(λ1, . . . ,λk) . Then

φ

⎛⎝∫
Z

f dδ

⎞⎠� Cpar (t) � Cint �
∫
Z

φ ◦ f dδ , t ∈ [0,1] .

In order to achieve our goals, we consider the following hypotheses for next sections.

(M1 ) Let I ⊂R be an interval, z := (z1, · · · ,zm)∈ Im and let p1, . . . , pm and λ1, . . . ,λk

represent positive probability distributions for 2 � k � m .

REMARK 3. Under the conditions (M1 ), we define

J1(φ) = J1(z,p,λ ;φ) :=
m

∑
u=1

puφ (zu)−Cdis (φ ,z,p,λ ) ,

J2(φ) = J2(z,p,λ ;φ) := Cdis (φ ,z,p,λ )−φ

(
m

∑
u=1

puzu

)
,
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where φ : I → R is a function. The functionals φ → Ji(φ) are linear and Theorem 4
implies that

Ji(φ) � 0, i = 1,2

provided that φ is a convex function.
Assume (H1 ) and (H3 -H5 ). Then we have the following additional linear func-

tionals

J3(φ) = J3(φ , f ,δ ,p,λ ) :=
∫
Z

φ ◦ f dδ −Cint (φ , f ,δ ,p,λ ) � 0,

J4(φ) = J4(t,φ , f ,δ ,p,λ ) :=
∫
Z

φ ◦ f dδ −Cpar (t,φ , f ,δ ,p,λ ) � 0; t ∈ [0,1] ,

J5(φ) = J5(t,φ , f ,δ ,p,λ ) := Cint (φ , f ,δ ,p,λ )−Cpar (t,φ , f ,δ ,p,λ ) � 0; t ∈ [0,1] ,

J6(φ) = J6(t,φ , f ,δ ,p,λ ) := Cpar (t,φ , f ,δ ,p,λ )−φ

⎛⎝∫
Z

f dδ

⎞⎠� 0; t ∈ [0,1] .

2. Extensions of cyclic refinements of Jensen’s inequality by Abel-Gontscharoff
interpolation

To start for real weights, we need the following assumptions:

(A1 ) For the linear functionals Ji(·) ( i = 1,2), assume further that

k−1
∑

v=0
λv+1 pu+vzu+v

k−1
∑

v=0
λv+1 pu+v

∈

[α1,α2] for u = 1, . . .m .

(A2 ) For the linear functionals Ji(·) ( i = 3, . . . ,6), assume further that

k−1
∑

v=0
λv+1 pu+v f (zu+v)

k−1
∑

v=0
λv+1pu+v

∈ [α1,α2] for u = 1, . . .m .

We consider discrete as well as continuous version of cyclic refinements of Jensen’s
inequality and construct the generalized new identities having real weights utilizing
Abel-Gontscharoff interpolating polynomial.

THEOREM 6. Let m,k ∈ N , p1, . . . , pm and λ1, . . . ,λk be real tuples for 2 � k �
m, such that

k−1
∑

v=0
λv+1pu+v �= 0 for u = 1, . . .m with

m
∑

u=1
pu = 1 and

k
∑

v=1
λv = 1 . Also let

z ∈ [α1,α2] ⊂ R and z ∈ [α1,α2]m . Assume φ ∈Cn[α1,α2] and consider interval with
points −∞ < α1 � ξ1 < ξ2 < · · ·ξn � α2 < ∞ , such that φ(α1) = φ(α2) , φ ′(α1) = 0 =
φ ′(α2) , Λ(·) is defined by (2) , AG(·,r;n) in (4) and Gj , ( j = 1, . . . ,5) be the Green
functions defined in (10)–(14), respectively.

Then for i = 1, . . . ,6 along with assumptions (A1) and (A2) , we have the follow-
ing generalized identities:
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(a) For n � 1

Ji(φ(z)) =
n−1

∑
σ=1

φ (σ)(ξσ+1)Ji

(
Λσ (z)

)
+

α2∫
α1

Ji

(
AG(z,r;n)

)
φ (n)(r)dr. (23)

(b) For n � 3

Ji(φ(z)) =
α2∫

α1

Ji

(
Gj(z,r)

) n−3

∑
σ=0

φ (σ+2)(ξσ+1)Λσ (r)dr

+
α2∫

α1

α2∫
α1

Ji

(
Gj(z,r)

)
AG(r,v;n−2)φ (n)(v)dvdr. (24)

Proof. Fix i = 1, . . . ,6.

