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Abstract. In this paper, we establish a refinement of the Hermite-Hadamard inequality for convex
functions of several variables defined on a frustum of a simplex.

1. Introduction

Let f: [a,b] — R be a convex function, then the inequality

() st [t

is known as the Hermite-Hadamard inequality. The paper [1] gives some generalization
of (1.1). It says that if A C R” is a simplex with barycenter by and vertices x, ..., X,
and f: A — R is convex, then

1 Sxo)+ .+ f(xn)
Flba) < m/Af(x)dxg - , (12)

where VolA denotes the volume of A.

The Hermite-Hadamard inequality has been extended to many other convex (and not
only convex) bodies. For more details see the monograph [3], paper [5] and the refer-
ences therein. In this paper we establish two types of Hermite-Hadamard inequality for
a frustum of a simplex.
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2. Definitions and notations

We begin with some definitions and notations. For xp,...,x, € R" in general
position the set A = conv{xy,...,x,} is called a simplex. Every point x € A admits a
unique representation of the form

X=0px0+ ... +0ux,, =0, oyg+...+0,=1.

The coefficients (o, ..., 0) are called barycentric coordinates of x. The point

ba =

n+1(x0—|—...+x,,)

is called the barycenter of A.
Define a one-to-one mapping from the standard simplex E, = {(c,...,04) : o >
0, 01 +...+ 0, < 1} to A given by

o(0,...;0)=(1—0g—...— 0p)xo+ 0x; + ... + Opxy.
The following lemma holds.

LEMMA 2.1. If f: A — R is a Riemann-integrable function, then

1
Vol A

Jrwde=n [ f(p(o))da

Proof. Tt is easy to see that the absolute value of the Jacobi determinant of ¢
equals n! VolA and the lemma follows from the change of variables formula. [J

Without loss of generality we assume xo = 0. For 0 <7 < 1 let A, = conv{rxy,...,tx,}.
Given 0 <A < B < 1 we shall call a frustum of a simplex the set Ayp = conv(Aqg UAp) =
U A<r<p - The sets Ay and Ap will be called the upper and lower bases of a frustum,
and the point xq its apex. If £ C R* and f: £ — R is a Riemann-integrable function,

then by
1

Vol X /Zf(x) dr

Avg(f,Z) =

we shall denote its average value over X.
Let us recall some inequalities.

THEOREM 2.1. (Chebyshev’s inequality, see [21)If f,g: |a,b] — R are two mono-
tonic functions of the opposite monotonicity, then

bia/abf(X)g(x)dx< (bia/ahf(x)dx) (ﬁ/ﬂbg(x)dx).

If f and g are of the same monotonicity, then the above inequality works in the reverse
way.
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THEOREM 2.2. (Steffensen’s inequality, see [7]) Let f,g : [a,b] — R be inte-
grable functions such that f is decreasing and 0 < g(x) < 1 for x € |a,b]. Then

b b a+A
o< [ fmgwar< [T fwa
b—A a a
where A = fubg(x)dx.

THEOREM 2.3. (Griiss’ inequality, see [4]) Let f,g: [a,b] — R be integrable

Sunctions suchthat ¢ < f(x) <@, y<g(x)<T, forall x € [a,b], where @, ®,y,T € R.
Then

[ reostyac- ﬁ/ahmdx/abg(x)dx’ c@-or-y

1
b—a

THEOREM 2.4. (see [0]) Let f and g be real-valued, nonnegative and convex
Sfunctions on |a,b]. Then

27 (57 )¢ (“57) - gMtad) - ¥ < 1 [ lsta)os

where M(a,b) = f(a)g(a)+ f(b)g(b), N(a,b) = f(a)g(b) + f(b)g(a).

3. Bounds by averages over upper and lower bases
The main theorem of this section is the following.

THEOREM 3.1. If f: Aap — R is convex, then

Avg(f,Axp) < 0 Avg(f,Ax) + (1 — ) Avg(f, Ap),

—_1 B _ n A"
where 00 = =5 5=x — piT pian -

Proof. Of course
VolA, ="' VolA; and VolAyp = (B"—A")VolA. (3.1)

For every point x € Ayp the line passing through xp and x meets A; at the point x4 =
>, oux; and the bases of Ayp at points Ay = Axy and By = Bx, respectively. So x
is a convex combination of A, and B, that can be uniquely written as

B—t t—A

= Ay+—B
B_alet g P

x:t.xtx:

or equivalently

X =1Xq :t(a1x1+...+a,,_1x,,_1+(1—al—...—an_l)xn),
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where A <t <B, 0,...,04_1>0and o +...+ 05,1 < 1.
Consider the mapping ®: [A,B] x E,_; — Aap given by the formula ®(¢,a) =
txq . The absolute value of its Jacobi determinant equals

X+ 3070 0 (i — x) Xn Xn
1(x1 —x) X| —Xp X1
=1 ="M =" VolA. (3.2)
t(Xp—1—Xn) Xn—1—Xn Xn—1

Using formula (3.2), the convexity of f and Lemma 2.1 we obtain

1 —A
— By | " tdadr
n! Vol A //1 (B A °‘+B A "‘)

AAB
< )t /
B—A/A( dr S(Ag)do

1 B
+— t—At"_ldt/ By)do
B—4), (t—A) E’Hf( a)

B(B" — A") — n(B— A)A" 1
n(n+1)(B—A)  (n—1)IVolA, /AA (x) dx

n(B—A)B"—A(B"— A") 1
n(n+1)(B—A) '(n—l)!VolAB/ABf(x)dx'
(3.3)

We complete the proof by dividing both sides of (3.3) by B" — A" and taking into ac-
count (3.1). [

Setting n = 2 we obtain the result below.

