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Abstract. In this paper we present a counterpart of the Jensen inequality for F -convex functions.
We present it in three forms: discrete, integral and operator. As we will see, the generality of
the received results will allow to obtain, in particular cases, Jensen-type inequalities for strongly
convex functions and superquadratic functions.

Introduction

In the literature the term ”Jensen inequality” has many meanings (cf. [5], [8]). In
this work we will use this term in the context of the following functional inequality

f

(
n

∑
i=1

tixi

)
�

n

∑
i=1

ti f (xi) ,

where f is a real function defined on an open real interval I , n is an arbitrary natural
number, x1, . . . ,xn ∈ I and t1, . . . ,tn > 0 with t1 + · · ·+ tn = 1. It is well known that the
above inequality holds true if and only if f is a convex function. Jensen’s inequality,
but also Jensen-type inequalities, are very significant in convex analysis and we can
find their application in different branches of mathematics, economics and engineering
sciences (see for example [8], [10]). In this paper we present a counterpart of Jensen’s
inequality for F -convex functions. The concept of F -convex functions stems from
strongly convex functions introduced in [9]. F -convex functions were introduced in [2]
and now we shall recall their denotation. Namely, let F : R → R be a fixed function. A
function f : I → R is called F -convex if

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− t(1− t)F(x− y), (1)

for all x,y ∈ I and t ∈ (0,1) . Observe that if F is the zero function, then we get convex
functions and if F(x) = cx2 (where c is a fixed positive number), then F -convex func-
tions become strongly convex functions with modulus c > 0 . It will turn out that under
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some additional assumptions F -convex functions become superquadratic functions in-
troduced in [1]. Jensen-type inequalities for strongly convex functions can be found
in [3] and [4]. For superquadratic functions Jensen-type inequalities are presented in
[1]. We will see that the obtained Jensen-type inequalities for F -convex functions are
generalization of the results coming from [3], [4] and [1]. In the first section we give
tools which will be used in the next sections, but it seems that they are also interest-
ing in and of themselves. In the sections 2-4 we present Jensen type inequalities for
F -convex functions, subsequently increasing the generality, with the hope that it will
prove beneficial to future readers.

1. Support results

It is well known that convex functions defined on an open interval have an affine
support at every point of their domains (see for example [10]). In this section we present
a counterpart of that result for F -convex functions. Recall that a function s is a support
for a function f at a point x0 , if s(x0) = f (x0) and s(x) � f (x) for every point x from
the domain of f .

The first lemma says that starting with an F -convex function, the function F can
be replaced by a certain other function.

LEMMA 1. Let I be a real open interval, F : R → R be a fixed function and put
F̂(x) := max{F(x),F(−x)} for every x �= 0 and F̂(0) := 0 . If a function f : I → R is
F -convex, then f is F̂ -convex.

Proof. Assume that a function f is F -convex i.e.

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− t(1− t)F(x− y),

for all x,y ∈ I and t ∈ (0,1) . Interchanging x with y and t with 1− t we get

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− t(1− t)F(y− x).

From the above inequalities the following inequality is true

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− t(1− t)F̂(x− y),

for all x,y ∈ I and t ∈ (0,1) . It means that the function f is F̂ -convex, which ends the
proof. �

REMARK 1. If we additionally assume that F(0) = 0, then F̂ � F and it means
that we have also the reverse implication in the above lemma.

In the further part of this paper we will adopt the notion of F̂ as in Lemma 1.

A counterpart of the support theorem for F -convex functions is the following.
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THEOREM 1. Let I be a real open interval and F : R → R be a fixed function.
If a function f : I → R is F -convex and differentiable, then at every point x0 ∈ I the
function f has a support in the form of

s(x) = f (x0)+ f ′(x0)(x− x0)+ F̂(x− x0).

Proof. Since f is F -convex we know from Lemma 1 it is also F̂ -convex i.e.

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− t(1− t)F̂(x− y), (2)

for all x,y ∈ I and t ∈ (0,1) . Fix x,y ∈ I such that x � y and take arbitrarily u ∈
(x,y) . Writing u as a convex combination u = tx+(1− t)y we derive t = y−u

y−x . Now,
inequality (2) can be rewritten in equivalent forms

f (u) � y−u
y− x

f (x)+
u− x
y− x

f (y)− y−u
y− x

· u− x
y− x

F̂(x− y),

y−u
y− x

f (u)− y−u
y− x

f (x) � u− x
y− x

f (y)− u− x
y− x

f (u)− y−u
y− x

· u− x
y− x

F̂(x− y),

(y−u)( f (u)− f (x)) � (u− x)( f (y)− f (u))− (y−u)(u− x)
y− x

F̂(x− y),

f (u)− f (x)
u− x

� f (y)− f (u)
y−u

− 1
y− x

F̂(x− y).

