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A CRITERION FOR THE CONVERSE OF THE

HERMITE–HADAMARD INEQUALITY ON SIMPLICES

ELEUTHERIUS SYMEONIDIS

(Communicated by J. Jakšetić)

Abstract. It is already known that if a function satisfies the left or the right Hermite-Hadamard
inequality for all simplices in its domain of definition, then it is convex, provided that the density
of the measure is continuous and does not vanish identically on any segment. Here we show that
this condition can be relaxed.

1. Introduction

If f is a continuous convex function on an interval [a,b] ⊂ R , then the following
inequalities hold:

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
.

This fact was published by Charles Hermite in 1883 ([2]). Independently, ten years later
Jacques Hadamard published the left inequality ([1]). Nowadays, both inequalities are
termed Hermite-Hadamard inequalities.

In [5] it is shown that the Hermite-Hadamard inequalities are a special case of cer-
tain inequalities for a convex function defined on a metrizable compact convex subset
K (which plays the role of the interval [a,b]) of a locally convex Hausdorff space.

In this note we shall restrict ourselves to the case where K will be an n -simplex
in R

n , that is, the convex hull of n + 1 points that do not lie on one and the same
hyperplane. In the sequel, this simplex is denoted by Δ . The integration is taken with
respect to a (Borel) measure μ on Δ such that 0 < μ(Δ) < ∞ . Let x = (x1, . . . ,xn)∈ Δ ,
and let h = (h1, . . . ,hn) : Δ → Δ be the identity function, that is, h j(x) = x j for 1 � j �
n . The midpoint (a+b)/2 of the interval [a,b] is replaced by the so-called barycenter

bμ :=
1

μ(Δ)

∫
Δ
h(x)dμ(x) :=

1
μ(Δ)

(∫
Δ
h1(x)dμ(x), . . . ,

∫
Δ
hn(x)dμ(x)

)

of the measure μ on the simplex Δ . The above result is generalized as follows.
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THEOREM 1. Let P1, . . . ,Pn+1 be the vertices of an n-simplex Δ ⊂ R
n (n � 1) ,

let μ be a measure on Δ such that 0 < μ(Δ) < ∞ and bμ belongs to the interior of Δ ,
and let λ1, . . . ,λn+1 be positive numbers with ∑n+1

j=1 λ j = 1 such that bμ = ∑n+1
j=1 λ jPj .

If f : Δ → R is a continuous and convex function, then

f (bμ) � 1
μ(Δ)

∫
Δ

f (x)dμ(x) �
n+1

∑
j=1

λ j f (Pj) .

Since one can hardly find an elementary proof in the literature, we give here one for the
sake of completeness.

Proof. Since bμ belongs to the interior of Δ , and f is convex, there is a supporting
hyperplane of f at bμ , that is, there exists a linear functional h : R

n → R such that

f (x) � f (bμ)+h(x−bμ)

for every x ∈ Δ (see [4, section 3.3]). Therefore,

1
μ(Δ)

∫
Δ

f (x)dμ(x) � f (bμ)+
1

μ(Δ)

∫
Δ
h(x−bμ)dμ(x)

= f (bμ)+
1

μ(Δ)
h

(∫
Δ
(x−bμ)dμ(x)

)

because h is linear,

= f (bμ)+h

(
1

μ(Δ)

∫
Δ
(x−bμ)dμ(x)

)
= f (bμ)+h(0) = f (bμ).

For the right inequality we express every x ∈ Δ in the form x = ∑n+1
j=1 α j(x)Pj with

continuous nonnegative functions α1, . . . ,αn+1 such that ∑n+1
j=1 α j(x)≡ 1. It then holds:

bμ =
1

μ(Δ)

∫
Δ
xdμ(x) =

1
μ(Δ)

n+1

∑
j=1

∫
Δ

α j(x)dμ(x) ·Pj.

The uniqueness of the coefficients of Pj gives λ j = 1
μ(Δ)

∫
Δ α j(x)dμ(x) for 1 � j �

n+1.
Now we can apply the Jensen inequality on f and write:

1
μ(Δ)

∫
Δ

f (x)dμ(x) =
1

μ(Δ)

∫
Δ

f

(
n+1

∑
j=1

α j(x)Pj

)
dμ(x)

� 1
μ(Δ)

∫
Δ

[
n+1

∑
j=1

α j(x) f (Pj)

]
dμ(x) =

n+1

∑
j=1

λ j f (Pj) . �

In the sequel we shall call these inequalities left Hermite-Hadamard inequality and
right Hermite-Hadamard inequality and denote them by (LHH) and (RHH) , respec-
tively.



ON THE CONVERSE OF THE HERMITE-HADAMARD INEQUALITY 1329

The converse of the Hermite-Hadamard inequalities consists in the question whether
these inequalities characterize a convex function (if they hold for every simplex in the
domain of definition of the function and the measure is inherited from a given measure
on this domain). For measures other than the Lebesgue measure, this question was first
studied in [3]. There, the following theorem was proved.

