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GENERALIZED STEFFENSEN’S INEQUALITY BY

MONTGOMERY IDENTITIES AND GREEN FUNCTIONS

ASFAND FAHAD ∗ AND JOSIP PEČARIĆ

(Communicated by S. Varošanec)

Abstract. A new generalization of Steffensen’s inequality and other inequalities related to Steff-
nesen’s inequality have been proved. The contribution of these new generalizations has been
presented to theory of (n+1) -convex functions and exponentially convex functions.

1. Introduction

Steffensen [14] proved the following inequality: if f ,h : [α,β ] → R , 0 � h � 1
and f is decreasing, then

∫ β

α
f (t)h(t)dt �

∫ α+γ

α
f (t)dt, where γ =

∫ β

α
h(t)dt. (1)

Since then, generalization and improvement of Steffensen’s inequality is a topic of
interest of several Mathematicians, for example see [11], [12] and references therein.
One recent generalization is given by Rabier [13].

THEOREM 1. Let φ : [0,∞) → R be convex and continuous with φ(0) = 0 . If
b > 0 and h ∈ L∞(0,b),h � 0 and ‖h‖∞ � 1 , then hφ ′ ∈ L1(0,b) and

φ
(∫ b

0
h(t)dt

)
�
∫ b

0
h(t)φ ′(t)dt (2)

Another generalization of Steffensen’s inequality is given by Pečarić [9].

THEOREM 2. Let g : [a,b] → R be a non-decreasing and differentiable func-
tion and f : I → R be a non-decreasing function (I is an interval in R such that
a,b,g(a),g(b) ∈ I ).
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(a) If g(x) � x , then ∫ b

a
f (t)g′(t)dt �

∫ g(b)

g(a)
f (t)dt. (3)

(b) If g(x) � x , then the reverse of the above inequality holds.

REMARK 1. In the Theorem 2 one may take g as absolutely continuous func-
tion instead of differentiable function because if f is non-decreasing then the function
F(x) =

∫ x
a f (t)dt is well defined and F ′ = f holds almost everywhere on I . Then if g

is any absolutely continuous and non-decreasing function then the substitution z = g(t)
in the integral is justified (see [6, Corollary 20.5] ), so

F(g(b))−F(g(a)) =
∫ g(b)

g(a)
f (z)dz =

∫ b

a
f (g(t))g′(t)dt �

∫ b

a
f (t)g′(t) dt, (4)

where the last inequality holds when g(x) � x.

With suitable substitution in (4) one may get all (1), (2) and (3), see [3]. Recently,
Fahad, Pečarić and Praljak proved generalization [3, 4] of Steffensen’s inequality and
related results by extending the results given in [9]. The following is a consequence of
a Theorem proved in [3].

COROLLARY 1. Let g : [a,b] → R be non-decreasing and differentiable and let
f : I → R (where I is an interval such that a,b,g(a),g(b)∈ I ) be differentiable convex
function.

(a) If g(x) � x , then

f (g(b)) � f (g(a))+
∫ b

a
f ′(t)g′(t)dt. (5)

(b) If g(x) � x , then the reverse of the above inequality holds.

The preceding corollary yields (4) and consequently (1), (2) and (3). Now, we
include two more consequences of the results proved in [3].

COROLLARY 2. Let f : [0,b]→R be differentiable convex function with f (0) = 0
let h : [0,b] → [0,+∞) be another function.

(a) If
∫ x
0 h(t)dt � x for every x ∈ [0,b] , then

f

(∫ b

0
h(t)dt

)
�
∫ b

0
f ′(t)h(t)dt. (6)

(b) If x �
∫ x
0 h(t)dt for every x ∈ [0,b] , then the reverse of the above inequality

holds.
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COROLLARY 3. Let h and f be as given in Corollary 2 and let k : [0,b] →
[0,+∞) and denote K(t) =

∫ b
t k(x)dx .

(a) If
∫ x
0 h(t)dt � x for every x ∈ [0,b] , then∫ b

0
k(x) f

(∫ x

0
h(t)dt

)
dx �

∫ b

0
K(t) f ′(t)h(t)dt. (7)

(b) If x �
∫ x
0 h(t)dt for every x ∈ [0,b] , then the reverse of the above inequality

holds.

