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QUASI–CONVEX FUNCTIONS OF HIGHER ORDER

JACEK MROWIEC AND TERESA RAJBA ∗

(Communicated by M. Praljak)

Abstract. We introduce and investigate the notions of n -quasi-convex as well as strongly n -
quasi-convex functions with modulus c > 0 . We give characterizations of these functions, which
are counterparts of those given for quasi-convex and strongly n -convex functions. We introduce
and investigate the notions of n -quasi-concave and n -quasi-affine functions, as well as strongly
n -quasi-concave and strongly n -quasi-affine functions. We also give a generalization of higher
order quasi-convex functions introduced by E. Popoviciu (1982).

1. Introduction and preliminaries

Throughout this paper N , R , and I will denote the sets of all positive integers,
real numbers, and a non-degenerate subinterval of R (an interval is degenerate if it
is either empty or a singleton). In the whole paper we assume that c � 0 is a given
number. By the standard definition (cf. [9, 17]), a real valued function f : I → R is
called convex if f (tx+(1− t)y) � t f (x)+ (1− t) f (y) for all t ∈ (0,1) and x,y ∈ I . If
c is a positive real number, f is called strongly convex with modulus c if f (tx+(1−
t)y) � t f (x)+ (1− t) f (y)− ct(1− t)(x− y)2 for all t ∈ (0,1) and x,y ∈ I . Strongly
convex functions have been introduced by Polyak [11]. They play an important role
in optimization theory and mathematical economics. In the classical theory of convex
functions their natural generalization are convex functions of higher order. We recall the
definition. Let n∈ N and x0, . . . ,xn be the distinct points in I . Denote by [x0, . . . ,xn; f ]
the divided difference of f defined by the recurrence [x0; f ] = f (x0) , [x0, . . . ,xn; f ] =
(xn − x0)−1 ([x1, . . . ,xn; f ]− [x0, . . . ,xn−1; f ]) . Following Hopf [5] and Popoviciu [14,
15] a function f : I → R is called convex of order n (or n-convex) if [x0, . . . ,xn+1; f ] �
0 for all x0 < .. . < xn+1 in I . A function f : I → R is called strongly convex of
order n (or strongly n-convex) with modulus c > 0 if [x0, . . . ,xn+1; f ] � c for all x0 <
.. . < xn+1 in I (cf. [3, 16]). The class of quasi-convex functions f on I is defined
(cf. [1, 4, 12, 17]) as consisting of those functions which satisfy f (tx + (1− t)y) �
max{ f (x), f (y)} for all t ∈ (0,1) and x,y ∈ I . This notion occurred to be very useful
in mathematical economics (for more information and further references see [1]).
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In this paper, we introduce and investigate the notion of strongly quasi-convex,
strongly quasi-concave and strongly quasi-affine function. Let us note, that presented
in this paper the notion of strongly quasi-convex function differs from that of Ko-
rablev [8] (see also [6]) and coincides with that given in [19]. However our notions
of strongly quasi-concave and strongly quasi-affine function differ from that given in
[19]. We introduce and investigate the notion of n -quasi-convex, n -quasi-concave and
n -quasi-affine functions, as well as strongly n -quasi-convex, strongly n -quasi-concave
and strongly n -quasi-affine functions. We give a characterization of these functions,
which is a counterpart of that given for quasi-convex functions (cf. [1, 4]) and strongly
convex functions of higher order (cf. [3, 16]). We also define and study (n,k)-quasi-
convex functions as a generalization of higher order quasi-convex functions given by E.
Popoviciu [13].

2. Strongly quasi-convex functions

The notion of quasi-convexity (cf. [1, 4, 12, 17]) is a generalization of the convex-
ity.

DEFINITION 2.1. We say that a function f : I → R is

(i) quasi-convex if f (tx+(1− t)y) � max{ f (x), f (y)} for t ∈ (0,1), x,y ∈ I,

(ii) quasi-concave if f (tx+(1− t)y) � min{ f (x), f (y)} for t ∈ (0,1), x,y ∈ I,

If the function f : I → R is simultaneously quasi-convex and quasi-concave, then
we say that f is quasi-affine. For functions f : I → R quasi-affinity means monotonic-
ity.

REMARK 2.1. A function f is quasi-concave if, and only if, − f is quasi-convex.
A function f : I → R is quasi-convex, if and only, if f (u)− f (x) � 0 or f (y)− f (u) �
0, for all x,y,u ∈ I such that x < u < y .

Given sets I1 , I2 ⊂ R , we write I1 < I2 if x1 < x2 for all x1 ∈ I1 , x2 ∈ I2 . The
following proposition can be found, e.g., in [1, Theorem 2.5.1]

PROPOSITION 2.1. A function f : I → R is

(i) quasi-convex if, and only if, there exist (possibly degenerate) intervals I1 , I2 ,
I1 < I2 such that I1∪ I2 = I , f |I1 is non-increasing and f |I2 is non-decreasing,

(ii) quasi-concave if, and only if, there exist (possibly degenerate) intervals I1 , I2 ,
I1 < I2 such that I1∪ I2 = I , f |I1 is non-decreasing and f |I2 is non-increasing,

Remark 2.1 motivates the introduction of the following notion of strongly quasi-
convex, quasi-concave and quasi-affine functions.

DEFINITION 2.2. Let c > 0. We say that a function f : I → R is
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(i) strongly quasi-convex with modulus c if for all t ∈ (0,1) and x,y ∈ I such that
x < y , f (tx+(1− t)y) � max{ f (x)− c(1− t)(y− x), f (y)− ct(y− x)},

(ii) strongly quasi-concave with modulus c if for all t ∈ (0,1) and x,y ∈ I such that
x < y , f (tx+(1− t)y) � min{ f (x)+ c(1− t)(y− x), f (y)+ ct(y− x)},

(iii) strongly quasi-affine with modulus c if f is strongly quasi-convex and strongly
quasi-concave with modulus c .

REMARK 2.2. It is easy to see that the function f is strongly quasi-concave with
modulus c if, and only if, − f is strongly quasi-convex with modulus c . The defini-
tion of strongly quasi-convex functions with c = 0 gives the concept of quasi-convex
functions. Obviously, if f is strongly quasi-convex with c > 0, then f is quasi-convex.

It is not difficult to prove the following propositions.

PROPOSITION 2.2. Let f : I → R be a function and c > 0 . Then the following
statements are equivalent:

(i) f is strongly quasi-convex with modulus c,

(ii) for all t ∈ (0,1) and x,y ∈ I such that x < y

f (tx+(1− t)y)− f (x)
(1− t)(y− x)

� −c or
f (y)− f (tx+(1− t)y)

t(y− x)
� c,

(iii) for all x ∈ I and h1,h2 > 0 such that x+h1 +h2 ∈ I

f (x+h1)− f (x)
h1

� −c or
f (x+h1 +h2)− f (x+h1)

h2
� c,

(iv) for all x0,x1,x2 ∈ I such that x0 < x1 < x2 , [x0,x1; f ] � −c or [x1,x2; f ] � c.

PROPOSITION 2.3. Let I0 be a non-degenerate subinterval of I . If a function
f : I → R is quasi-convex (strongly quasi-convex with modulus c), then f |I0 is quasi-
convex (strongly quasi-convex with modulus c).

We define strongly increasing functions, which are a counterpart of strongly con-
vex functions.

DEFINITION 2.3. Let c > 0. We say that a function f : I → R is

(i) strongly increasing with modulus c , if [x0,x1; f ] � c (x0,x1 ∈ I , x0 < x1 ),

(ii) strongly decreasing with modulus c , if [x0,x1; f ] � −c (x0,x1 ∈ I , x0 < x1 ),

(iii) strongly monotone with modulus c , if f is strongly increasing or strongly de-
creasing with modulus c .
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We will prove that strong quasi-affinity means strong monotonicity (Theorem 2.3).

REMARK 2.3. Let c > 0. Obviously for the function g(x) = cx (x ∈ I ), [x0,x1;g]
= c for x0,x1 ∈ I , x0 < x1. Consequently, we have that the function f is strongly
increasing with modulus c if, and only if, [x0,x1; f − g] � 0 for x0,x1 ∈ I , x0 < x1.
This implies that, f is strongly increasing with modulus c if, and only if, the func-
tion f −g is non-decreasing, in other words f (x) = f0(x)+ cx, where f0 : I → R is a
non-decreasing function. Similarly, we can prove, that f is strongly decreasing with
modulus c if, and only if, f (x) = f0(x)− cx, where f0 : I → R is a non-increasing
function.