THEOREM 2. Let D⊆ R
n (n � 1) be a nonempty open convex set and μ a Borel

measure on D such that dμ(x) = p(x)dx , where p : D→ [0,∞) is continuous and {x ∈
D : p(x) = 0} does not contain any nontrivial segment. Let f : D → R be continuous.

1. If f satisfies (LHH) for all simplices Δ ⊂ D, then f is convex.

2. If f satisfies (RHH) for all simplices Δ ⊂ D, then f is convex.

In this note we show that the condition that there exist no segment in p−1 ({0})
can be considerably relaxed.

2. The criterion

Our result states as follows.

THEOREM 3. The previous theorem remains valid, when the condition

p−1 ({0}) contains no nontrivial segment

is replaced by the condition

There is a dense subset S ⊆ D, such that for every two points a,b ∈ S ,
p−1 ({0})∩ [a,b] is of (one-dimensional) Lebesgue measure zero in [a,b] .

(We denote by [a,b] the segment of endpoints a,b.)

Proof. Let a continuous f : D → R satisfy (LHH) or (RHH) , the same for all
simplices in D . It suffices to show that for every two points a,b ∈ S , f |[a,b] is convex.
For if, namely, x,y ∈ D and (an)n∈N and (bn)n∈N are sequences in S converging to x
and y , respectively, then for every λ ∈ [0, 1] ,

f (λx+(1−λ )y) = lim
n→∞

f (λan +(1−λ )bn) � lim
n→∞

(λ f (an)+ (1−λ ) f (bn))

= λ f (x)+ (1−λ ) f (y).

We proceed by reductio ad absurdum and assume that there exist a,b ∈ S and
ε ∈ (0, 1) such that

f ((1− ε)a+ εb) > (1− ε) f (a)+ ε f (b).

Let

ε1 = inf{t ∈ [0,ε] : ∀τ ∈ [t,ε] f ((1− τ)a+ τb) > (1− τ) f (a)+ τ f (b)},
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ε2 = sup{t ∈ [ε,1] : ∀τ ∈ [ε,t] f ((1− τ)a+ τb) > (1− τ) f (a)+ τ f (b)}.
Since f is continuous, ε1 < ε < ε2 . Let c = (1− ε1)a+ ε1b , d = (1− ε2)a+ ε2b . For
every λ ∈ (0, 1) we then have:

f ((1−λ )c+ λd) = f [((1−λ )(1− ε1)+ λ (1− ε2))a+((1−λ )ε1 + λ ε2)b]
= f [(1− ε1 + λ ε1−λ ε2)a+(ε1−λ ε1 + λ ε2)b]
> (1− ε1 + λ ε1−λ ε2) f (a)+ (ε1−λ ε1 + λ ε2) f (b)
= (1−λ ) f (c)+ λ f (d), (1)

because f (c) = (1− ε1) f (a)+ ε1 f (b) and f (d) = (1− ε2) f (a)+ ε2 f (b) . This
means that f |[c,d] is strictly concave.

Now let v1, . . . ,vn−1 ∈ R
n be such that {v1, . . . ,vn−1,d − c} is a basis of R

n .
We assume that v1, . . . ,vn−1 are small enough, so that c + vi ∈ D for 1 � i � n− 1.
Let Pi,m := c + 1

mvi for m ∈ N and 1 � i � n− 1, let Δm be the simplex of vertices
c,P1,m, . . . ,Pn−1,m,d .

Let Σn = {(t1, . . . ,tn) ∈ [0, 1]n : ∑n
i=1 ti � 1} . This standard simplex parametrizes

Δm by the map Tm : Σn → Δm ,

Tm(t1, . . . ,tn) = (1− t1− . . .− tn)c+ t1P1,m + . . .+ tn−1Pn−1,m + tnd.

For a continuous function h : Δm → R it holds:

1
μ(Δm)

∫
Δm

h(x)dμ(x) =

∫
Δm

h(x)p(x)dx∫
Δm

p(x)dx
=

∫
Σn

h(Tm(t))p(Tm(t))dt∫
Σn

p(Tm(t))dt

(the Jacobian of Tm is constant and can be divided out)

m→∞−→
∫

Σn
h(c+ tn(d− c))p(c+ tn(d− c))dt∫

Σn
p(c+ tn(d− c))dt

=
∫ 1

0
h(c+ tn(d− c)) · p(c+ tn(d− c))(1− tn)n−1 dtn∫ 1

0 p(c+ τn(d− c))(1− τn)n−1 dτn

(the integration over t1, . . . ,tn−1 comprises the homothetical image (1− tn)Σn−1

and leads to the factor (1− tn)n−1 ·vol(Σn−1) , whereas the volume vol(Σn−1) of Σn−1

is eventually divided out). Let ν be the push-forward (image) by s 	→ c+ s(d− c) of
the measure

p(c+ s(d− c))(1− s)n−1ds

on [0, 1] . Then, the last integral can be expressed as

1
ν([c,d])

∫
[c,d]

h(x)dν(x) .