(a) Applying cyclic Jensen’s type linear functionals Ji(·) on (8) and practicing prop-
erties of the functional, we get (23).

(b) For fix j = 5, testing (19) in cyclic Jensen’s type functional Ji(·) and employing
the properties of Ji(·) along with the assumed conditions, we have

Ji(φ) = Ji

(
φ(α1)

)
+ Ji

(
(α2 −α1)φ

′
(α1))

)
− Ji

(
(α2 − z)φ

′
(α2))

)

+
α2∫

α1

Ji

(
G5(z,r)

)
φ

′′
(r)dr = φ

′
(α2)Ji(z)+

α2∫
α1

Ji

(
G5(z,r)

)
φ

′′
(r)dr

=
α2∫

α1

Ji(G5(z,r))φ
′′
(r)dr. (25)

By Theorem 2, φ ′′
(r) can be expressed as:

φ ′′(r) =
n−3

∑
σ=0

Λσ (r)φ (σ+2)(ξσ+1)+
α2∫

α1

AG(r,v;n−2)φ (n)(v)dv. (26)

Putting (26) in (25), we get (24) respectively for j = 5 and i = 1, · · · ,6. The cases
for j = 1,2,3,4 are treated analogously and are left for the reader interest. �

Now we obtain extensions and improvements of discrete and integral cyclic Jensen’s
inequalities with real weights.

THEOREM 7. Consider φ be n−convex function along with the suppositions of
Theorem 6. Then we conclude the following results:
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(a) If for all i = 1, . . . ,6 ,

Ji

(
AG(z,r;n)

)
� 0, r ∈ [α1,α2] (27)

holds, then we have

Ji(φ(z)) �
n−1

∑
σ=1

φ (σ)(ξσ+1)Ji

(
Λσ (z)

)
(28)

for i = 1, . . . ,6 .

(b) If for all i = 1, . . . ,6 and j = 1, . . . ,5

α2∫
α1

Ji

(
Gj(z,r)

)
AG(r,v;n−2)dr � 0, r ∈ [α1,α2] (29)

holds then

Ji(φ(z)) �
α2∫

α1

Ji

(
Gj(z,r)

) n−3

∑
σ=0

φ (σ+2)(ξσ+1)Λσ (r)dr (30)

for i = 1, . . . ,6 .

Proof.

(a) Fix i = 1, . . . ,6. As the function φ ∈ Cn[α1,α2] is assumed to be n−convex,
therefore using the characterization of n−convex function φ (n)(z) � 0 for all
z ∈ [α1,α2] (see [22], p. 16). Hence we can apply Theorem 6(a) to obtain (28).

(b) Fix i = 1, . . . ,6 and j = 1, . . . ,5. Following similar steps as above, we use The-
orem 6(b) to get (30). �

In the next corollary, we give Theorem 7 by considering two points right focal Abel-
-Gontscharoff interpolating polynomial:

COROLLARY 2. Assume φ ∈ Cn[α1,α2] on the interval with points α1 � ξ1 <
ξ2 < α2 along with the suppositions of Theorem 6. Let AG(2)(z,r;n) be the Green
function defined in (5). If φ be n−convex function, then we conclude the following
results:

(a) If for all i = 1, . . . ,6 ,

Ji

(
AG(2)(z,r;n)

)
� 0, r ∈ [α1,α2] (31)

holds, then we have
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Ji(φ(z)) �
t

∑
σ=1

φ (σ)(ξ1)
σ !

Ji

(
(z− ξ1)σ

)

+
n−t−2

∑
w=0

[ w

∑
σ=0

φ (t+1+w)(ξ2)(ξ1− ξ2)w−σ

(t +1+ σ)!(w−σ)!

]
Ji

(
(z− ξ1)t+1+σ

)
(32)

for i = 1, . . . ,6 .

(b) If for all i = 1, . . . ,6 and j = 1, . . . ,5

Ji

(
Gj(z,r)

)
� 0, r ∈ [α1,α2] (33)

holds, provided that (n = even, t = odd) or (n = odd, t = even) , then

Ji(φ(z)) �
t

∑
σ=0

φ (σ+2)(ξ1)
σ !