THEOREM 2.1. Let f : (a,b) → R be a function and c > 0 . Then f is strongly
increasing with modulus c if, and only if, f is increasing and f ′(x) � c for x ∈ (a,b)
λ a.e. (λ denotes the Lebesgue measure).

Proof. Assume that [x0,x1; f ] � c for all a < x0 < x1 < b. For the function g(x) =
cx (x ∈ (a,b)) , we have that [x0,x1;g] = c for a < x0 < x1 < b and g′(x) = c (x ∈
(a,b)). Then we have [x0,x1; f − g] � 0 for all a < x0 < x1 < b , which implies that
the function f − g is non-decreasing on (a,b) , and consequently ( f − g)′(x) � 0 for
x ∈ (a,b) λ a.e. ([18]). Taking into account that g′(x) = c , we obtain f ′(x) � c for
x ∈ (a,b) λ a.e.

Now let us assume that f is increasing on (a,b) and f ′(x) � c for x∈ (a,b) λ a.e.
Since f is increasing on (a,b) , it can be regarded as a distribution function correspond-
ing to a σ -finite measure. Via Lebesgue’s decomposition theorem and the decomposi-
tion of a singular measure, every σ -finite measure can be decomposed into a sum of an
absolutely continuous measure (with respect to the Lebesgue measure), a singular con-
tinuous measure, and a discrete measure (these three measures are uniquely determined
[18]). Then f can be written in the form f = fd + fsc + fac , where fd , fsc, fac are the
distribution functions corresponding to the discrete part, the singular continuous part
and the absolutely continuous part, respectively. Obviously, the distribution functions
fd , fsc, fac are non-decreasing functions, f ′d(x) = f ′sc(x) = 0 and f ′(x) = f ′ac(x) for
x ∈ (a,b) λ a.e. This implies that f ′ac(x) � c and taking into account g′(x) = c , we
obtain f ′ac(x)−g′(x) � 0 for x ∈ (a,b) λ a.e. Then

Δh( fac(x)−g(x)) =
∫ x+h

x
( f ′ac(u)−g′(u)) du � 0 (2.1)

for all a < x < x+ h < b . By (2.1), we have Δh( fac(x)− g(x)) = [ fac(x+ h)− g(x+
h)]− [ fac(x)−g(x)] � 0 (a < x < x+h < b ), or equivalently [x0,x1; fac −g] � 0 (a <
x0 < x1 < b), which implies [x0,x1; fac] � [x0,x1;g] = c (a < x0 < x1 < b). Since fd
and fsc are non-decreasing functions, it follows [x0,x1; fd ] � 0 and [x0,x1; fsc] � 0.
Consequently, we obtain [x0,x1; f ] = [x0,x1; fd ] + [x0,x1; fsc] + [x0,x1; fac] � c (a <
x0 < x1 < b). The theorem is proved. �

COROLLARY 2.1. Let f : I → R be a function and c > 0 . Then f is strongly
decreasing with modulus c if, and only if, f is non-increasing and f ′(x) � −c for
x ∈ I λ a.e.
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The following proposition follows immediately from the definition of strong quasi-
convexity.

PROPOSITION 2.4. Let f : I →R be a function and c > 0 . If f is non-decreasing,
then f is strongly quasi-convex with modulus c if, and only if, f is strongly increasing
with modulus c. If f is non-increasing, then f is strongly quasi-convex with modulus
c if, and only if, f is strongly decreasing with modulus c.

THEOREM 2.2. A function f : I → R is strongly quasi-convex with modulus c if,
and only if, there exist (possibly degenerate) intervals I1 , I2 , I1 < I2 , I1∪ I2 = I , such
that: (i) f |I1 is strongly decreasing with modulus c, (ii) f |I2 is strongly increasing with
modulus c.

Proof. Assume that f is strongly quasi-convex with modulus c . By Remark 2.2,
f is quasi-convex. By Proposition 2.1, there exist (possibly degenerate) intervals I1 , I2 ,
I1 < I2 such that I1 ∪ I2 = I , f |I1 is non-increasing and f |I2 is non-decreasing. From
Propositions 2.4 and 2.3, it follows that the conditions (i) and (ii) are satisfied.

Since the converse follows immediately from the definition of strong quasi-conve-
xity, the theorem is proved. �

COROLLARY 2.2. A function f : I → R is strongly quasi-concave with modulus
c if, and only if, there exist (possibly degenerate) intervals J1 , J2 , J1 < J2 , J1∪J2 = I ,
such that: (i) f |J1 is strongly increasing with modulus c, (ii) f |J2 is strongly decreasing
with modulus c.

COROLLARY 2.3. Let f : I → R be a quasi-convex function. Then f is strongly
quasi-convex with modulus c > 0 if, and only if, | f ′(x)| � c for x ∈ I λ a.e.

THEOREM 2.3. Let c > 0 . A function f : I → R is strongly quasi-affine with
modulus c if, and only if, f is strongly monotone with modulus c.

Proof. It follows from Theorem 2.2, Corollary 2.2 and Remark 2.3, that if the
function f : I →R is strongly monotone with modulus c > 0, then f is strongly quasi-
affine with modulus c > 0.

Now let us assume that f : I → R is strongly quasi-affine with modulus c > 0.
Then f is quasi-affine, which implies that f is monotone. Then from Theorem 2.2 and
Corollary 2.2 it follows, that f is strongly monotone with modulus c . The theorem is
proved. �

As an immediate consequence of Theorem 2.3 and Remark 2.3, we obtain the
following characterization of strong quasi-affinity.

THEOREM 2.4. A function f : I → R is strongly quasi-affine with modulus c > 0
if, and only if, it has one of the following forms: (i) f (x) = f0(x)+ cx , (x ∈ I ), where
f0 : I → R is a non-decreasing function, (ii) f (x) = f0(x)− cx , (x ∈ I ), where f0 : I →
R is a non-increasing function.
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Based on Korablev’s definition [8] (cf. also [6]), a function f : I →R is said to be
strongly quasi-convex (Korablev strongly quasi-convex), if for all t ∈ (0,1) and x,y∈ I

f (tx+(1− t)y) � max{ f (x), f (y)}− ct(1− t)(x− y)2. (2.2)

It is not difficult to prove the following proposition on the Korablev strongly quasi-
convex functions.

PROPOSITION 2.5. Let f : I → R be a function. Then the following statements
are equivalent:

(i) f (tx+(1− t)y) � max{ f (x), f (y)}−ct(1− t)(x−y)2, for all t ∈ (0,1) , x,y ∈ I ,

(ii) for all t ∈ (0,1) and x,y ∈ I such that x < y

f (tx+(1− t)y)− f (x)
(1− t)(y− x)t(y− x)

� −c or
f (y)− f (tx+(1− t)y)
t(y− x)(1− t)(y− x)

� c,

(iii) for all x ∈ I and h1,h2 > 0 such that x+h1 +h2 ∈ I

f (x+h1)− f (x)
h1h2

� −c or
f (x+h1 +h2)− f (x+h1)

h2h1
� c.

Let us note, that introduced in Definition 2.2 the notion of strongly quasi-convex
function differs from that of Korablev [8] (the formula (2.2)).

EXAMPLE 2.1. Let c > 0. As an immediate corollary from Propositions 2.2 and
2.5, we obtain that the function f (x) = c |x| (x ∈ R) is strongly quasi-convex with
modulus c (in the sense of Definition 2.2) and it is not Korablev strongly quasi-convex
with modulus c .

EXAMPLE 2.2. Let c > 0. The function f (x) = c
2x2 (x ∈ (−1,1)) is not strongly

quasi-convex with modulus c (Definition 2.2) and it is Korablev strongly quasi-convex
with modulus c . Indeed, since f (x) is quasi-convex and | f ′(x)| < c (x ∈ (−1,1)),
by Proposition 2.2, it follows that f (x) is not strongly quasi-convex with modulus c .
Obviously, since f ′′(x) = c (x ∈ (−1,1)), f is strongly convex (see [3, 16]). Further,
taking into account that, if the function g is a quadratic function, then g is strongly
convex if, and only if, it is Korablev strongly quasi-convex (see [7]), we conclude that
f is Korablev strongly quasi-convex.

A similar approach to strong quasi-convexitywas applied in [19], where the notion
of ω -quasi-convexity was introduced.