Let u approach to x from the right side. Using the differentiability of the function f
we get

f ′+(x) � f (y)− f (x)
y− x

− 1
y− x

F̂(x− y)

hence
f (y) � f (x)+ f ′+(x)(y− x)+ F̂(y− x), y > x. (3)

Similarly, if u approach to y form the left side, then, swapping x with y , we have

f (y) � f (x)+ f ′−(x)(y− x)+ F̂(y− x), y < x. (4)

Finally, because of f ′−(x) = f ′+(x) = f ′(x) , it follows

f (y) � f (x)+ f ′−(x)(y− x)+ F̂(y− x), x �= y. (5)

Moreover, for y = x the right side of this inequality is equal to f (x) , so the function

s(x) := f (x0)+ f ′(x0)(x− x0)+ F̂(x− x0)

is a support for a function f at a point x0 . The proof is finished. �
Considering F -convexity for a nonnegative function F , we note that an F -convex

function f is also a convex function. Thus, in particular, f has the left-hand derivative
f ′− and the right-hand derivative f ′+ at every point of the domain of f . Moreover, the
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inequality f ′− � f ′+ holds true. Now, observe that instead of inequalities (3) and (4) we
have the following inequality

f (x) � f (x0)+a(x− x0)+ F̂(x− x0), x ∈ I,

where f ′−(x0) � a � f ′+(x0) , which implies the following corollary.

COROLLARY 1. Let I be a real open interval and F : R → R be a fixed non-
negative function. If a function f : I → R is F -convex, then at every point x0 ∈ I the
function f has a support in the form of

s(x) = f (x0)+a(x− x0)+ F̂(x− x0),

where f ′−(x0) � a � f ′+(x0) .

In view of the definition of the function F̂ , notice that if F is an even function
with F(0) = 0, then F̂ = F . Thus, we have the following corollary.

COROLLARY 2. Let I be a real open interval and F : R → R be a fixed even
function with F(0) = 0 . If a function f : I → R is F -convex and differentiable, then at
every point x0 ∈ I the function f has a support in the form of

s(x) = f (x0)+ f ′(x0)(x− x0)+F(x− x0).

If F is a nonnegative function, then automatically F(0) = 0 (it is enough to take
x = y in inequality (1)). And we have the next corollary.

COROLLARY 3. Let I be a real open interval and F : R → R be a fixed even and
nonnegative function. If a function f : I → R is F -convex, then at every point x0 ∈ I
the function f has a support in the form of

s(x) = f (x0)+a(x− x0)+F(x− x0),

where f ′−(x0) � a � f ′+(x0) .

Notice that in the light of Corollary 3, if we take F(x) = 0, then we get the clas-
sical result for convex functions; if we take F(x) = cx2 , then we get the result for
strongly convex functions, which follows from the representation theorem of strongly
convex functions proved in [7] (see also [9]); and for F(x) = f (|x|) we obtain the
superquadratic functions introduced in [1].

2. Discreet Jensen-type inequalities

A counterpart of Jensen’s inequality for F -convex functions is the following.
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THEOREM 2. Let I be a real open interval and F : R → R be a fixed function. If
a function f : I → R is F -convex and differentiable, then inequality

f

(
n

∑
i=1

tixi

)
�

n

∑
i=1

ti f (xi)−
n

∑
i=1

tiF̂

(
xi−

n

∑
j=1

t jx j

)
,

holds for all x1, . . . ,xn ∈ I and t1, . . . ,tn > 0 with t1 + · · ·+ tn = 1 .

Proof. In the proof of this theorem we will use Theorem 1 and standard methods
for Jensen type inequalities. Fix x1, . . . ,xn ∈ I and t1, . . . ,tn > 0 such that t1 + · · ·+ tn =
1 and denote x0 := t1x1 + . . .+ tnxn . From Theorem 1, a function s : R→R of the form
s(x) = f (x0)+ f ′(x0)(x− x0)+ F̂(x− x0) is a support of f at the point x0 . Thus, we
have

f (xi) � f (x0)+ f ′(x0)(x− x0)+ F̂(xi − x0),

for all i = 1, . . . ,n . Multiplying both sides by ti and summing side by side, we obtain

n

∑
i=1

ti f (xi) � f (x0)+ f ′(x0)
n

∑
i=1

ti(xi− x0)+
n

∑
i=1

tiF̂(xi − x0).