The main objective of this article is to establish generalization of (4) and ulti-
mately produce the generalizations of (1), ( 2) and (3). The connection between Classi-
cal Hardy-type inequalities and inequalities (6) and (7) has been elaborated in [3]. Due
to significance of (6) and (7), we prove their generalizations as well. As an application,
we present contribution of new inequalities to theory of (n+ 1)-convex functions and
exponentially convex functions. To achieve this objective, we use Montogomery iden-
tities, Taylor’s interpolation and Green functions. Following lemma has been given in
[8].

LEMMA 1. For a function f ∈C2([a,b]) we have:

f (x) =
b− x
b−a

f (a)+
x−a
b−a

f (b)+
∫ b

a
G∗,1(x,s) f ′′(s)ds, (8)

f (x) = f (a)+ (x−a) f ′(b)+
∫ b

a
G∗,2(x,s) f ′′(s)ds, (9)

f (x) = f (b)+ (b− x) f ′(a)+
∫ b

a
G∗,3(x,s) f ′′(s)ds, (10)

f (x) = f (b)− (b−a) f ′(b)+ (x−a) f ′(a)+
∫ b

a
G∗,4(x,s) f ′′(s)ds, (11)

f (x) = f (a)+ (b−a) f ′(a)− (b− x) f ′(b)+
∫ b

a
G∗,5(x,s) f ′′(s)ds, (12)

where

G∗,1(x,s) =

{
(x−b)(s−a)

b−a , if a � s � x,
(s−b)(x−a)

b−a , if x < s � b,
(13)

G∗,2(x,s) =
{

a− s, if a � s � x,
a− x, if x < s � b,

(14)

G∗,3(x,s) =
{

x−b, if a � s � x,
s−b, if x < s � b,

(15)

G∗,4(x,s) =
{

x−a, if a � s � x,
s−a, if x < s � b,

(16)

and

G∗,5(x,s) =
{

b− s, if a � s � x,
b− x, if x < s � b.

(17)
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Following simple lemma has been proved in [5]

LEMMA 2. For a function f ∈C1[a,b] , the following identities hold

f (x) =
1

b−a

∫ b

a
f (s)ds+

∫ b

a
p1(x,s) f ′(s)ds, (18)

f (x) = f (b)+
∫ b

a
p2(x,s) f ′(s)ds (19)

and

f (x) = f (a)+
∫ b

a
p3(x,s) f ′(s)ds, (20)

where

p1(x,s) =
{ s−a

b−a , if a � s � x,
s−b
b−a , if x < s � b,

(21)

p2(x,s) =
{

0, if a � s � x,
−1, if x < s � b,

(22)

and

p3(x,s) =
{

1, if a � s � x,
0, if x < s � b.

(23)

Clearly,
pi(x,s) = (G∗,i(x,s))x for all i = 1,2,3, (24)

p2(x,s) = (G∗,5(x,s))x and p3(x,s) = (G∗,4(x,s))x .

During the proofs in the next section, we will use, pi(x,s) corresponding to G∗,i(x,s)
for i = 1,2,3 and for G4(x,s) , and G5(x,s) , p3(x,s) and p2(x,s) respectively. The
next section contains the main results of this paper.

2. Generalized Steffensen’s Inequality

Throughout the paper we use following notations,

S1( f ,g,a,b) = f (g(a))− f (g(b))+
∫ b

a
f ′(t)g′(t)dt,

S2( f ,h,b) =
∫ b

0
f ′(t)h(t)dt− f

(∫ b

0
h(t)dt

)

and

S3( f ,h,k,b) =
∫ b

0
K(t) f ′(t)h(t)dt−

∫ b

0
k(x) f

(∫ x

0
h(t)dt

)
dx.

Now, we prove following theorem which enables us to obtain generalization of (5).

THEOREM 3. Let n ∈ N with n � 3 and f : [a,b] → R be n times differentiable
function. Let g : [a,b] → R be a non-decreasing function with g(a),g(b) ∈ [a,b] then:
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(a) For j = 1,2,4,5 , we have

S1( f ,g,a,b) =
n−3

∑
k=0

f (k+2)(a)
k!