Let ω � 0 be a given number. A function f : I → R is

(i) ω -quasi-convex if for all t ∈ (0,1) and x,y ∈ I , x �= y

f (tx+(1− t)y) � max{ f (x), f (y)}−ω min(t,1− t)|x− y|, (2.3)
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(ii) ω -quasi-concave if for all t ∈ (0,1) and x,y ∈ I , x �= y

f (tx+(1− t)y) � max{ f (x), f (y)}−ω max(t,1− t)|x− y|, (2.4)

(iii) ω -quasi-affine if f is ω -quasi-convex and ω -quasi-concave.

In [19], the authors proved (among others), that ω -quasi-convex functions can be
separated from ω -quasi-concave by ω -quasi-affine ones.

It is not difficult to prove the following proposition on ω -quasi-convexity.

PROPOSITION 2.6. Let f : I → R be a function. Then the following statements
are equivalent:

(i) for all t ∈ (0,1) and x,y ∈ I , x �= y

f (tx+(1− t)y) � max{ f (x), f (y)}−ω min(t,1− t)|x− y|,

(ii) for all t ∈ (0,1) and x,y ∈ I , x < y

f (tx+(1− t)y)− f (x)
min(t,(1− t))(y− x)

� −ω or
f (y)− f (tx+(1− t)y)
min(t,(1− t))(y− x)

� ω ,

(iii) for all x ∈ I and h1,h2 > 0 such that x+h1 +h2 ∈ I

f (x+h1)− f (x)
min(h1,h2)

� −ω or
f (x+h1 +h2)− f (x+h1)

min(h1,h2)
� ω .

It can be proven that the strong quasi-convexity with modulus c is equivalent to
the ω -quasi-convexity (for c = ω ). The notions of strongly quasi-concave and strongly
quasi-affine functions with modulus c , given in this paper, differ from that given in [19].
In particular, we have that the function f is strongly quasi-concave with modulus c if,
and only if, − f is strongly quasi-convex with modulus c . On the other hand, if f is
ω -quasi-concave, then − f is not necessarily ω -quasi-convex. If the inequality (2.4)
defining ω -quasi-concavity would be replaced by the following inequality

f (tx+(1− t)y) � min{ f (x), f (y)}+ ω min(t,1− t)|x− y|, (2.5)

then we have that if f would be ω -quasi-concave, then − f would be ω -quasi-convex.
However, if we replace the inequality (2.4) by (2.5), the separation type result is no
longer true.

In our opinion, the properties of the strong quasi-convexity can be proved simpler
and shorter using the definition of strong quasi-convexity with modulus c than ω -
quasi-convexity (see Proposition 2.4, Theorem 2.2). Moreover, our definition enable us
to generalize the strong-quasi convexity to the strong-quasi-convexity of higher order.

Note, that the condition (2.3) for t = 1
2 was studied in [20]. It follows from Theo-

rem 2.2 [20] that there are no ω -quasi-convex functions with ω > 0 on convex domain
of dimension greater then one (obviously in multidimensional case “ | |” is replaced by
“‖ ‖”).
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3. Quasi-convex and quasi-concave functions of higher order

We begin with some notations. Let I0 be a subinterval of I . We denote I−0 =
{x ∈ I : {x} < I0}, I+0 = {x ∈ I : I0 < {x}}. Then I−0 < I0 < I+0 and I−0 ∪ I0∪ I+0 = I .
Proposition 2.2 motivates the introduction of quasi-convex functions of higher order.

DEFINITION 3.1. We say that a function f : I → R is

(i) n-quasi-convex, if [yn, . . . ,y0; f ] � 0 or [x0, . . . ,xn; f ] � 0,

(ii) n-quasi-concave, if [yn, . . . ,y0; f ] � 0 or [x0, . . . ,xn; f ] � 0

for all yn, . . . ,y0,x0, . . . ,xn ∈ I , yn < .. . < y0 = x0 < .. . < xn . The function f is n-
quasi-affine, if it is simultaneously n -quasi-convex and n -quasi-concave.

The following theorem gives a characterization of quasi-convex functions of higher
order, which generalizes that given in Proposition 2.1 for quasi-convex functions.

THEOREM 3.1. Let n ∈ N . Let f : (a,b) → R (a < b) be a function. Then f is
(n+1)-quasi-convex on (a,b) if, and only if, one of the following conditions holds:

(a) f is n-convex or f is n-concave,

(b) there exists x0 ∈ (a,b) , such that f |(a,x0] is n-concave and f |(x0,b) is n-convex,

(c) there exists x0 ∈ (a,b) , such that f |(a,x0) is n-concave and f |[x0,b) is n-convex,

(d) there exists a non-degenerate interval I0 ⊂ (a,b) such that f is n-affine on I0 and

(W1) f is n-concave on I−0 ,

(W2) f is n-convex on I+0 ,

(W3) [yn+1, . . . ,y0; f ] � 0 or [x0, . . . ,xn+1; f ] � 0 for all ξ ∈ I0 , yn+1, . . . ,y0,x0, . . . ,
xn+1 ∈ I , yn+1 < .. . < y0 = ξ = x0 < .. . < xn+1 .

Proof. Aiming for a contradiction, we suppose that ¬[(a)∨(b)∨(c)∨(d)] , which
is equivalent to ¬(a)∧¬(b)∧¬(c)∧¬(d) .

Assume ¬(b) (the other cases are analogous), which is equivalent to the condition

∀ξ ∈ (a,b) ¬ ( f is n−concave on (a,ξ ] ) ∨ ¬ ( f is n−convex on (ξ ,b) ). (3.1)

By (3.1), we conclude that, for any ξ ∈ (a,b) , one of the following two conditions is
satisfied: ∃ a < yn+1 < .. . < y0 � ξ [yn+1, . . . ,y0; f ] > 0, or ∃ ξ < x0 < .. . < xn+1 <
b [x0, . . . ,xn+1; f ] < 0. We put

Lf = {ξ : ∃ a < yn+1 < .. . < y0 � ξ [yn+1, . . . ,y0; f ] > 0} , (3.2)

Rf = {ξ : ∃ ξ < x0 < .. . < xn+1 < b [x0, . . . ,xn+1; f ] < 0} . (3.3)
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By (3.1), Lf ∪Rf = (a,b). There are four possible cases: (A) Lf = (a,b)∧Rf = /0 ,
(B) Lf = /0∧Rf = (a.b) , (C) Lf �= /0∧Rf �= /0∧Lf ∩Rf = /0 , (D) Lf ∩Rf �= /0 .

We consider the case (A). Then we have: ξ ∈ (a,b) =⇒ {
ξ ∈ Lf ∧ξ /∈ Rf

}
=⇒

{ ∃ a < yn+1 < .. . < y0 � ξ [yn+1, . . . ,y0; f ] > 0 ∧ ∀ ξ < x0 < .. . < xn+1 < b
[x0, . . . ,xn+1; f ] � 0 } =⇒ { f is n -convex on (ξ ,b) } . Consequently, we obtain, that
for all ξ ∈ (a,b) , f is n -convex on (ξ ,b) , which implies that f is n -convex on (a,b) .
This contradicts the assumption ¬(a). Similarly, in the case (B), we obtain that f is
n -concave on (a,b) , contrary to the assumption ¬(a).

Now consider the case (C), i.e. Lf �= /0 , Rf �= /0 and Lf ∩Rf = /0 . By the definitions
of Lf and Rf , (3.2), (3.3), it follows that, if ξ1 ∈ Lf , then ξ ′

1 ∈ Lf for any ξ ′
1 � ξ1 ,

and if ξ2 ∈ Rf , then ξ ′
2 ∈ Rf for any ξ ′

2 � ξ2 . This implies

ξ1 ∈ Lf =⇒ [ξ1,b) ⊂ Lf , ξ2 ∈ Rf =⇒ (a,ξ2] ⊂ Rf . (3.4)

Since Lf ∩Rf = /0 , it follows that if ξ ∈ Lf , then ξ /∈ Rf . This implies that, if ξ ∈ Lf ,
then for any ξ < x0 < .. . < xn+1 < b [x0, . . . ,xn+1; f ] � 0, i.e. f is n -convex on
(ξ ,b) . Similarly, if ξ ∈ Rf , then ξ /∈ Lf , which implies that, if ξ ∈ Rf , then for any
a < yn+1 < .. . < y0 � ξ [yn+1, . . . ,y0; f ] � 0, i.e. f is n -concave on (a,ξ ] . We have

∀ξ1,ξ2 ∈ (a,b) ξ1 ∈ Lf ⇒ f |(ξ1,b) is n-convex,ξ2 ∈ Rf ⇒ f |(a,ξ2] is n-concave. (3.5)