α2∫
α1

Ji

(
Gj(z,r)

)
(r− ξ1)σ dr

+
n−t−4

∑
w=0

[ w

∑
σ=0

φ (t+3+w)(ξ2)(ξ1−ξ2)w−σ

(t +1+ σ)!(w−σ)!

] α2∫
α1

Ji

(
Gj(z,r)

)
(r−ξ1)t+1+σ dr

(34)

for i = 1, . . . ,6 .

Proof. Fix i = 1, . . . ,6.

(a) Applying cyclic Jensen’s type linear functionals Ji(·) on (9) and practicing prop-
erties of the functional, we get

Ji(φ(z)) =
t

∑
σ=1

φ (σ)(ξ1)
σ !

Ji

(
(z− ξ1)σ

)

+
n−t−2

∑
w=0

[ w

∑
σ=0

φ (t+1+w)(ξ2)(ξ1 − ξ2)w−σ

(t +1+ σ)!(w−σ)!

]
Ji

(
(z− ξ1)t+1+σ

)

+
α2∫

α1

Ji

(
AG(2)(z,r;n)

)
φ (n)(r)dr. (35)

Now using (31) and n−convexity of the function φ , we get (32).

(b) Fix i = 1, . . . ,6 and j = 1, . . . ,5. By Theorem 6(b), we already proved

Ji(φ) =
α2∫

α1

Ji(Gj(z,r))φ
′′
(r)dr. (36)
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By Theorem 3, φ ′′
(r) can be expressed as:

φ ′′(r) =
t

∑
σ=0

(r− ξ1)σ

σ !
φ (σ+2)(ξ1)

+
n−t−4

∑
w=0

[ w

∑
σ=0

(r− ξ1)t+1+σ (ξ1− ξ2)w−σ

(t +1+ σ)!(w−σ)!

]
φ (t+3+w)(ξ2)

+
α2∫

α1

AG(2)(r,v;n−2)φ (n)(v)dv. (37)

Putting (37) in (36), we get the following identity

Ji(φ(z)) =
t

∑
σ=0

φ (σ+2)(ξ1)
σ !

α2∫
α1

Ji

(
Gj(z,r)

)
(r− ξ1)σ dr

+
n−t−4

∑
w=0

[ w

∑
σ=0

φ (t+3+w)(ξ2)(ξ1−ξ2)w−σ

(t +1+ σ)!(w−σ)!

] α2∫
α1

Ji

(
Gj(z,r)

)
(r−ξ1)t+1+σ dr

+
α2∫

α1

α2∫
α1

Ji

(
Gj(z,r)

)
AG(2)(r,v;n−2)φ (n)(v)dvdr. (38)

Now from (6), we have (−1)n−t−3AG(2)(r,v;n−2) � 0. Therefore utilizing our
assumptions (n = even,t = odd) or (n = odd,t = even) , we get AG(2)(r,v;n−
2) � 0. Now employing (33) alongside with n−convexity of φ yields (34). �

We will finish the present section by the following generalizations of cyclic refine-
ments of Jensen’s inequalities by two points right focal Abel-Gontscharoff interpolating
polynomial:

THEOREM 8. If the assumptions of Corollary 2 are fulfilled with additional con-
ditions that p1, . . . , pm and λ1, . . . ,λk are non negative tuples for 2 � k � m, such that
m
∑

u=1
pu = 1 and

k
∑

v=1
λv = 1 . Then for φ : [α1,α2] → R being n−convex function, we

conclude the following results:

(a) (32) holds for the cases when (n = even, t = odd) or (n = odd, t = even) . If
(32) is valid along with the function

Γ(z) :=
t

∑
σ=0

(z− ξ1)σ

σ !
φ (σ)(ξ1)

+
n−t−2

∑
w=0

[ w

∑
σ=0

(z− ξ1)t+1+σ (ξ1 − ξ2)w−σ

(t +1+ σ)!(w−σ)!

]
φ (t+1+w)(ξ2) (39)

to be convex, the right side of (32) is non negative, means

Ji(φ) � 0, i = 1, . . . ,6. (40)
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(b) For (n = even, t = odd) or (n = odd, t = even), (34) holds. Further

t

∑
σ=0

(r−ξ1)σ

σ !
φ (σ+2)(ξ1)+

n−t−4

∑
w=0

[ w

∑
σ=0

(r−ξ1)t+1+σ(ξ1−ξ2)w−σ

(t +1+ σ)!(w−σ)!