Finally, because ∑n
i=1 ti(xi − x0) = 0 and x0 = ∑n

i=1 tixi , we get

f

(
n

∑
i=1

tixi

)
�

n

∑
i=1

ti f (xi)−
n

∑
i=1

tiF̂

(
xi−

n

∑
j=1

t jx j

)
,

which ends the proof. �
From Theorem 2 and the previous section we have the following corollaries.

COROLLARY 4. Let I be a real open interval and F : R → R be a fixed nonneg-
ative function. If a function f : I → R is F -convex, then

f

(
n

∑
i=1

tixi

)
�

n

∑
i=1

ti f (xi)−
n

∑
i=1

tiF̂

(
xi−

n

∑
j=1

t jx j

)
,

for all x1, . . . ,xn ∈ I and t1, . . . ,tn > 0 with t1 + · · ·+ tn = 1 .

COROLLARY 5. Let I be a real open interval and F : R → R be a fixed even
function with F(0) = 0 . If a function f : I → R is F -convex and differentiable, then

f

(
n

∑
i=1

tixi

)
�

n

∑
i=1

ti f (xi)−
n

∑
i=1

tiF

(
xi−

n

∑
j=1

t jx j

)
,

for all x1, . . . ,xn ∈ I and t1, . . . ,tn > 0 with t1 + · · ·+ tn = 1 .
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COROLLARY 6. Let I be a real open interval and F : R → R be a fixed nonneg-
ative even function. If a function f : I → R is F -convex, then

f

(
n

∑
i=1

tixi

)
�

n

∑
i=1

ti f (xi)−
n

∑
i=1

tiF

(
xi−

n

∑
j=1

t jx j

)
,

for all x1, . . . ,xn ∈ I and t1, . . . ,tn > 0 with t1 + · · ·+ tn = 1 .

Of course, if F is the zero function in the last corollary, then we have the classical
Jensen’s inequality for convex functions, but from the same corollary we can also derive
two known results for strongly convex functions and superquadratic functions. We will
present them in the next two remarks.

REMARK 2. Taking function F(x) = cx2 we get the inequality

f

(
n

∑
i=1

tixi

)
�

n

∑
i=1

ti f (xi)− c
n

∑
i=1

ti

(
xi −

n

∑
j=1

t jx j

)2

,

proved for strongly convex functions in [4] and [6].

REMARK 3. Taking a nonnegative function f and F(x) = f (|x|) , we get the in-
equality

f

(
n

∑
i=1

tixi

)
�

n

∑
i=1

ti f (xi)−
n

∑
i=1

ti f

(∣∣∣∣∣xi−
n

∑
j=1

t jx j

∣∣∣∣∣
)

,

proved for superquadratic functions in [1].

3. Integral Jensen-type inequalities

THEOREM 3. Let (Ω,Σ,μ) be a probability measure space, I be a real open
interval, F : R → R be a fixed function and ϕ : Ω → I be a μ -integrable function such
that also the function F̂(ϕ − ∫Ω ϕ(t)dμ) is μ -integrable. If a function f : I → R is
F -convex and differentiable, then

f

(∫
Ω

ϕ(t)dμ
)

�
∫

Ω
f (ϕ(t))dμ −

∫
Ω

F̂

(
ϕ(t)−

∫
Ω

ϕ(t)dμ
)

dμ .

Proof. Since f is F -convex and differentiable we know from Theorem 1 that it
satisfies the inequality

f (x) � f (x0)+ f ′(x0)(x− x0)+ F̂(x− x0), x0,x ∈ I.

Fix a Lebesgue integrable function ϕ : Ω → I . Taking x0 =
∫

Ω ϕ(t)dμ and x = ϕ(t)
we get the inequality

f (ϕ(t)) � f

(∫
Ω

ϕ(t)dμ
)

+ f ′
(∫

Ω
ϕ(t)dμ

)(
ϕ(t)−

∫
Ω

ϕ(t)dμ
)

+ F̂

(
ϕ(t)−

∫
Ω

ϕ(t)dμ
)

,
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for all t ∈ Ω , which can be written in the form of

f

(∫
Ω

ϕ(t)dμ
)

� f (ϕ(t))− F̂

(
ϕ(t)−

∫
Ω

ϕ(t)dμ
)

+ f ′
(∫

Ω
ϕ(t)dμ

)

·
(

ϕ(t)−
∫

Ω
ϕ(t)dμ

)
.