Because Lf �= /0 and Rf �= /0 , there exist ξ1 ∈ Lf and ξ2 ∈ Rf . We put

α = inf
{

ξ : ξ ∈ Lf
}

, β = sup
{

ξ : ξ ∈ Rf
}

. (3.6)

By (3.5), we conclude that

f is n-concave on (a,β ) and f is n-convex on (α,b). (3.7)

By (3.4),
(a,β ) ⊂ Rf , (α,b) ⊂ Lf . (3.8)

Moreover, we have α = β . Indeed, suppose that α �= β . If α < β , then (α,β ) ⊂ Lf ∩
Rf , contrary to Lf ∩Rf = /0 . If α > β , then by (3.4) and (3.6), we obtain that (β ,α) ⊂
(a,b)\ [Lf ∪Rf ] , which contradicts the assumption Lf ∪Rf = (a,b) . Consequently, we
have α = β . In view of (3.7) we obtain

f is n-concave on (a,α) and f is n-convex on (α,b). (3.9)

If α ∈ Rf , then by (3.5), f is n -concave on (a,α] and f is n -convex on (α,b) , this
contradicts the assumption ¬(b). We conclude that α ∈ Lf , i.e. there exist a < yn+1 <
.. . < y0 � α such that [yn+1, . . . ,y0; f ] > 0, which implies that f is not n - concave on
(a,α] . Since f is n -concave on (a,α) , it follows that y0 = α .

Suppose, that f is not n -convex on [α,b) . Taking into account, that by (3.9),
f is n -convex on (α,b) , it follows that there exist α = x0 < .. . < xn+1 < b , such
that [x0, . . . ,xn+1; f ] < 0. Because a < yn+1 < .. . < y0 = α = x0 < .. . < xn+1 < b ,
[yn+1, . . . ,y0; f ] > 0 and [x0, . . . ,xn+1; f ] < 0, this contradicts the assumption that f is
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(n+ 1)-quasi-convex on (a,b) . Thus f is n -convex on [α,b) . Taking into account
that by (3.9) f is n -concave on (a,α) , we obtain a contradiction with ¬(c) .

We consider the case (D), i.e. Lf ∩Rf �= /0. It suffices to prove that

∃ ξ0 ∈ (a,b) ∃ a < λn+1 < .. . < λ0 = ξ0 = η0 < .. . < ηn+1 < b

[λn+1, . . . ,λ0; f ] > 0 ∧ [η0, . . . ,ηn+1; f ] < 0, (3.10)

because (3.10) contradicts the assumption that f is (n+1)-quasi-convex on (a,b) .
By the equality Lf ∩Rf �= /0 , we obtain that

∃ ξ1 ∈ (a,b) ∃ a < yn+1 < .. . < y0 � ξ1 < x0 < .. . < xn+1 < b

[yn+1, . . . ,y0; f ] > 0 ∧ [x0, . . . ,xn+1; f ] < 0. (3.11)

Then, there are three possible cases: (D1) ∃ y0 = τ0 < .. . < τn+1 = x0 [τ0, . . . ,τn+1; f ]
> 0, (D2) ∃ y0 = τ0 < .. . < τn+1 = x0 [τ0, . . . ,τn+1; f ] < 0, (D3) ∀ y0 = τ0 < .. . <
τn+1 = x0 [τ0, . . . ,τn+1; f ] = 0. In the case (D1), we have a < τ0 < .. . < τn+1 = x0 <
.. . < xn+1 < b [τ0, . . . ,τn+1; f ] > 0 ∧ [x0, . . . ,xn+1; f ] < 0, which implies that (3.10)
is satisfied with ξ0 = τn+1 = x0 . In the case (D2), we have a < yn+1 < .. . < y0 = τ0 <
.. . < τn+1 < b [yn+1, . . . ,y0; f ] > 0 ∧ [τ0, . . . ,τn+1; f ] < 0, consequently, (3.10) is
satisfied with ξ0 = τ0 = y0 . In the case (D3), we have that f is n -affine on [y0,x0]
(y0 < x0 ), which means that f is n -convex and n -concave on [y0,x0] . Suppose that
Lf ∩Rf is a one-point set, say Lf ∩Rf = {ξ2} . Then, by (3.4), ξ2 = α = β , where α ,
β are defined by (3.6). Thus, Lf = [α,b) , Rf = (a,α] . Then, by (3.5), f is n -convex
on (α,b) and f is n -concave on (a,α] , which contradicts the assumption ¬(b). In
the remaining cases, when Lf ∩Rf is not a one-point set, by (3.8), Lf ∩Rf is a non-
degenerate interval. Without loss of generality, we may assume that Lf ∩Rf = (α,β ) ,
and consequently Lf = (α,b) , Rf = (a,β ) . Then f is n -concave on Rf \Lf = (a,α]
and f is n -convex on Lf \Rf = [β ,b) . Let I0 ⊃ [y0,x0] be the largest interval, on
which f is n -affine. Without loss of generality we may assume that I0 = (a1,b1) .
Note, that now the condition ¬(d) is equivalent to ¬(W1)∨¬(W2)∨¬(W3) . If the
condition ¬(W1) holds, then f is not n -concave on (a,a1] . Taking into account that
f is n -concave on (a,α] , we conclude that α < a1 . This implies that there exist
α < y′0 � a1 and y′n+1 < .. . < y′0 such that [y′n+1, . . . ,y

′
0; f ] > 0. Moreover, there exist

y′0 = x′0 < .. . < x′n+1 = x0 such that [x′0, . . . ,x
′
n+1; f ] �= 0. Indeed, if for all y′0 = x′0 <

.. . < x′n+1 = x0 [x′0, . . . ,x
′
n+1; f ] = 0, then f is n -affine on [y′0,x0] , consequently also on

[y′0,b1) . Since y′0 � a1 , this contradicts the assumption that I0 = (a1,b1) is the largest
interval on which f is n affine. Consequently, there exist y′0 = x′0 < .. . < x′n+1 = x0

such that [x′0, . . . ,x
′
n+1; f ] �= 0. If [x′0, . . . ,x

′
n+1; f ] > 0, then we have x′0 < .. . < x′n+1 =

x0 < .. . < xn+1 , [x′0, . . . ,x
′
n+1; f ] > 0 and in view of (3.11) [x0, . . . ,xn+1; f ] < 0, which

implies that (3.10) is satisfied. If [x′0, . . . ,x
′
n+1; f ] < 0, then we have y′n+1 < .. . < y′0 =

x′0 < .. . < x′n+1 , [y′n+1, . . . ,y
′
0; f ] > 0 and [x′0, . . . ,x

′
n+1; f ] < 0, consequently, (3.10)

is satisfied. Analogously we prove, that assuming ¬(W2), we obtain (3.10). Now
consider ¬(W3). Then there exist ξ2 ∈ I0 and y′n+1 < .. . < y′0 = ξ2 = x′0 < .. . < x′n+1
such that [y′n+1, . . . ,y

′
0; f ] > 0 and [x′0, . . . ,x

′
n+1; f ] < 0, thus (3.10) is satisfied. Since

the converse is obvious, the theorem is proved. �
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Theorem 3.1 can be rewritten as follows.

THEOREM 3.2. A function f : I → R is (n+1)-quasi-convex if, and only if there
exist (possibly degenerate) intervals I1 , I0 , I2 , I1 < I0 < I2 such that I1 ∪ I0 ∪ I2 =
I , f |I1 is n-concave, f |I2 is n-convex, f |I0 is n-affine and [yn+1, . . . ,y0; f ] � 0 or
[x0, . . . ,xn+1; f ] � 0 for all ξ ∈ I0 , yn+1, . . . ,y0,x0, . . . ,xn+1 ∈ I , yn+1 < .. . < y0 = ξ =
x0 < .. . < xn+1.

THEOREM 3.3. A function f : I → R is (n + 1)-quasi-concave if, and only if,
there exist (possibly degenerate) intervals J1 , J0 , J2 , J1 < J0 < J2 such that J1 ∪ J0 ∪
J2 = I , f |J1 is n-convex, f |J2 is n-concave, f |J0 is n-affine and [yn+1, . . . ,y0; f ] � 0
or [x0, . . . ,xn+1; f ] � 0 for all ξ ∈ I0 , yn+1, . . . ,y0,x0, . . . ,xn+1 ∈ I , yn+1 < .. . < y0 =
ξ = x0 < .. . < xn+1.

Let χB(x) = 1 if x ∈ B and χB(x) = 0 if x /∈ B (B ⊂ R) .