]
φ (t+3+w)(ξ2)�0

(41)

the right side of (34) is non negative, particularly (40) is established for all
i = 1, . . . ,6 and j = 1, . . . ,5 .

Proof.

(a) Fix i = 1, . . . ,6. Using (6), for ξ1 � r , z � ξ2 ,

(−1)n−t−1 ∂ 2AG(2)(z,r;n)
∂ z2 � 0 (42)

ensures the convexity of AG(2)(z,r;n) w.r.t. first variable for the cases when
(n = even, t = odd) or (n = odd, t = even) . So (31) holds by virtue of Remark
3 on account of given weights to be positive. Hence (32) is established by taking
into account Corollary 2(a) . Moreover, the R.H.S. of (32) can be written in the
functional form Ji(Γ) for all (i = 1, . . . ,6) , after reorganizing this side. Employ-
ing Remark 3 the non negativity of R.H.S. of (32) is secured, especially (40) is
established.

(b) Fix i = 1, . . . ,6. We have assumed positive weights and for all j = 1, . . . ,5,
Gj(z,r) is convex. Thus by practicing Remark 3, Ji(Gj(z,r)) � 0. Since φ is
n−convex, hence by following Corollary 2 (b) , we obtain (34). Now taking into
account the positivity of Ji(Gj(z,r)) and (41), we get (40). �

3. Applications to entropic bounds

Let φ : (0,∞) → (0,∞) be a convex function with p := (p1, ..., pm) and q :=
(q1, ...,qm) be positive probability distributions. Then φ -divergence functional is de-
fined in [7] as follows:

Iφ (p,q) =
m

∑
u=1

quφ
(

pu

qu

)
.

Surveying the classical Csiszár divergence functional, we propose a new functional:

DEFINITION 1. Let φ : I → R be a function with I an interval in R . Let p :=
(p1, . . . , pm) ∈ R

m and q := (q1, . . . ,qm) ∈ (0,∞)m such that

pu

qu
∈ I, u = 1, . . . ,m.

Then let

Ĩφ (p,q) =
m

∑
u=1

quφ
(

pu

qu

)
. (43)



NEW BOUNDS FOR SHANNON, RELATIVE AND MANDELBROT ENTROPIES 1295

REMARK 4. Now as a consequence of Theorem 7 we consider the discrete exten-
sions of cyclic refinements of Jensen’s inequalities for (i = 1) , from (28) with respect
to n−convex function φ in the explicit form:

m

∑
u=1

puφ (zu)−
m

∑
u=1

(
k−1

∑
v=0

λv+1pu+v

)
φ

⎛⎜⎜⎝
k−1
∑

v=0
λv+1pu+vzu+v

k−1
∑

v=0
λv+1pu+v

⎞⎟⎟⎠

�
n−1

∑
σ=1

φ (σ)(ξσ+1)×

⎛⎜⎜⎝ m

∑
u=1

puΛσ (zu)−
m

∑
u=1

(
k−1

∑
v=0

λv+1pu+v

)
Λσ

⎛⎜⎜⎝
k−1
∑

v=0
λv+1pu+vzu+v

k−1
∑

v=0
λv+1pu+v

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

(44)

where Λ(·) is defined by (2).

THEOREM 9. Let m,k ∈ N (2 � k � m) , λ1, . . . ,λk be positive probability distri-
butions. Let p := (p1, . . . , pm) ∈ R

m and q := (q1, . . . ,qm) ∈ (0,∞)m such that

pu

qu
∈ [α1,α2], u = 1, . . . ,m.

Also let φ ∈Cn[α1,α2] and consider interval with points −∞ < α1 � ξ1 < ξ2 < · · ·ξn �
α2 < ∞ such that φ is n−convex function. Then the following inequality holds:

Ĩφ (p,q)

�
m

∑
u=1

(
k−1

∑
v=0

λv+1qu+v

)
φ

⎛⎜⎜⎝
k−1
∑

v=0
λv+1pu+v

k−1
∑

v=0
λv+1qu+v

⎞⎟⎟⎠

+
n−1

∑
σ=1

φ (σ)(ξσ+1)×

⎛⎜⎜⎝ m

∑
u=1

quΛσ

(
pu

qu

)
−

m

∑
u=1

(
k−1

∑
v=0

λv+1qu+v

)
Λσ

⎛⎜⎜⎝
k−1
∑

v=0
λv+1pu+v

k−1
∑

v=0
λv+1qu+v

⎞⎟⎟⎠
⎞⎟⎟⎠ .