∫ b

a
S1(G∗, j(.,s),g,a,b)(s−a)k ds

+
1

(n−3)!

∫ b

a
S1(G∗, j(.,s),g,a,b)

(∫ s

a
f (n)(ξ )(s− ξ )n−3dξ

)
ds.

(b) If f ′(a) = 0 then

S1( f ,g,a,b) =
n−3

∑
k=0

f (k+2)(a)
k!

∫ b

a
S1(G∗,3(.,s),g,a,b)(s−a)k ds

+
1

(n−3)!

∫ b

a
S1(G∗,3(.,s),g,a,b)

(∫ s

a
f (n)(ξ )(s− ξ )n−3dξ

)
ds,

where G∗, j(x,s) , for j = 1,2, . . . ,5 , is given by ((13)− (17)) .

Proof.

(a) We prove for the case when j = 1, other cases j = 2,4,5 are similar to this proof.
By using (8) and (18) for f and f ′ respectively, we have

S1( f ,g,a,b) = f (g(a))− f (g(b))+
∫ b

a
f ′(t)g′(t)dt

=
b−g(a)
b−a

f (a)+
g(a)−a
b−a

f (b)+
∫ b

a
G∗,1(g(a),s) f ′′(s)ds

−b−g(b)
b−a

f (a)− g(b)−a
b−a

f (b)−
∫ b

a
G∗,1(g(b),s) f ′′(s)ds

+
∫ b

a

[
f (b)− f (a)

b−a
+
∫ b

a
p1(t,s) f ′′(s)ds

]
g′(t)dt.

By simplifying and using Fubini’s theorem, we have

S1( f ,g,a,b) =
g(b)−g(a)

b−a
f (a)− g(b)−g(a)

b−a
f (b)

+
∫ b

a
[G∗,1(g(a),s)−G∗,1(g(b),s)] f ′′(s)ds

+
f (b)− f (a)

b−a
(g(b)−g(a))+

∫ b

a

∫ b

a
p1(t,s)g′(t) f ′′(s)dt ds

=
∫ b

a
S1(G∗,1(.,s),g,a,b) f ′′(s)ds.

Further, the (n−3)-rd order Taylor approximation for f ′′ yields

S1( f ,g,a,b)

=
∫ b

a
S1(G∗,1(.,s),g,a,b)

(
n−3

∑
k=0

f (k+2)(a)
(s−a)k

k!
+
∫ s

a
f (n)(ξ )

(s− ξ )n−3

(n−3)!
dξ

)
ds
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which upon simplification gives required identity.

(b) The proof is similar to part (a) except the use of the assumption f ′(a) = 0. �

Following theorem gives generalized Steffensen’s inequality.

THEOREM 4. Let n ∈ N with n � 3 and let f : [a,b] → R be n times differen-
tiable, g : [a,b] → R be non-decreasing with g(x) � x and g(a),g(b) ∈ [a,b] . Then

(a) If f is n-convex, then

S1( f ,g,a,b) �
n−3

∑
k=0

f (k+2)(a)
k!

∫ b

a
S1(G∗, j(.,s),g,a,b)(s−a)k ds

for j = 1,2, . . . ,5 , where f ′(a) = 0 for j = 3 .

(b) If − f is n-convex, then the reverse of inequality in part (a) holds.

Proof. For fix s and any j ∈ {1,2,3,4,5} , the function G∗, j(.,s) is convex and
differentiable and since g is non-decreasing with g(x) � x , therefore Corollary 1 (a)
gives S1(G∗, j(.,s),g,a,b) � 0. Moreover, n -convexity of f implies f (n)(x) � 0 for
x ∈ [a,b] and we get

1
(n−3)!

∫ b

a
S1(G∗, j(.,s),g,a,b)

(∫ s

a
f (n)(ξ )(s− ξ )n−3dξ

)
ds � 0.

Further, for each j , identity in Theorem 3 produces the desired inequality. �

In particular, the above theorem gives S1( f ,g,a,b) � 0 and S1( f ,g,a,b) � 0
which gives (5) and its reverse. Consequently, Theorem 4 produces generalization of
(1), (2) and (3). Now, we prove following theorem which enables us to prove general-
ization of (6).