EXAMPLE 3.1. The function f (x) = (x+2) χ(−∞,−2)(x)+(−x) χ[−2,2](x)+(x−
2) χ(2,∞)(x) (x ∈ R) is 2-quasi-convex. The function g(x) = (−x−2) χ(−∞,−2)(x)+
x χ[−2,2](x)+ (−x+2) χ(2,∞)(x) (x ∈ R) is 2-quasi-concave.

4. Quasi-affine functions of higher order

Applying characterizations of (n + 1)-quasi-convex and (n + 1)-quasi-concave
functions, we can give a characterization of (n+1)-quasi-affine functions.

THEOREM 4.1. A function f : I → R is (n+1)-quasi-affine if, and only if, one of
the following conditions holds:

(i) f is n-convex or n-concave or

(ii) there exist intervals I1 , I0 , I2 , I1 < I0 < I2 , I1∪ I0 ∪ I2 = I , such that f |I1 , f |I2 ,
f |I0 are n-affine, and

• [yn+1, . . . ,y0; f ] = 0 or [x0, . . . ,xn+1; f ] = 0 or

• ( [yn+1, . . . ,y0; f ] < 0 and [x0, . . . ,xn+1; f ] < 0 ) or

• ( [yn+1, . . . ,y0; f ] > 0 and [x0, . . . ,xn+1; f ] > 0 )

for all ξ ∈ I0 , yn+1, . . . ,y0,x0, . . . ,xn+1 ∈ I , yn+1 < .. . < y0 = ξ = x0 < .. . < xn+1 .

Proof. It follows from the definition of (n+ 1)-quasi-affine functions, that func-
tions satisfying the above conditions are (n+1)-quasi-affine. Assume, that the function
f : I → R is (n + 1)-quasi-affine. Then by Theorems 3.2 and 3.3 there exist inter-
vals Ĩ1 , Ĩ0 , Ĩ2 , Ĩ1 < Ĩ0 < Ĩ2 , Ĩ1 ∪ Ĩ0 ∪ Ĩ2 = I and intervals J1 , J0 , J2 , J1 < J0 < J2 ,
J1 ∪ J0 ∪ J2 = I , that satisfy the conditions given in Theorems 3.2 and 3.3, respec-
tively. If Ĩ1 = Ĩ0 = J0 = J2 = /0 or Ĩ0 = Ĩ2 = J1 = J0 = /0 , which means that f is n -
convex or n -concave, respectively, then the condition (i) is satisfied. If Ĩ0 = J0 = /0 ,
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then three cases may occur. In the first case Ĩ1 = J1 and Ĩ2 = J2 . Since f |Ĩ1 is
n -concave and f |J1 is n -convex, it follows that f |Ĩ1 is n -affine. Similarly, we con-
clude that f |Ĩ2 is n -affine. We obtain, that the condition (ii) is satisfied with I0 = /0 ,

I1 = Ĩ1 = J1 and I2 = Ĩ2 = J2 . In the second case ( Ĩ1 ⊂ J1 and J1 \ Ĩ1 = {ξ} ) or
(J1 ⊂ Ĩ1 and Ĩ1 \ J1 = {ξ} ). In this case the condition (ii) is satisfied with I0 = {ξ} ,
I1 = J1 and I2 = Ĩ2 . In the third case ( Ĩ1 ⊂ J1 and int(J1 \ Ĩ1) �= /0) or (J1 ⊂ Ĩ1 and
int(Ĩ1\J1) �= /0). In this case the condition (i) is satisfied. Now let us assume that all the
intervals Ĩ1, Ĩ0, Ĩ2, J1, J0, J2 are non-degenerate. It can be proved that int(Ĩ0∩J0) �= /0
(we leave the proof to the reader). Hence, without loss of generality, we may assume
that Ĩ0 = J0 (taking Ĩ0 ∪ J0 in place of Ĩ0 and J0 if necessary), which implies Ĩ1 = J1

and Ĩ2 = J2 . Put Ii = Ĩi = Ji for i = 0,1,2. Since f is (n + 1)-quasi-affine, f is
(n + 1)-quasi-convex and (n + 1)-quasi-concave, hence f |I1 and f |I2 are n -convex
and n -concave, which means that f |I1 and f |I2 are n -affine. Taking into account that
f is (n + 1)-quasi-convex and (n + 1)-quasi-concave, we have ( [yn+1, . . . ,y0; f ] �
0 or [x0, . . . ,xn+1; f ] � 0 ) and ( [yn+1, . . . ,y0; f ] � 0 or [x0, . . . ,xn+1; f ] � 0 )
for all ξ ∈ I0 , yn+1, . . . ,y0,x0, . . . ,xn+1 ∈ I , yn+1 < .. . < y0 = ξ = x0 < .. . < xn+1 .
Because these conditions are equivalent to those that appear in the condition (ii), the
theorem is proved. �

EXAMPLE 4.1. f (x) = χ{0}(x)+ |x| χ(−∞,0)∪(0,∞)(x) (x ∈ R) is 2-quasi-affine.

We will state a result that will be of use in the next theorem. Let f : I → R be a
function, A ⊂ I , n ∈ N . We put

A( f ,R,+) = {ξ ∈ A ; ∀ x0, . . . ,xn+1 ∈ I, ξ = x0 < .. . < xn+1 [x0, . . . ,xn+1; f ] � 0} ,

A( f ,R,−) = {ξ ∈ A ; ∀ x0, . . . ,xn+1 ∈ I, ξ = x0 < .. . < xn+1 [x0, . . . ,xn+1; f ] � 0} ,

A( f ,L,+) = {ξ ∈ A ; ∀ yn+1, . . . ,y0 ∈ I, yn+1 < .. . < y0 = ξ [yn+1, . . . ,y0; f ] � 0} ,

A( f ,L,−) = {ξ ∈ A ; ∀ yn+1, . . . ,y0 ∈ I, yn+1 < .. . < y0 = ξ [yn+1, . . . ,y0; f ] � 0} .

LEMMA 4.1. Let f : I → R be an (n + 1)-quasi-affine function, satisfying the
condition (ii) in Theorem 4.1 and such that: (a) each of the functions f |I1∪I0 , f |I0∪I2 is
neither n-convex nor n-concave, (b) all the sets I0 ( f ,R,+) , I0 ( f ,R,−) , I0 ( f ,L,+) , I0 ( f ,L,−)
are intervals. Then the interval I0 is degenerate.

Proof. Suppose that, contrary to our claim, the interval I0 is non-degenerate.
Then, from the condition (a) it follows that

∀ξ ∈ int(I0) the functions f |I∩(−∞,ξ ], f |I∩[ξ ,∞) are neither n -convex nor n -concave.
(4.1)

We will prove that

I0 ( f ,R,+) �= I0, I0 ( f ,R,−) �= I0, I0 ( f ,L,+) �= I0, I0 ( f ,L,−) �= I0. (4.2)
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Suppose that, on the contrary, I0 ( f ,R,+) = I0 . Then by the definition of I0 ( f ,R,+)
and taking into account that f |I2 is n -convex, we obtain that f |I0∪I2 is n -convex, which
contradicts (a). Hence we have I0 ( f ,R,+) �= I0 . The other inequalities (4.2) can be proved
similarly.

Let ξ ∈ I0 ( f ,R,+) . Then there exist x0, . . . ,xn+1 ∈ I, ξ = x0 < .. . < xn+1 such
that [x0, . . . ,xn+1; f ] > 0. Indeed, if [x0, . . . ,xn+1; f ] = 0 for all x0, . . . ,xn+1 ∈ I, ξ =
x0 < .. . < xn+1 , then two cases may occur. Let I0 = [a,b] . In the first case b ∈ I0
and ξ = b , hence f |{ξ}∪I2 is n -affine. This implies that f |I0∪I2 is n -convex or n -
concave, which contradicts (a). In the second case ξ ∈ I0 \ {b} . This implies that
f |I∩[ξ ,∞) is n -affine, which contradicts (4.1). Hence there exist x0, . . . ,xn+1 ∈ I, ξ =
x0 < .. . < xn+1 such that [x0, . . . ,xn+1; f ] > 0 and we can conclude that ξ ∈ I0 ( f ,L,+) .
Indeed, if ξ /∈ I0 ( f ,L,+) , then there exist yn+1, . . . ,y0 ∈ I, yn+1 < .. . < y0 = ξ such that
[yn+1, . . . ,y0; f ] < 0. This contradicts assumption that f is quasi-(n+1)-affine, and in
particular quasi-(n+ 1)-concave. Hence ξ ∈ I0 ( f ,L,+) , which means that I0 ( f ,R,+) ⊂
I0 ( f ,L,+) . In an exactly similar way, we can prove that I0 ( f ,L,+) ⊂ I0 ( f ,R,+) . Conse-
quently, we have