(45)

Proof. Replacing pu with qu and zu with pu
qu

for (u = 1, . . . ,m) in (44), we get
(45). �
We now explore two special cases of the previous result. One corresponds to the entropy
of a discrete probability distribution. For positive m-tuple q = (q1, ...,qm) such that
∑m

u=1 qu = 1, the Shannon entropy [24] is defined by

S(q) = −
m

∑
u=1

qu lnqu. (46)
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Shannon entropy and related measures are increasingly used in molecular ecology, pop-
ulation genetics, information theory, dynamical systems and statistical physics (see
[19]).

COROLLARY 3. Let m,k ∈ N (2 � k � m) , λ1, . . . ,λk be positive probability dis-
tributions.

(a) If q := (q1, . . . ,qm) ∈ (0,∞)m and (n = even) , then

m

∑
u=1

qu lnqu �
m

∑
u=1

(
k−1

∑
v=0

λv+1qu+v

)
ln

(
k−1

∑
v=0

λv+1qu+v

)
+

(
n−1

∑
σ=1

(−1)σ (σ −1)!
(ξσ+1)σ

)

×

⎛⎜⎜⎝ m

∑
u=1

quΛσ

(
1
qu

)
−

m

∑
u=1

(
k−1

∑
v=0

λv+1qu+v

)
Λσ

⎛⎜⎜⎝ 1
k−1
∑

v=0
λv+1qu+v

⎞⎟⎟⎠
⎞⎟⎟⎠ .

(47)

(b) If q := (q1, . . . ,qm) is a positive probability distribution and (n = even) , then we
get the bounds for the Shannon entropy of q .

S(q) �−
m

∑
u=1

(
k−1

∑
v=0

λv+1qu+v

)
ln

(
k−1

∑
v=0

λv+1qu+v

)
−
(

n−1

∑
σ=1

(−1)σ (σ −1)!
(ξσ+1)σ

)

×

⎛⎜⎜⎝ m

∑
u=1

quΛσ

(
1
qu

)
−

m

∑
u=1

(
k−1

∑
v=0

λv+1qu+v

)
Λσ

⎛⎜⎜⎝ 1
k−1
∑

v=0
λv+1qu+v

⎞⎟⎟⎠
⎞⎟⎟⎠ .

(48)

If (n = odd) , then (47) and (48) hold in reverse directions.

Proof.

(a) Using φ(x) := − lnx , and p := (1,1, . . . ,1) in Theorem 9, we get the required
results.

(b) It is a special case of (a) . �

The second case corresponds to the relative entropy or Kullback–Leibler divergence
between two probability distributions. One of the best known distance function used in
mathematical statistics, information theory and signal processing is Kullback-Leibler
distance. The Kullback-Leibler distance [17, 18] between the positive probability
distributions p = (p1, ..., pm) and q = (q1, ...,qm) is defined by

D(q ‖ p) =
m

∑
u=1

qu ln

(
qu

pu

)
. (49)
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COROLLARY 4. Let m,k ∈ N (2 � k � m) , λ1, . . . ,λk be positive probability dis-
tributions.

(a) If q := (q1, . . . ,qm),p := (p1, . . . , pm) ∈ (0,∞)m and (n = even) , then

m

∑
u=1

qu ln

(
qu

pu

)
�

m

∑
u=1

(
k−1

∑
v=0

λv+1qu+v

)
ln

⎛⎜⎜⎝
k−1
∑

v=0
λv+1qu+v

k−1
∑

v=0
λv+1pu+v

⎞⎟⎟⎠+

(
n−1

∑
σ=1

(−1)σ (σ −1)!
(ξσ+1)σ

)

×

⎛⎜⎜⎝ m

∑
u=1

quΛσ

(
pu

qu

)
−

m

∑
u=1

(
k−1

∑
v=0

λv+1qu+v

)
Λσ

⎛⎜⎜⎝
k−1
∑

v=0
λv+1pu+v

k−1
∑

v=0
λv+1qu+v

⎞⎟⎟⎠
⎞⎟⎟⎠ .