COROLLARY 3.1. If PORS is a trapezoid with PQ || RS, |PQ| = p, |RS| =r and
f is a convex function, then

avelr.PORS) < 5 {22 avets.p0) + 52 avetr k) |
< {2 i@+ ron+ ’;jf R -+15)}-

4. Bounds by values on certain line segments

In this section we apply the Hermite-Hadamard inequalities to the sections of a
frustum by hyperplanes parallel to its bases (that are also simplices). Applying (1.2) to
A;, we obtain

f(ba,) < Avg(f,A) < lZf(txi). “.1)

i=1

S
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Multiplying both sides of (4.1) by V\;(l)lAﬁtB , integrating the resulting inequality over
[A,B], using (3.1) and taking into account that Vol A = 17 Vol Ay, where £ is the height
of the simplex A from the apex xp, we have

n B o fA Ja, f(x)dxdt 1 LB _
m/{}z F(by) ar < A <(Bn_An)hi=21/Az Flex)dr.

4.2)

Multiplying both sides of (4.2) by h, we get

" () dr < Ave(f.Ang) < —— 3 [T ) dr. (43
W/At f(ba,) dt < Avg(f, AB)\Bn_AnZI/AZ fx)de.  (4.3)

The factor "~ in both extreme integrals does not allow for a simple estimation of
both sides by the mean values of f at the edges or on the line segment joining the
barycenters of the bases. However under some additional assumptions on f we can
obtain new upper bounds for the average value of f over the frustum of the simplex.
In what follows the symbol Ax;Bx; denotes the line segment between Ax; and Bx;.

COROLLARY 4.1. Let f be a convex function defined on a simplex A = conv{xy =
0,X1,,...,X }. If additionally f(tx;) is a decreasing function for t € [A,B],i=1,...,n,
then

-

Avg(f,Ax;Bx;). (4.4)

S| =

AVg(f, AAB) <

i=1

Proof. Applying Chebyshev’s inequality (Theorem 2.1) to the right-hand side of
(4.3), we obtain

A A ; 4.
vel(f.08) < G Z/frx @5)
Note that
(B—A)ds;
dr=>_"7"" 4.6
! \Ax,-Bxi| ’ ( )

where ds; is an element of length of the i-th edge. From (4.5) and (4.6) we obtain
“4.4). O

COROLLARY 4.2. Under the assumptions of Corollary 4.1, we have

1 &
AVg /s AAB = 2 f A)CZC)C,
i=1

where C = A 4 B4

nBn— Bh—1 °
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Proof. The result follows from the Steffensen’s inequality (Theorem 2.2) applied
to (4.3) with g(¢) = (¢/B)"~'. O
The Griiss inequality (Theorem 2.3) leads to.

COROLLARY 4.3. Let f be a convex function defined on a simplex A with ver-
tices xo = 0,x1,...,x,. Then if @; < f(tx;) < ®; forall t € [A,B] and i =1,...,n,
then

n n—1 n—1 _
Avelf ) < Z(q’ o)A 8- 1)

1
+ ; AVg(f7Axini)> .

And finally by Theorem 2.4 we deduce the following result.

COROLLARY 4.4. Let f: A=conv{xg =0,xy,...,x,} — R be a convex function
which is nonnegative on the line segment Ax;Bx;,i = 1,...,n. Under those conditions
the following inequality is valid

n—1 n—1\ n n—1 n—1\ n
(B— A)(2A +B )Zf(Axi)Jr(B A)(A +2B )Zf(Bxi).
6(B" —A") i=1 6(B" —A") i=1

We can use similar mechanisms to obtain the left-hand side bounds. The Cheby-
shev inequality gives.

AVg(f7 AAB) <

COROLLARY 4.5. Let f be a convex function defined on a simplex A = conv{xy =
0,x1,...,%,}. If the function t — f(tby,) increases for t € [A,B], then

Avg(f7bAAbAB) < Avg(f7AAB)'

Applying the Steffensen inequality to the left-hand side of (4.3) we get the following.

COROLLARY 4.6. Let f be a convex function defined on a simplex A = conv{xy =
0,x1,...,%,}. If the function t — f(tba,) decreases for t € [A,B], then

Avg(f,ba,bay) < Ave(f,AuB),

n n
where D = B — IZB;‘:‘I .

COROLLARY 4.7. Let f be a convex function defined on a simplex A = conv{xy =
0,x1,...,%,} suchthat ¢ < f(tba,) < ® forall t € [A,B], then

n(®—@)(B" ' —A")(B-A)
4(B"— A")

AVE (f,bazbay) — < Avg(f,Aap)

holds.

Theorem 2.4 applied to the left-hand side of (4.3) gives the following.
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COROLLARY 4.8. Let f be a convex function defined on a simplex A = conv{xy =

0,x1,...,X,}. Moreover, let f be a nonnegative function on the line segment ba,ba,.
Then

n(B—A) A+B\"' ar-lyopr! 24" 4 B!
) o) (A2 A B

[1]
[2]

[3]

[4]

[5]

[6]
[7]

< Avg(f,AuB).
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