THEOREM 5. Let n∈N with n � 3 and let f : [0,b]→R be n times differentiable
function with f (0) = 0 . If h : [0,b] → [0,+∞) is an integrable function then

(a)

S2( f ,h,b) =
n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S2(G∗, j(.,s),h,b)skds

+
1

(n−3)!

∫ b

0
S2(G∗, j(.,s),h,b)

(∫ s

0
f (n)(ξ )(s− ξ )n−3dξ

)
ds

for j = 1,2 .



GENERALIZED STEFFENSEN’S INEQUALITY 1309

(b) If f ′(0) = 0 then

S2( f ,h,b)+ f (b)

=
n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S2(G∗,3(.,s),h,b)skds

+
1

(n−3)!

∫ b

0
S2(G∗,3(.,s),h,b)

(∫ s

0
f (n)(ξ )(s− ξ )n−3dξ

)
ds.

(c)

S2( f ,h,b)+ f (b)−b f ′(b)

=
n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S2(G∗,4(.,s),h,b)skds

+
1

(n−3)!

∫ b

0
S2(G∗,4(.,s),h,b)

(∫ s

0
f (n)(ξ )(s− ξ )n−3dξ

)
ds.

(d) If f ′(0) = 0 then

S2( f ,h,b)−b f ′(b)

=
n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S2(G∗,5(.,s),h,b)skds

+
1

(n−3)!

∫ b

0
S2(G∗,5(.,s),h,b)

(∫ s

0
f (n)(ξ )(s− ξ )n−3dξ

)
ds.

Proof. First, we prove for j = 1, the proof of other cases is similar. By using (8)
and (18) for f and f ′ respectively and using the assumption that f (0) = 0, we have

S2( f ,h,b) =
∫ b

0
f ′(t)h(t)dt− f

(∫ b

0
h(t)dt

)

=
∫ b

0

1
b

f (b)h(t)dt +
∫ b

0

[∫ b

0
G∗,1t(t,s) f ′′(s)ds

]
h(t)dt

−
∫ b
0 h(t)dt

b
f (b)−

∫ b

0
G∗,1

(∫ b

0
h(t)dt,s

)
f ′′(s)ds

=
∫ b

0
S2(G∗,1(.,s),h,b) f ′′(s)ds.

Further, by using (n−3)-rd order Taylor approximation for f ′′ and simplifying we get
the required identities. �

In the next theorem we prove generalization of (6).

THEOREM 6. Let n∈N with n � 3 and let f : [0,b]→R be n times differentiable
function with f (0) = 0 and h be as in Corollary 2 (a) . Then
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(a) If f is n-convex, then

(i) For j = 1,2 , we have:

S2( f ,h,b) �
n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S2(G∗, j(.,s),h,b)skds.

(ii) If f ′(0) = 0 then

S2( f ,h,b)+ f (b) �
n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S2(G∗,3(.,s),h,b)skds.

(iii)

S2( f ,h,b)+ f (b)−b f ′(b) �
n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S2(G∗,4(.,s),h,b)skds.

(iv) If f ′(0) = 0 then

S2( f ,h,b)−b f ′(b) �
n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S2(G∗,5(.,s),h,b)skds.

(b) If − f is n-convex, then for each j the reverse of inequality in part (a) holds.

Proof. The proof can be obtained from Theorem 5 and Corollary 2 (a) on the
same lines as Theorem 4 has been proved by using Theorem 3 and Corollary 1 (a) . �

Now, we prove identities to obtain generalization of (7).

THEOREM 7. Let n∈N with n � 3 and let f : [0,b]→R be n times differentiable
function with f (0) = 0 and k and K be as in Corollary 3. If h : [0,b] → [0,+∞) is
integrable then:

(a) For j = 1,2 , we have

S3( f ,h,k,b) =
n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S3(G∗, j(.,s),h,k,b)sk ds

+
1

(n−3)!

∫ b

0
S3(G∗, j(.,s),h,k,b)

(∫ s

0
f (n)(ξ )(s− ξ )n−3dξ

)
ds.