(50)

(b) If q := (q1, . . . ,qm),p := (p1, . . . , pm) are positive probability distributions and
(n = even) , then we have

D(q ‖ p) �
m

∑
u=1

(
k−1

∑
v=0

λv+1qu+v

)
ln

⎛⎜⎜⎝
k−1
∑

v=0
λv+1qu+v

k−1
∑

v=0
λv+1pu+v

⎞⎟⎟⎠+

(
n−1

∑
σ=1

(−1)σ (σ −1)!
(ξσ+1)σ

)

×

⎛⎜⎜⎝ m

∑
u=1

quΛσ

(
pu

qu

)
−

m

∑
u=1

(
k−1

∑
v=0

λv+1qu+v

)
Λσ

⎛⎜⎜⎝
k−1
∑

v=0
λv+1pu+v

k−1
∑

v=0
λv+1qu+v

⎞⎟⎟⎠
⎞⎟⎟⎠ .

(51)

If (n = odd) , then (50) and (51) hold in reverse directions.

Proof.

(a) Using φ(x) := − lnx in Theorem 9, we get the desired results.

(b) It is special case of (a) . �

Zipf’s law is one of the basic laws in information science and is extensively applied in
linguistics. Apart from the use of this law in information science and linguistics, Zipf’s
law has a mythical impact in economics.
For m ∈ {1,2, . . .} , c � 0 and d > 0 the Zipf-Mandelbrot law (probability mass func-
tion) is stated as

φ(u;m,c,d) =
1

((u+ c)dHm,c,d)
, u = (1,2, . . . ,m), (52)
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where

Hm,c,d =
m

∑
s=1

1
(s+ c)d .

The probability mass function can be given as in the (52) and Hm,c,d which may be
thought of as a generalization of a harmonic number.Application of Zipf-Mandelbrot
law can be found in linguistics, information sciences and also is often applicable in
ecological field studies. Some recent results related to Zipf-Mandelbrot law can be
seen in [13, 15, 16].
Let m ∈ {1,2, . . .} , c � 0, d > 0, then Zipf-Mandelbrot entropy can be given as:

Z(H,c,d) =
d

Hm,c,d

m

∑
u=1

ln(u+ c)
(u+ c)d + ln(Hm,c,d). (53)

Consider

qu = φ(u;m,c,d) =
1

((u+ c)dHm,c,d)
. (54)

Now we state our results involving entropy introduced by Mandelbrot Law:

THEOREM 10. Let m,k ∈ N (2 � k � m) , λ1, . . . ,λk be positive probability dis-
tributions and q be as defined in (54) by Zipf-Mandelbrot law with parameters m ∈
{1,2, . . .} , c � 0 , d > 0 . For (n = even) , the following holds

S(q)
=Z(H,c,d)

�−
m

∑
u=1

(
k−1

∑
v=0

λv+1

((u+ v+ c)dHm,c,d)

)
ln

(
1

Hm,c,d

k−1

∑
v=0

λv+1

((u+ v+ c)d)

)

−
(

n−1

∑
σ=1

(−1)σ (σ −1)!
(ξσ+1)σ

)(
m

∑
u=1

1
((u+ c)dHm,c,d)

Λσ

(
((u+ c)dHm,c,d)

))

+

(
n−1

∑
σ=1

(−1)σ (σ−1)!
(ξσ+1)σ

)⎛⎜⎜⎝ m

∑
u=1

(
k−1

∑
v=0

λv+1

((u+v+c)dHm,c,d)

)
Λσ

⎛⎜⎜⎝ 1
k−1
∑

v=0

λv+1
((u+v+c)dHm,c,d)

⎞⎟⎟⎠
⎞⎟⎟⎠ .

(55)

If (n = odd) , then (55) holds in reverse direction.