Now, integrating both sides of the last inequality, we obtain

f

(∫
Ω

ϕ(t)dμ
)

�
∫

Ω
f (ϕ(t))dμ −

∫
Ω

F̂

(
ϕ(t)−

∫
Ω

ϕ(t)dμ
)

dμ .

The proof is ended. �
The counterparts of the corollaries from the previous section are the following.

COROLLARY 7. Let (Ω,Σ,μ) be a probability measure space, I be a real open
interval, F : R → R be a nonnegative fixed function and ϕ : Ω → I be a μ -integrable
function such that also the function F̂(ϕ − ∫Ω ϕ(t)dμ) is μ -integrable. If a function
f : I → R is F -convex, then

f

(∫
Ω

ϕ(t)dμ
)

�
∫

Ω
f (ϕ(t))dμ −

∫
Ω

F̂

(
ϕ(t)−

∫
Ω

ϕ(t)dμ
)

dμ .

COROLLARY 8. Let (Ω,Σ,μ) be a probability measure space, I be a real open
interval, F : R → R be an even fixed function with F(0) = 0 and ϕ : Ω → I be a μ -
integrable function such that also the function F(ϕ − ∫Ω ϕ(t)dμ) is μ -integrable. If a
function f : I → R is F -convex and differentiable, then

f

(∫
Ω

ϕ(t)dμ
)

�
∫

Ω
f (ϕ(t))dμ −

∫
Ω

F

(
ϕ(t)−

∫
Ω

ϕ(t)dμ
)

dμ .

COROLLARY 9. Let (Ω,Σ,μ) be a probability measure space, I be a real open
interval, F : R → R be a nonnegative, even fixed function and ϕ : Ω → I be a μ -
integrable function such that also the function F(ϕ − ∫Ω ϕ(t)dμ) is μ -integrable. If a
function f : I → R is F -convex, then

f

(∫
Ω

ϕ(t)dμ
)

�
∫

Ω
f (ϕ(t))dμ −

∫
Ω

F

(
ϕ(t)−

∫
Ω

ϕ(t)dμ
)

dμ .

Analogously as in Section 2, but using Corollary 9, we obtain integral versions
of Jensen type inequalities for strongly convex functions and superquadratic functions.
The counterparts of Remark 2 and Remark 3 are as follows.

REMARK 4. Taking function F(x) = cx2 , we get the inequality

f

(∫
Ω

ϕ(t)dμ
)

�
∫

Ω
f (ϕ(t))dμ − c

∫
Ω

(
ϕ(t)−

∫
Ω

ϕ(t)dμ
)2

dμ ,

proved for strongly convex functions in [4] and [6].
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REMARK 5. Taking a nonnegative function f and F(x) = f (|x|) we get the in-
equality

f

(∫
Ω

ϕ(t)dμ
)

�
∫

Ω
f (ϕ(t))dμ −

∫
Ω

f

(∣∣∣∣ϕ(t)−
∫

Ω
ϕ(t)dμ

∣∣∣∣
)

dμ ,

proved for superquadratic functions in [1].

Moreover, notice that the results presented in Section 2 are a special case of the
results from this section. Let us see the following remark.

REMARK 6. For x1, . . . ,xn ∈ I , t1, . . . ,tn > 0 such that t1 + · · ·+ tn = 1 and Ω =
{x1, . . . ,xn} , Σ = 2Ω , μ(xi) = ti and function ϕ(x) = x , results from Section 3 become
results from Section 2, respectively.

4. Operator Jensen-type inequalities

In this section, we present a counterpart of Jensen’s inequality for F -convex func-
tions involving the concept of a linear positive normalized functional.

Let us recall from [4] the concept of a linear positive normalized functional. Let
T be a nonempty set and L be a linear class of functions ϕ : T → R . Functional A :
L →R is a linear positive normalized functional if it satisfies the following conditions:

(A1) A(aϕ +bψ) = aA(ϕ)+bA(ψ) , for all ϕ ,ψ ∈ L and a,b ∈ R ;

(A2) A(ϕ) � 0, for every non-negative function ϕ ∈ L ;

(A3) 1 ∈ L (1 is the unit function i.e. 1(t) = 1, t ∈ T );

(A4) A(1) = 1.