(b) If f ′(0) = 0 then

S3( f ,h,k,b)+ f (b)
∫ b

0
k(x)dx

=
n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S3(G∗,3(.,s),h,k,b)sk ds

+
1

(n−3)!

∫ b

0
S3(G∗,3(.,s),h,k,b)

(∫ s

0
f (n)(ξ )(s− ξ )n−3dξ

)
ds.



GENERALIZED STEFFENSEN’S INEQUALITY 1311

(c)

S3( f ,h,k,b)+ ( f (b)−b f ′(b))
∫ b

0
k(x)dx

=
n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S3(G∗,4(.,s),h,k,b)sk ds

+
1

(n−3)!

∫ b

0
S3(G∗,4(.,s),h,k,b)

(∫ s

0
f (n)(ξ )(s− ξ )n−3dξ

)
ds.

(d) If f ′(0) = 0 then

S3( f ,h,k,b)−b f ′(b)
∫ b

0
k(x)dx

=
n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S3(G∗,5(.,s),h,k,b)sk ds

+
1

(n−3)!

∫ b

0
S3(G∗,5(.,s),h,k,b)

(∫ s

0
f (n)(ξ )(s− ξ )n−3dξ

)
ds.

Proof. We prove the result for j = 1. The proof of other parts is similar. By using
(8) and (18) for f and f ′ respectively, we have:

S3( f ,h,k,b) =
∫ b

0
K(t) f ′(t)h(t)dt−

∫ b

0
k(x) f

(∫ x

0
h(t)dt

)
dx

=
∫ b

0
K(t)h(t)

[
1
b

f (b)+
∫ b

0
G∗,1t(t,s) f ′′(s)ds

]
dt

−
∫ b

0
k(x)

[
1
b

f (b)
∫ x

0
h(t)dt +

∫ b

0
G∗,1

(∫ x

0
h(t)dt,s

)
f ′′(s)ds

]
dx

=
1
b

f (b)
[∫ b

0
K(t)h(t)dt−

∫ b

0
k(x)

∫ x

0
h(t)dt dx

]

+
∫ b

0
K(t)h(t)

∫ b

0
G∗,1t(t,s) f ′′(s)dsdt

−
∫ b

0
k(x)

∫ b

0
G∗,1

(∫ x

0
h(t)dt,s

)
f ′′(s)dsdx.

Since
∫ b
0 k(x)

∫ x
0 h(t)dt dx =

∫ b
0 h(t)

(∫ b
t k(x)dx

)
dt =

∫ b
0 K(t)h(t)dt , therefore

∫ b
0 k(x)

∫ x
0 h(t)dt d∫ b

0 K(t)h(t)dt

S3( f ,h,k,b) =
∫ b

0

[∫ b

0
K(t)h(t)G∗,1t(t,s)dt−

∫ b

0
k(x)G∗,1

(∫ x

0
h(t)dt,s

)
dx

]
f ′′(s)ds

=
∫ b

0
S3(G∗,1(.,s),h,k,b) f ′′(s)ds.



1312 A. FAHAD AND J. PEČARIĆ

Rest follows from (n−3)-rd order Taylor approximation. �

Following theorem gives generalization of (7).

THEOREM 8. Let n∈N with n � 3 and let f : [0,b]→R be n times differentiable
function with f (0) = 0 . Let k , K and h be as in Corollary 3 (a) . Then

(a) If f is n-convex, then

(i) For j = 1,2 , we have

S3( f ,h,k,b) �
n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S3(G∗, j(.,s),h,k,b)sk ds.

(ii) If f ′(0) = 0 then

S3( f ,h,k,b)+ f (b)
∫ b

0
k(x)dx �

n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S3(G∗,3(.,s),h,k,b)sk ds.

(iii)

S3( f ,h,k,b)+( f (b)−b f ′(b))
∫ b

0
k(x)dx �

n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S3(G∗,4(.,s),h,k,b)sk ds.

(iv) If f ′(0) = 0 then

S3( f ,h,k,b)−b f ′(b)
∫ b

0
k(x)dx �

n−3

∑
k=0

f (k+2)(0)
k!

∫ b

0
S3(G∗,5(.,s),h,k,b)sk ds.

(b) If − f is n-convex, then for each j the reverse of inequality in part (a) holds.