If we replace h by the components h1, . . . ,hn of the identity function on Δm (as in
the introduction for Δ), we see that the barycenter bμ,m of μ on Δm converges to the
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barycenter bν of ν (on [c,d]). From this point onwards we treat the two cases in the
theorem separately.

— Case 1, f satisfies (LHH) .
Letting m → ∞ in

f (bμ,m) � 1
μ(Δm)

∫
Δm

f (x)dμ(x)

we obtain

f (bν ) � 1
ν([c,d])

∫
[c,d]

f (x)dν(x) . (2)

On the other hand, since f |[c,d] is concave, there exists a linear functional h such that

f (x) � f (bν )+h(x−bν)

for x ∈ [c,d] (see [4, section 3.3]). Due to the strict concavity, this inequality holds
strictly for an x0 ∈ [c,d] and then for a whole neighborhood of x0 . As in the proof of
theorem 1, we therefore obtain

1
ν([c,d])

∫
[c,d]

f (x)dν(x) < f (bν) ,

which contradicts (2).
— Case 2, f satisfies (RHH) .
This part of the proof follows almost word-for-word the corresponding part in [3].

We include it here for the sake of completeness.

Let λ (m)
1 , . . . ,λ (m)

n+1 be nonnegativenumbers such that
(

∑n−1
j=1 λ (m)

j

)
+λ (m)

n +λ (m)
n+1 =

1 and

bμ,m =

(
n−1

∑
j=1

λ (m)
j Pj,m

)
+ λ (m)

n c+ λ (m)
n+1d

for m ∈ N . Let (mk)k∈N be a sequence, for which all λ (mk)
j converge, and set

λ ∞
j = lim

k→∞
λ (mk)

j for 1 � j � n+1 .

It then holds:

bν = lim
k→∞

bμ,mk = lim
k→∞

[(
n−1

∑
j=1

λ (mk)
j Pj,mk

)
+ λ (mk)

n c+ λ (mk)
n+1 d

]

=

(
n−1

∑
j=1

λ ∞
j c

)
+ λ ∞

n c+ λ ∞
n+1d = (1−λ ∞

n+1)c+ λ ∞
n+1d .

Now, since f satisfies (RHH) , we have

1
μ(Δm)

∫
Δm

f (x)dμ(x) �
(

n−1

∑
j=1

λ (m)
j f (Pj,m)

)
+ λ (m)

n f (c)+ λ (m)
n+1 f (d)
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for m ∈ N . For m = mk → ∞ we obtain

1
ν([c,d])

∫
[c,d]

f (x)dν(x) �
(

n−1

∑
j=1

λ ∞
j f (c)

)
+ λ ∞

n f (c)+ λ ∞
n+1 f (d)

= (1−λ ∞
n+1) f (c)+ λ ∞

n+1 f (d) . (3)

On the other hand we have

(1−λ ∞
n+1)c+ λ ∞

n+1d = bν =
1

ν([c,d])

∫
[c,d]

xdν(x)

=
∫ 1

0
[(1− s)c+ sd] · p((1− s)c+ sd)(1− s)n−1∫ 1

0 p((1− τ)c+ τd)(1− τ)n−1dτ
ds,

so λ ∞
n+1 =

∫ 1

0

s · p((1− s)c+ sd)(1− s)n−1∫ 1
0 p((1− τ)c+ τd)(1− τ)n−1dτ

ds . Thus, due to the assumption on p ,

it follows from (1) that

1
ν([c,d])

∫
[c,d]

f (x)dν(x)

=
∫ 1

0
f ((1− s)c+ sd) · p((1− s)c+ sd)(1− s)n−1∫ 1

0 p((1− τ)c+ τd)(1− τ)n−1dτ
ds

>

∫ 1

0
[(1− s) f (c)+ s f (d)] · p((1− s)c+ sd)(1− s)n−1∫ 1

0 p((1− τ)c+ τd)(1− τ)n−1dτ
ds

=(1−λ ∞
n+1) f (c)+ λ ∞

n+1 f (d) ,

which contradicts (3). �

A case in which theorem 3 applies, but not theorem 2, is when the density p
vanishes on (the intersection of D with) finitely many affine hyperplanes. Yet, even the
weaker condition of theorem 3 does not seem to be the weakest possible. And in any
case the question of the characterization of those measures μ on D (not necessarily
absolutely continuous with respect to the Lebesgue measure) that allow the statements
(1) and (2) of theorem 2 remains open.
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