THEOREM 4. Let T be a nonempty set and L be a linear class of functions
ϕ : T → R , A : L → R be a linear positive normalized functional and F : R → R be
a fixed function. If a function f : I → R defined on a real open interval I is F -convex
and differentiable, then for every ϕ ∈ L such that F̂(ϕ −A(ϕ)) ∈ L and f ◦ϕ ∈ L
we have

f (A(ϕ)) � A( f ◦ϕ)−A
(
F̂ (ϕ −A(ϕ))

)
.

Proof. Take a function ϕ : T → R such that ϕ , F̂ (ϕ −A(ϕ)) , f ◦ϕ ∈ L . Using
Theorem 1, we conclude that f satisfies the following inequality

f (x) � f (A(ϕ))+ f ′ (A(ϕ))(x− (A(ϕ)))+ F̂(x− (A(ϕ)) , x ∈ I,

and consequently

f (ϕ(t)) � f (A(ϕ))+ f ′ (A(ϕ)) (ϕ(t)− (A(ϕ)))+ F̂(ϕ(t)− (A(ϕ)) , t ∈ T.
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Taking on both sides of the last inequality the linear positive normalized functional A ,
and using its properties, we get

A( f ◦ϕ) � A
(
f (A(ϕ))+ f ′ (A(ϕ))(ϕ(t)− (A(ϕ)))+ F̂(ϕ(t)− (A(ϕ))

)
= f (A(ϕ))+A

(
F̂ (ϕ −A(ϕ))

)
,

which is equivalent to the inequality from the thesis. This ends the proof. �
The counterparts of the corollaries from the previous sections are the following.

COROLLARY 10. Let T be a nonempty set and L be a linear class of functions
ϕ : T → R , A : L → R be a linear positive normalized functional, and F : R → R be
a fixed nonnegative function. If a function f : I → R defined on a real open interval I
is F -convex, then for every ϕ ∈ L such that F̂(ϕ −A(ϕ)) ∈ L and f ◦ϕ ∈ L we
have

f (A(ϕ)) � A( f ◦ϕ)−A
(
F̂ (ϕ −A(ϕ))

)
.

COROLLARY 11. Let T be a nonempty set and L be a linear class of functions
ϕ : T → R , A : L → R be a linear positive normalized functional and F : R → R

be a fixed even function. If a function f : I → R defined on a real open interval I is
F -convex and differentiable, then for every ϕ ∈ L such that F(ϕ −A(ϕ)) ∈ L and
f ◦ϕ ∈ L we have

f (A(ϕ)) � A( f ◦ϕ)−A(F (ϕ −A(ϕ))) .

COROLLARY 12. Let T be a nonempty set and L be a linear class of functions
ϕ : T → R , A : L → R be a linear positive normalized functional and F : R → R be a
fixed nonnegative even function. If a function f : I → R defined on a real open interval
I is F -convex, then for every ϕ ∈ L such that F(ϕ −A(ϕ)) ∈ L and f ◦ϕ ∈ L we
have

f (A(ϕ)) � A( f ◦ϕ)−A(F (ϕ −A(ϕ))) .

Similarly to the previous sections, but using the last corollary, we can write opera-
tor versions of a Jensen-type inequality for strongly convex functions and superquadratic
functions. We present them for the sake of completeness in the next two remarks.

REMARK 7. Taking function F(x) = cx2 we get the inequality

f (A(ϕ)) � A( f ◦ϕ)− cA
(
(ϕ −A(ϕ))2

)
.

proved for strongly convex functions in [4].

REMARK 8. Taking a nonnegative function f and F(x) = f (|x|) , we get the in-
equality

f (A(ϕ)) � A( f ◦ϕ)−A( f (|ϕ −A(ϕ)|)) ,

as a counterpart of the inequality presented in Remark 5.
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The last remark shows that the results obtained in Section 3 are a special case of
the results presented in this section.

REMARK 9. Let (Ω,Σ,μ) be a probability measure space. Taking T = Ω , a fam-
ily L as the class of μ -integrable function ϕ : T →R and a linear positive normalized
functional A(ϕ) =

∫
T ϕ(t)dμ , results from Section 4 become results from Section 3,

respectively.
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