Proof. Follows from Theorem 7 and Corollary 3 (a) in the similar way as Theo-
rem 4 has been proved by using Theorem 3 and Corollary 1 (a) . �

The next section contains the applications of these results to the theory of (n+1)-
convex functions at a point.

3. Application to (n+1)-convex function at a point

The notion of (n + 1)-convex function at a point was introduced in [10]. In the
current section, we define some linear functionals by taking the difference of the left
hand side and the right hand side of the inequalities in above section. By proving mono-
tonicity of these functionals, we obtain new inequalities which contribute to theory of
(n+1)-convex functions at a point. Following is the definition of (n+1)-convex func-
tion at point, see [10].
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DEFINITION 1. Let I ⊆R be an interval, c∈ I0 and n∈ N . A function f : I → R

is said to be (n+1)-convexat point c if there exists a constant Kc such that the function
F(x) = f (x)−Kc

xn

n! is n -concave on I∩(−∞,c] and n -convex on I∩ [c,∞) . A function
f is said to be (n+1) -concave at point c if the function − f is (n+1)-convex at point
c .

A function is (n+1)-convex on an interval if and only if it is (n+1) -convex at
each point of the interval (see [10]). Pečarić, Praljak and Witkowski in [10] studied
necessary and sufficient conditions on two linear functionals Ω : C([δ1,c]) → R and
Γ : C([c,δ2]) → R so that the inequality Ω( f ) � Γ( f ) holds for every function f that
is (n + 1)-convex at point c . In this section, we define linear functionals from the
inequalities proved in previous section and obtain such (as in [10]) results for these
functionals.

Let n ∈ N with n � 3 and f : [a,b] → R be n times differentiable function. Let
a1 a2 ∈ [a,b] and c be an interior point of [a,b] such that a1 < c < a2 . Let g1 : [a1,c]→
R and g2 : [c,a2]→R be non-decreasingwith gi(x) � x for i = 1,2. For j = 1,2, . . . ,5,
we define

Ω1, j( f ) = S1( f ,g1,a1,c)−
n−3

∑
k=0

f (k+2)(a1)
k!

∫ c

a1

S1(G∗, j(.,s),g1,a1,c)(s−a1)k ds

and

Γ1, j( f ) = S1( f ,g2,c,a2)−
n−3

∑
k=0

f (k+2)(c)
k!

∫ a2

c
S1(G∗, j(.,s),g2,c,a2)(s− c)k ds.

Similarly let c∈ (0,b) and b1 ∈ (0,b] where c < b1. Let h1 : [0,c]→ [0,+∞) and
h2 : [c,b1] → [0,+∞) be as defined in Corollary 2 (a) (w.l.o.g. we may assume h2 on
[0,b1] by taking h2(t) = 0 when t ∈ [0,c]). We define following pair of functionals:

(a)

Ω2, j( f ) = S2( f ,h1,c)−
n−3

∑
k=0

f (k+2)(0)
k!

∫ c

0
S2(G∗, j(.,s),h1,c)skds

and

Γ2, j( f ) = S2( f ,h2,b1)−
n−3

∑
k=0

f (k+2)(0)
k!

∫ b1

c
S2(G∗, j(.,s),h2,b1)skds

where j = 1,2.

(b)

Ω2,3( f ) = S2( f ,h1,c)+ f (c)−
n−3

∑
k=0

f (k+2)(0)
k!

∫ c

0
S2(G∗,3(.,s),h1,c)skds

and

Γ2,3( f ) = S2( f ,h2,b1)+ f (b1)−
n−3

∑
k=0

f (k+2)(0)
k!

∫ b1

c
S2(G∗,3(.,s),h2,b1)skds,
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(c)

Ω2,4( f ) = S2( f ,h1,c)+ f (c)− c f ′(c)−
n−3

∑
k=0

f (k+2)(0)
k!

∫ c

0
S2(G∗,4(.,s),h1,c)skds

and

Γ2,4( f )= S2( f ,h2,b1)+ f (b1)−b1 f ′(b1)−
n−3

∑
k=0

f (k+2)(0)
k!