I0 ( f ,R,+) = I0 ( f ,L,+). (4.3)

Similar arguments to those above show that

I0 ( f ,R,−) = I0 ( f ,L,−). (4.4)

We will prove that
I0 ( f ,R,+)∪ I0 ( f ,R,−) = I0. (4.5)

Contrary to (4.5), suppose that there exists ξ ∈ I0 such that

ξ /∈ I0 ( f ,R,+) and ξ /∈ I0 ( f ,R,−). (4.6)

In view of (4.3) and (4.4), we have also ξ /∈ I0 ( f ,L,+) and ξ /∈ I0 ( f ,L,−). By (4.6), there

exist x0, . . . ,xn+1,x
′
0, . . . ,x

′
n+1 ∈ I, ξ = x0 < .. . < xn+1 , ξ = x

′
0 < .. . < x

′
n+1 such that

[x0, . . . ,xn+1; f ] > 0 and [x
′
0, . . . ,x

′
n+1; f ] < 0, and there exist yn+1, . . . ,y0 , y

′
n+1, . . . ,

y
′
0 ∈ I , yn+1 < .. . < y0 = ξ , y

′
n+1 < .. . < y

′
0 = ξ such that [yn+1, . . . ,y0; f ] > 0

and [y
′
n+1, . . . ,y

′
0; f ] < 0. Therefore we have yn+1 < .. . < y0 = ξ = x

′
0 < .. . < x

′
n+1 ,

[yn+1, . . . ,y0; f ] > 0 and [x
′
0, . . . ,x

′
n+1; f ] < 0, which contradicts our assumption that

f is (n + 1)-quasi-convex. We have proved (4.5). Then, by (b), (4.5), and taking
into account that assumption that I0 is non-degenerate, it follows that at least one
of the intervals I0 ( f ,R,+) , I0 ( f ,R,−) is non-degenerate. Assume, that I0 ( f ,R,+) is non-
degenerate (when I0 ( f ,R,−) is non-degenerate, the proof is analogous). In view of (b),
(4.5) and (4.2), one of the two cases may occur I0 ( f ,R,−)\ I0 ( f ,R,+) < I0 ( f ,R,+)\ I0 ( f ,R,−)
or I0 ( f ,R,+)\ I0 ( f ,R,−) < I0 ( f ,R,−)\ I0 ( f ,R,+). If the first case is satisfied, then f |I0 ( f ,R,+)∪I2
is n -convex, which contradicts (4.1). Now, let us assume that the second case is satis-
fied. In view of (4.3) and (4.4), we have I0 ( f ,L,+) \ I0 ( f ,L,−) < I0 ( f ,L,−) \ I0 ( f ,L,+). Then
f |I1∪I0 ( f ,L,+) is n -convex, which contradicts (4.1). The lemma is proved. �

Now, we apply Theorem 4.1 and Lemma 4.1 to obtain a characterization of 2-
quasi-affine functions.
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THEOREM 4.2. A function f : I → R is 2-quasi-affine if, and only if, one of the
following conditions holds:

(i) f is convex or concave, or

(ii) there exist non-degenerate intervals I1 , I2 , a degenerate interval I0 , I1 < I0 < I2 ,
I1∪I0∪I2 = I such that f |I1 , f |I2 are affine, ([y2,y1,y0; f ] < 0 and [x0,x1,x2; f ] <
0) or ([y2,y1,y0; f ] > 0 and [x0,x1,x2; f ] > 0) for all ξ ∈ I0 , y2,y1,y0,x0,x1,x2 ∈
I , y2 < y1 < y0 = ξ = x0 < y1 < x2 .

Proof. Let n = 1. From Theorem 4.1 it follows that if f satisfies the above con-
ditions, then it is 2-quasi-affine. Now let us assume that f is 2-quasi-affine. Then by
Theorem 4.1 the conditions (i) and (ii) that appears in Theorem 4.1 are satisfied. To
prove the theorem remains to consider the condition (ii) in Theorem 4.1, with a non-
degenerate interval I0 . Without loss of generality we may assume, that the condition
(a) in Lemma 4.1 is satisfied. We will prove that the condition (b) is also fulfilled,
then the theorem will be an immediate consequence of Lemma 4.1. Now we will
prove that I0 ( f ,R,+) is an interval. Since f |I0 is affine, there exist a,b ∈ R such that
f (x) = ax+ b for all x ∈ I0 . Let ξ1,ξ2 ∈ I0 ( f ,R,+) , ξ1 < ξ2 . Consider ξ1 < ξ3 < ξ2 .
Let x1,x2 ∈ I be such that ξ3 < x1 < x2 . To prove that ξ3 ∈ I0 ( f ,R,+) , we need to check
that [ξ3,x1,x2; f ] � 0. There are two possible cases. In the first case x1 ∈ I0 . We obtain

[ξ3,x1,x2; f ] =
[x1,x2; f ]−a

x2− ξ3
, [ξ1,x1,x2; f ] =

[x1,x2; f ]−a
x2− ξ1

. (4.7)

Since ξ1 ∈ I0 ( f ,R,+) , we have [ξ1,x1,x2; f ] � 0. By (4.7), taking into account that
ξ1 < ξ3 < x1 < x2 , we obtain that [ξ3,x1,x2; f ] � 0. In the second case x1 /∈ I0 . Because
ξ3 < x1 and ξ3 ∈ I0 , we have that x1 ∈ I2 . Taking into account that ξ2 ∈ I0 , we obtain
ξ2 < x1 . Since ξ1,ξ2 ∈ I0 ( f ,R,+) , we have [ξ1,x1,x2; f ] � 0 and [ξ2,x1,x2; f ] � 0,
which can be written in the form

[x1,x2; f ]− [ξ1,x1; f ]
x2− ξ1

� 0 and
[x1,x2; f ]− [ξ2,x1; f ]

x2− ξ2
� 0. (4.8)

Taking into account that ξ1 < ξ2 < x1 < x2 , inequalities (4.8) are equivalent to

[ξ1,x1; f ] � [x1,x2; f ] and [ξ2,x1; f ] � [x1,x2; f ]. (4.9)

We will prove
[ξ3,x1; f ] � [x1,x2; f ], (4.10)

which is equivalent to [ξ3,x1,x2; f ] � 0. Fixing x1,x2 , we put the function

γ(x) = [x,x1; f ] =
f (x1)− f (x)

x1− x
for ξ1 � x � ξ2.

Since ξ1,ξ2 ∈ I0 , we have γ(x) = f (x1)−ax−b
x1−x for ξ1 � x � ξ2, which implies

γ
′
(x) =

f (x1)−ax1−b
(x1 − x)2 for ξ1 � x � ξ2. (4.11)
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By (4.11), we conclude, that γ ′
(x) > 0 for all ξ1 � x � ξ2 or γ ′

(x) < 0 for all ξ1 � x �
ξ2 , which implies that γ(x) is increasing on [ξ1,ξ2] or γ(x) is decreasing on [ξ1,ξ2] .
Taking into account, that by (4.9), γ(ξ1) � [x1,x2; f ] and γ(ξ2) � [x1,x2; f ] , we con-
clude that γ(x) � [x1,x2; f ] for all ξ1 � x � ξ2 , and in particular γ(ξ3) � [x1,x2; f ] ,
which means that (4.10) is satisfied. We have proved that I0 ( f ,R,+) is an interval.

Similar arguments to those above show that I0 ( f ,R,−) , I0 ( f ,L,+) , I0 ( f ,L,−) are inter-
vals. Now the theorem follows immediately from Lemma 4.1. �

5. Strongly quasi-convex, strongly quasi-concave and strongly quasi-affine
functions of higher order

The definition of quasi-convex functions of higher order and Proposition 2.2 on
strongly quasi-convex functions motivate the introduction of the following strongly
quasi-convex functions of higher order.

DEFINITION 5.1. Let c > 0. We say that a function f : I → R is

(i) strongly n-quasi-convex if [yn, . . . ,y0; f ] � −c or [x0, . . . ,xn; f ] � c,

(ii) strongly n-quasi-concave if [yn, . . . ,y0; f ] � c or [x0, . . . ,xn; f ] � −c

for all ξ ∈ I and yn, . . . ,y0,x0, . . . ,xn ∈ I , yn < .. . < y0 = ξ = x0 < .. . < xn . f is
strongly n-quasi-affine if f is strongly n -quasi-convex and strongly n -quasi-concave.