Proof. Substituting this qu = 1
((u+c)dHm,c,d) in Corollary 3(b), we get the desired re-

sult. Since it is interesting to see that
m
∑

u=1
qu = 1. Moreover using above qu in Shannon

entropy (46), we get Mandelbrot entropy (53)

S(q) = −qu lnqu = −
m

∑
u=1

1
((u+ c)dHm,c,d)

ln
1

((u+ c)dHm,c,d)



NEW BOUNDS FOR SHANNON, RELATIVE AND MANDELBROT ENTROPIES 1299

=
−1

(Hm,c,d)

m

∑
u=1

1
(u+ c)d ln

1
(u+ c)dHm,c,d

=
−1

(Hm,c,d)

m

∑
u=1

1
(u+ c)d

(
ln(1)−d ln(u+ c)− ln(Hm,c,d)

)
=

1
(Hm,c,d)

m

∑
u=1

1
(u+ c)d

(
d ln(u+ c)+ ln(Hm,c,d)

)
=

d
(Hm,c,d)

m

∑
u=1

ln(u+ c)
(u+ c)d

+ ln(Hm,c,d). � (56)

COROLLARY 5. Let m,k ∈ N (2 � k � m) , λ1, . . . ,λk be positive probability dis-

tributions and for c1,c2 ∈ [0,∞) , d1,d2 > 0 , let Hm,c1,d1 =
m
∑

s=1

1
(s+c1)d1

and Hm,c2,d2 =
m
∑

s=1

1
(s+c2)d2

. Now using qu =
1

(u+ c1)
d1Hm,c1,d1

and pu =
1

(u+ c2)
d2Hm,c2,d2

in Corol-

lary 4(b), with (n = even) , then the following holds:

D(q ‖ p)

=
m

∑
u=1

1

(u+ c1)
d1Hm,c1,d1

ln

(
(u+ c2)

d2Hm,c2,d2

(u+ c1)
d1Hm,c1,d1

)

�
m

∑
u=1

(
k−1

∑
v=0

λv+1

(u+ v+ c1)
d1Hm,c1,d1

)
ln

⎛⎜⎜⎝
k−1
∑

v=0
λv+1

1
(u+v+c1)

d1Hm,c1 ,d1

k−1
∑

v=0
λv+1

1
(u+v+c2)

d2Hm,c2 ,d2

⎞⎟⎟⎠
+

(
n−1

∑
σ=1

(−1)σ (σ −1)!
(ξσ+1)σ

)(
m

∑
u=1

1
((u+ c1)d1Hm,c1,d1)

Λσ

(
((u+ c1)d1Hm,c1,d1)
((u+ c2)d2Hm,c2,d2)

))

−
(

n−1

∑
σ=1

(−1)σ (σ −1)!
(ξσ+1)σ

)

×

⎛⎜⎜⎝ m

∑
u=1

(
k−1

∑
v=0

λv+1

(u+ v+ c1)
d1Hm,c1,d1

)
Λσ

⎛⎜⎜⎝
k−1
∑

v=0
λv+1

1
(u+v+c2)

d2Hm,c2 ,d2

k−1
∑

v=0
λv+1

1
(u+v+c1)

d1Hm,c1 ,d1

⎞⎟⎟⎠
⎞⎟⎟⎠ . (57)

If (n = odd) , then (57) holds in reverse direction.

REMARK 5. It is interesting to note that, in the similar passion we are able to con-
struct different estimations of φ -divergences along with their applications to Shannon,
Relative and Mandelbrot entropies using the other inequalities for n−convex functions
constructed in Theorem 7 for discrete case of cyclic refinements of Jensen’s inequality.
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REMARK 6. We left for reader interest to construct upper bounds for Shannon,
Relative and Mandelbrot entropies by considering two points right focal Abel-Gontscha-
roff interpolating polynomial in the above results.

4. Concluding remarks

It is refreshing to note that obtained inequalities for n−convex functions in the
first section are worth more as they enable us to give variety of new and sharp up-
per bounds for Grüss and Ostrowski type inequalities (see [3]) as an application of the
results obtained by Dragomir et al. in [6]. We can also give related inequalities for
n−convex function at a point (see [23]), that is the more general class of n−convex
functions. Furthermore, we can construct variety of functionals from the inequalities
introduced in the Theorem 7 and present Cauchy and Lagrange type mean value the-
orems for n−convex functions. More than that, taking into account n−exponentially
convex approach in [14] and [21](see also [4] and [5] ), a new collection of non trivial
examples of n−exponentially and exponentially convex functions can be established.
Finally we are also able to construct monotonic Cauchy means.
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[4] S. I. BUTT, J. PEČARIĆ AND A. VUKELIĆ, Generalization of Popoviciu type inequalities Via Fink’s
identity, Mediterr. J. Math. 13(4) (2016), 1495–1511.
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