∫ b1

c
S2(G∗,4(.,s),h2,b1)skds,

(d)

Ω2,5( f ) = S2( f ,h1,c)− c f ′(c)−
n−3

∑
k=0

f (k+2)(0)
k!

∫ c

0
S2(G∗,5(.,s),h1,c)skds

and

Γ2,5( f ) = S2( f ,h2,b1)−b1 f ′(b1)−
n−3

∑
k=0

f (k+2)(0)
k!

∫ b1

c
S2(G∗,5(.,s),h2,b1)skds.

Lastly, we define

(a)

Ω3, j( f ) = S3( f ,h1,k,c)−
n−3

∑
k=0

f (k+2)(0)
k!

∫ c

0
S3(G∗, j(.,s),h1,k,c)sk ds

and

Γ3, j( f ) = S3( f ,h2,k,b1)−
n−3

∑
k=0

f (k+2)(0)
k!

∫ b1

c
S3(G∗, j(.,s),h2,k,b1)sk ds,

where j = 1,2.

(b)

Ω3,3( f )= S3( f ,h1,k,c)+ f (c)
∫ c

0
k(x)dx−

n−3

∑
k=0

f (k+2)(0)
k!

∫ c

0
S3(G∗,3(.,s),h1,k,c)sk ds

and

Γ3,3( f ) = S3( f ,h2,k,b1)+ f (b1)
∫ b1

c
k(x)dx

−
n−3

∑
k=0

f (k+2)(0)
k!

∫ b1

c
S3(G∗,3(.,s),h2,k,b1)sk ds.
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(c)

Ω3,4( f ) = S3( f ,h1,k,c)+ ( f (c)− c f ′(c))
∫ c

0
k(x)dx

−
n−3

∑
k=0

f (k+2)(0)
k!

∫ c

0
S3(G∗,4(.,s),h1,k,c)sk ds

and

Γ3,4( f ) = S3( f ,h2,k,b1)+ ( f (b1)−b1 f ′(b1))
∫ b1

c
k(x)dx

−
n−3

∑
k=0

f (k+2)(0)
k!

∫ b1

c
S3(G∗,4(.,s),h2,k,b1)sk ds.

(d)

Ω3,5( f ) = S3( f ,h1,k,c)− c f ′(c)
∫ c

0
k(x)dx

−
n−3

∑
k=0

f (k+2)(0)
k!

∫ c

0
S3(G∗,5(.,s),h1,k,c)sk ds

and

Γ3,5( f ) = S3( f ,h2,k,b1)−b1 f ′(b1)
∫ b1

c
k(x)dx

−
n−3

∑
k=0

f (k+2)(0)
k!

∫ b1

c
S3(G∗,5(.,s),h2,k,b1)sk ds

where k is as defined in Corollary 3. If f is n -convex (and f ′(0) = 0 for j = 3) then
Theorem 4 (a) , Theorem 6 (a) and Theorem 8 (a) implies Γ1, j( f ) � 0, Γ2, j( f ) � 0
and Γ3, j( f ) � 0 for j = 1,2, . . . , respectively. Moreover, if − f is n -convex (and
f ′(0) = 0 for j = 3) then Theorem 4 (b) , Theorem 6 (b) and Theorem 8 (b) implies
Ω1, j( f ) � 0, Ω2, j( f ) � 0 and Ω3, j( f ) � 0 for j = 1,2, . . . ,5, respectively.

THEOREM 9. Let n ∈ N with n � 3 and let f : [a,b]→ R be (n+1)-convex at a
point c in [a,b] . Let g1 : [a1,c]→ R and g2 : [c,a2]→ R , where a1 � c � a2, be non-
decreasing and differentiable functions. If Ω1, j(φ0) = Γ1, j(φ0), for all j = 1,2, . . . ,5
(and f ′(a) = 0 for j = 3) , where φ0(x) = xn then

Ω1, j( f ) � Γ1, j( f ),

for j = 1,2, . . . ,5.