REMARK 5.1. It is easy to see that the definition of strongly n -quasi-convex func-
tions with c = 0 gives the concept of n -quasi-convex functions. Obviously, if the func-
tion f is strongly n -quasi-convex with c > 0, then f is n -quasi-convex.

PROPOSITION 5.1. ([16]) Let n ∈ N and c > 0 . Let f : I → R be an n-convex
function. Then f is strongly n-convex with modulus c if, and only if, f (n+1)(x) �
c(n+1)! for x ∈ I λ a.e (λ denotes the Lebesgue measure).

PROPOSITION 5.2. Let I0 be a non-degenerate subinterval of I . If a function
f : I → R is (n + 1)-quasi-convex (strongly (n + 1)-quasi-convex with modulus c),
then f |I0 is (n+1)-quasi-convex (strongly (n+1)-quasi-convex with modulus c).

PROPOSITION 5.3. (i) An n-convex function f : I →R is strongly (n+1)-quasi-
convex with modulus c if, and only if, f is strongly n-convex with modulus c.

(ii) An n-concave function f : I → R is strongly (n+1)-quasi-convex with mod-
ulus c if, and only if, f is strongly n-concave with modulus c.

The following theorem gives a characterization of strongly quasi-convex functions
of higher order, which generalizes that given in Theorem 2.2 for strongly quasi-convex
functions.
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THEOREM 5.1. Let c > 0 . A function f : I →R is strongly (n+1)-quasi-convex
with modulus c if, and only if, there exist (possible degenerate) intervals I1 , I2 , I1 < I2 ,
I1∪ I2 = I , such that (i) f |I1 is strongly n-concave with modulus c, (ii) f |I2 is strongly
n-convex with modulus c.

Proof. Assume that f is strongly (n+1)-quasi-convex on I with modulus c > 0.
By Remark 5.1, f is (n + 1)-quasi-convex. By Theorem 3.2, there exist (possibly
degenerate) intervals I1 , I0 , I2 , I1 < I0 < I2 such that I1∪I0∪I2 = I , f |I1 is n -concave,
f |I2 is n -convex, f |I0 is n -affine and satisfies the conditions that appear in Theorem3.2.
By Proposition 5.3, f |I1 is strongly n -concave, f |I2 is strongly n -convex and f |I0 is
strongly n -concave and strongly n -convex with modulus c > 0. Suppose that I0 is

non-degenerate. Taking into account Proposition 5.1, we obtain f |(n+1)
I0

(x) � c(n+1)!

and f |(n+1)
I0

(x) � −c(n+1)! for x ∈ I0 λ a.e., which is a contradiction. Now consider
the case when the interval I0 is degenerate. If I0 = /0 , then our statement holds true.
Assume that I0 is a one-point set, say I0 = {ξ} . There are three possible cases. In the
first case, there exist x0,x1, . . . ,xn+1 ∈ I , ξ = x0 < x1 < .. . < xn+1 such that

[x0, . . . ,xn+1; f ] < c. (5.1)

Since f is strongly (n + 1)-quasi-convex on I with modulus c > 0, it follows that
[yn+1, . . . ,y0; f ] �−c or [x0, . . . ,xn+1; f ] � c for all yn+1, . . . ,y0 ∈ I such that yn+1 <
.. . < y0 = ξ = x0 . By (5.1), we conclude that [yn+1, . . . ,y0; f ] �−c for all yn+1, . . . ,y0

such that a < yn+1 < .. . < y0 = ξ = x0 . Taking into account that f is strongly n -
concave on I1 , we obtain that f is strongly n -concave on I1 ∪ I0 . Since f is strongly
n -convex on I2 , the statement holds true in this case. In the second case, there ex-
ist yn+1, . . . ,y0 ∈ I such that yn+1 < .. . < y0 = ξ and [yn+1, . . . ,y0; f ] > −c . Then,
by the arguments similar to those above, we conclude that f is strongly n -convex on
I2 ∪ I0 , f is strongly n -concave on I1 and f is not strongly n -concave on I1 ∪ I0 .
So in this case the statement holds true. In the third case [yn+1, . . . ,y0; f ] � −c and
[x0, . . . ,xn+1; f ] � c for all yn+1, . . . ,y0,x0,x1, . . . ,xn+1 ∈ I such that yn+1 < .. . < y0 =
ξ = x0 < x1 < .. . < xn+1 . Taking into account that f is strongly n -convex on I2 and it
is strongly n -concave on I1 , this implies that f is strongly n -convex on I2 ∪ I0 and it
is strongly n -concave on I1∪ I0 . Our statement holds true in this case.

Since the converse is obvious, the theorem is proved. �

THEOREM 5.2. Let c > 0 . A function f : I →R is strongly (n+1)-quasi-concave
with modulus c if, and only if, there exist (possible degenerate) intervals J1 , J2 , J1 <
J2 , J1∪J2 = I , such that f |J1 is strongly n-convex and f |J2 is strongly n-concave with
modulus c.

As a corollary, we obtain the following characterization of strongly (n+1)-quasi-
affine functions (the proof is analogous to the proof of Theorem 2.3 and can be omitted).

THEOREM 5.3. Let c > 0 . A function f : I → R is strongly (n+1)-quasi-affine
with modulus c if, and only if, f is strongly n-concave with modulus c or f is strongly
n-convex with modulus c.
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6. Other quasi-convex functions of higher order

E. Popoviciu [13] gave the following definition of quasi-convex functions of order
n , n � 0. The function f : E → R (E ⊂ R) is quasi-convex of order n on E , if for
every system of points x1 < .. . < xn+3 of E

[x2, . . . ,xn+2; f ] � max {[x1, . . . ,xn+1; f ], [x3, . . . ,xn+3; f ]}. (6.1)

If n = 0, the inequality in (6.1) becomes the definition of the usual quasi-convex
function.

PROPOSITION 6.1. ([10]) If a function f : E → R is quasi-convex of order n in
the sense of E. Popoviciu [13], then there exist (possibly one of them being the empty set)
sets E1 , E2 , E1 < E2 such that E1∪E2 = E , f |E1 is n-concave and f |E2 is n-convex.

REMARK 6.1. ([10]) According to Proposition 2.1, the converse of the implica-
tion in Proposition 6.1 holds too, in the case k = 0. But in the general case k � 1
that is not true without supplementary conditions. For example, the function f (x) =
(−x3) χ(−∞,0](x)+(x3 +5x) χ(0,∞)(x) (x∈R) is continuous, it is 2-concave on (−∞,0]
and 2-convex on (0,∞) , but it is not quasi-convex of order 2 in the sense of E. Popovi-
ciu [13], because [−2,−1,0,1; f ] = 1/6 and [−1,0,1,2; f ] = −1/6.

Motivated by higher order quasi-convex functions defined by E. Popoviciu [13],
we introduce (n,k)-quasi-convex functions. Note that the condition (6.1) is equivalent
to [x1, . . . ,xn+2; f ] � 0 or [x2, . . . ,xn+3; f ] � 0.

DEFINITION 6.1. Let n,k � 1. We say that a function f : I → R is

(i) (n,k)-quasi-convex if [x0, . . . ,xn; f ] � 0 or [xk, . . . ,xn+k; f ] � 0,

(ii) (n,k)-quasi-concave if [x0, . . . ,xn; f ] � 0 or [xk, . . . ,xn+k; f ] � 0,

for all x0 < .. . < xn+k . The function f is (n,k)-quasi-affine if it is simultaneously
(n,k)-quasi-convex and (n,k)-quasi-concave.

DEFINITION 6.2. Let n,k � 1 and c > 0. We say that a function f : I → R is

(i) strongly (n,k)-quasi-convex if [x0, . . . ,xn; f ] � −c or [xk, . . . ,xn+k; f ] � c

(ii) strongly (n,k)-quasi-concave if [x0, . . . ,xn; f ] � c or [xk, . . . ,xn+k; f ] � −c

for all x0 < .. . < xn+k . The function f is strongly (n,k)-quasi-affine if it is simultane-
ously strongly (n,k)-quasi-convex and strongly (n,k)-quasi-concave.

REMARK 6.2. Note that

(i) (n + 1,1)-quasi-convex functions are quasi-convex functions of order n in the
sense of E. Popoviciu [13],
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(ii) (n,n)-quasi-convex functions are n -quasi-convex functions,

(iii) for every k = 1,2, . . . , the class of (n,n+1+k)-quasi-convex functions coincides
with the class of (n,n+1)-quasi-convex functions.

REMARK 6.3. A function f : I → R is

(i) (n,n+1)-quasi-convex if, and only if, [yn, . . . ,y0; f ] � 0 or [x0, . . . ,xn; f ] � 0,

(ii) (n,n+1)-quasi-concave if, and only if, [yn, . . . ,y0; f ] � 0 or [x0, . . . ,xn; f ] � 0

for all yn, . . . ,y0,x0, . . . ,xn ∈ I , yn < .. . < y0 < x0 < .. . < xn .

THEOREM 6.1. Let n ∈ N . Let f : (a,b) → R (a < b) be a function. Then f is
((n+1),(n+2))-quasi-convex on (a,b) if, and only if, one of the following conditions
holds: (a) f is n-convex, (b) f is n-concave, (c) there exists x0 ∈ (a,b) , such that f
is n-concave on (a,x0) and n-convex on (x0,b) .

Proof. The proof is similar to the proof of Theorem 3.1. Aiming for a contradic-
tion, we suppose that ¬[(a)∨ (b)∨ (c)] , which is equivalent to ¬(a)∧¬(b)∧¬(c) .

The condition ¬(c) (the proof in the cases ¬(a) and ¬(b) is analogous) is equiv-
alent to the condition ∀ξ ∈ (a,b) ¬ ( f is n− concave on (a,ξ ) ) ∨ ¬ ( f is n−
convex on (ξ ,b) ), which implies, that for any ξ ∈ (a,b) , one of the following two
conditions is satisfied: ∃ a < yn+1 < .. . < y0 < ξ [yn+1, . . . ,y0; f ] > 0, , ∃ ξ < x0 <
.. . < xn+1 < b [x0, . . . ,xn+1; f ] < 0. Putting

Lf = {ξ : ∃ a < yn+1 < .. . < y0 < ξ [yn+1, . . . ,y0; f ] > 0} , (6.2)

Rf = {ξ : ∃ ξ < x0 < .. . < xn+1 < b [x0, . . . ,xn+1; f ] < 0} . (6.3)

we have Lf ∪Rf = (a,b). There are four possible cases: (A) Lf = (a.b)∧Rf = /0 , (B)
Lf = /0∧Rf = (a.b) , (C) Lf �= /0∧Rf �= /0∧Lf ∩Rf = /0 , (D) Lf ∩Rf �= /0 .

We consider the case (A). Then we have: ξ ∈ (a,b) =⇒ {
ξ ∈ Lf ∧ξ /∈ Rf

}
=⇒

{ ∃ a < yn+1 < .. . < y0 < ξ [yn+1, . . . ,y0; f ] > 0 ∧ ∀ ξ < x0 < .. . < xn+1 < b
[x0, . . . ,xn+1; f ] � 0 }=⇒ { f is n− convex on (ξ ,b) } . Consequently, we obtain, that
for all ξ ∈ (a,b) , f is n -convex on (ξ ,b) , which implies that f is n -convex on (a,b) .
This contradicts the assumption ¬(a). Analysis similar to that in the case (A) shows,
that in the case (B), f is n -concave on (a,b) , contrary to the assumption ¬(b).

Now consider the case (C), i.e. Lf �= /0 , Rf �= /0 and Lf ∩Rf = /0 . By the definitions
of Lf and Rf ((6.2), (6.3)), it follows that, if ξ1 ∈ Lf , then ξ ′

1 ∈ Lf for any ξ ′
1 � ξ1 ,

and if ξ2 ∈ Rf , then ξ ′
2 ∈ Rf for any ξ ′

2 � ξ2 . This implies

ξ1 ∈ Lf =⇒ [ξ1,b) ⊂ Lf , ξ2 ∈ Rf =⇒ (a,ξ2] ⊂ Rf . (6.4)

Since Lf ∩Rf = /0 , it follows that if ξ ∈ Lf , then ξ /∈ Rf . This implies that, if ξ ∈ Lf ,
then for any ξ < x0 < .. . < xn+1 < b [x0, . . . ,xn+1; f ] � 0, i.e. f is n -convex on
(ξ ,b) . Similarly, if ξ ∈ Rf , then ξ /∈ Lf , which implies that, if ξ ∈ Rf , then for any
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a < yn+1 < .. . < y0 < ξ [yn+1, . . . ,y0; f ] � 0, i.e. f is n -concave on (a,ξ ) . Conse-
quently, we have: ∀ξ1 ∈ (a,b) ξ1 ∈ Lf =⇒ f is n-convex on (ξ1,b), ∀ξ2 ∈ (a,b) ξ2 ∈
Rf =⇒ f is n-concave on (a,ξ2). Because Lf �= /0 and Rf �= /0 , there exist ξ1 ∈ Lf and
ξ2 ∈ Rf . Putting α = inf

{
ξ : ξ ∈ Lf

}
, β = sup

{
ξ : ξ ∈ Rf

}
, we have that

f is n-concave on (a,β ) and f is n-convex on (α,b). (6.5)

By (6.4), we obtain (a,β ) ⊂ Rf and (α,b) ⊂ Lf . Moreover, we have α = β . Indeed,
suppose that α �= β . If α < β , then (α,β ) ⊂ Lf ∩Rf , contrary to Lf ∩Rf = /0 . If
α > β , then by (6.4), we obtain that (β ,α) ⊂ (a,b)\ [Lf ∪Rf ] , which contradicts the
assumption Lf ∪Rf = (a,b) . Consequently, we have that α = β . In view of (6.5),
we obtain f is n-concave on (a,α) and f is n-convex on (α,b), which contradicts the
assumption ¬(c). It remains to consider the case (D), i.e. Lf ∩Rf �= /0. It follows that
∃ ξ1 ∈ (a,b) ∃ a < yn+1 < .. . < y0 < ξ1 < x0 < .. . < xn+1 < b [yn+1, . . . ,y0; f ] >
0 ∧ [x0, . . . ,xn+1; f ] < 0, which contradicts the assumption that f is (n + 1,n + 2)-
quasi-convex on (a,b) . Since the converse is obvious, the theorem is proved. �

REMARK 6.4. By Theorem 3.1, the function f (x) = (x+1) χ(−∞,−1)(x)+ (−x)
χ[−1,1](x)+(x−1) χ(1,∞)(x) (x ∈ R) is (2,2)-quasi-convex. Since [−9

4 , −5
4 , −3

4 , f ] = 2
3

and [ 3
4 , 5

4 , 9
4 , f ] = −2

3 , f is not (2,3)-quasi-convex.

REMARK 6.5. In general, it is not true that the class of (n,n + 1)-quasi-convex
functions is contained in the class of (n,n)-quasi-convex functions. For example, by
Theorem 6.1, the function f (x) = (−x2−100) χ(−∞,0)(x)+(x2 +100) χ(0,∞)(x) (x∈R)
is (2,3)-quasi-convex. Since [−2,−1,0; f ]= 49 and [0,1,2; f ] =−49, f is not (2,2)-
quasi-convex. Moreover, however f |(−∞,0) is concave and f |(0,∞) is convex, there are
no intervals I1 , I2 , I1 < I2 , I1∪ I2 = R such that f |I1 is concave and f |I2 is convex.

It is not difficult to prove the following theorem on strongly ((n + 1),(n + 2))-
quasi-convex functions. We omit the proof.

THEOREM 6.2. Let n ∈ N and c > 0 . Let f : (a,b) → R (a < b) be a function.
Then f is strongly ((n+ 1),(n+ 2))-quasi-convex on (a,b) if, and only if, one of the
following conditions holds: (a) f is strongly n-convex, (b) f is strongly n-concave,
(c) there exists x0 ∈ (a,b) , such that f is strongly n-concave on (a,x0) and strongly
n-convex on (x0,b) ,
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Théorie de l’Approx. ll (1982), 129–137.
[14] T. POPOVICIU,Sur quelques proprietes des fonctions d’une ou de deux variables reelles, Mathematica

8 (1934), 1–85.
[15] T. POPOVICIU, Les Fonctions Convexes, Hermann, Paris, 1944.
[16] T. RAJBA, New integral representations of nth order convex functions, J. Math. Anal. Appl. 379

(2011), 736–747.
[17] A. W. ROBERTS, D. E. VARBERG, Convex Functions, Pure and Applied Mathematics, vol. 57, Aca-

demic Press, New York-London, 1973.
[18] H. L. ROYDEN, Real analysis, Collier Macmillan, 1966.
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