Proof. Since f is (n+1)-convex at c so there exist Kc such that F(x) = f (x)−
Kcxn

n! is n -concave (or −F is n -convex) on [a1,c] and n -convex on [c,a2]. Therefore
for each j = 1,2, . . . ,5 , we have 0 � Ω1, j(F) = Ω1, j( f )− Kc

n! Ω1, j(φ0) . Moreover,
since F is n -convex on [c,a2] therefore 0 � Γ1, j(F) = Γ1, j( f )− Kc

n! Γ1, j(φ0) . Since
Ω1, j(φ0) = Γ1, j(φ0) , therefore Ω1, j( f ) � Γ1, j( f ) , which completes the proof. �



1316 A. FAHAD AND J. PEČARIĆ

THEOREM 10. Let n ∈ N with n � 3 and let h1 : [0,c] → [0,+∞) , h2 : [c,b1] →
[0,+∞) , k and K be as defined in Corollary 3 (a) . If f : [0,b]→R is (n+1)-convex at
a point c in [0,b] and Ωl, j(φ0) = Γl, j(φ0) then Ωl, j( f ) � Γl, j( f ) for all j = 1,2, . . . ,5
and l = 2,3, where f ′(0) = 0 for j = 3 .

Proof. Since f is (n+1)-convex at c so there exist Kc such that F(x) = f (x)−
Kcxn

n! is n -concave (or −F is n -convex) on [0,c] and n -convex on [c,b1] . There-
fore, 0 � Ωl, j(F) = Ωl, j( f )− Kc

n! Ωl, j(φ0). On the other hand, since F is n -convex on
[c,b1] , therefore 0 � Γl, j(F) = Γl, j( f )− Kc

n! Γl, j(φ0). Since Ωl, j(φ0) = Γl, j(φ0) there-
fore Ωl, j( f ) � Γl, j( f ) , which completes the proof. �

4. Further refinements

Theorem 4 can be refined further for some classes of functions, using exponential
convexity (for details see [1, 2]). First, we use linear functional Ω1, j define in previous
section. Under assumptions of Theorem 4 (a) , we conclude that, for any n ∈ N with
n � 3 and for any j ∈ {1,2, . . . ,5} , Ω1, j acts non-negatively on the class of n -convex
functions.

Further, let us introduce a family of n -convex functions on [0,∞) with

ϕt(x) =

⎧⎪⎨
⎪⎩

xt

t(t−1)···(t−n+1) , t /∈ {0,1, . . . ,n−1};
x j lnx

(−1)n−1− j j!(n−1− j)! , t = j ∈ {0,1, . . . ,n−1}. (25)

This is indeed family of n -convex functions since dn

dxn ϕt(x) = xt−n � 0.

Since t 	→ xt−n = e(t−n) lnx is exponentially convex function, the quadratic form

l

∑
i,k=1

ξiξk
dn

dxn ϕ pi+pk
2

(x) (26)

is positively semi-definite. According Theorem 4 (a) ,

s

∑
i,k=1

ξiξkΩ1, jϕ pi+pk
2

(27)

is also positively semi-definite, for any s ∈ N, ξi ∈ R and pi ∈ R, concluding expo-
nential convexity of the mapping p 	→ Ω1, jϕp. Specially, if we take s = 2 in (27) we
have additionally that p 	→ Ω1, jϕp is also log-convex mapping, property that we will
need in the next theorem.

THEOREM 11. Under assumptions of Theorem 4 (a) the following statements
hold:

(i) The mapping p 	→ Ω1, jϕp is exponentially convex on R.
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(ii) For p,q,r ∈ R such that p < q < r, we have(
Ω1, jϕq

)r−p �
(
Ω1, jϕp

)r−q (Ω1, jϕr
)q−p

. (28)

REMARK 2. We have outlined proof of the theorem in lines above. Second part
of Theorem 11 is known as Lyapunov inequality, it follows from log -convexity, and it
refines lower (upper) bound for action of the functional on the class of functions given
in (25). This conclusion is a simple consequence of the fact that exponentially convex
mappings are non-negative and if exponentially convex mapping attains zero value at
some point it is zero everywhere (see [7]).

Similar estimation technique can be applied for classes of n -convex functions
given in the paper [7]. Lastly, similar construction can be done for the linear functionals
Ω2, j and Ω3, j to obtain inequalities given in Theorem 11 for these functionals.
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