
Mathematical
Inequalities

& Applications

Volume 22, Number 4 (2019), 1385–1395 doi:10.7153/mia-2019-22-96

CONTINUOUS FORMS OF GAUSS–PÓLYA TYPE

INEQUALITIES INVOLVING DERIVATIVES

LUDMILA NIKOLOVA AND SANJA VAROŠANEC ∗

(Communicated by L.-E. Persson)

Abstract. The main aim of this paper is to give a continuous form of the Gauss-Pólya type
inequalities i.e. to give inequalities involving infinitely many functions. We consider inequalities
which involve derivatives and which structure is related to the Hölder inequality. Also, some
properties of the corresponding functionals are given.

1. Introduction

Few decades ago an intensive research of relationships among moments of or-
ders 2a , 2b and a + b has been done. The most general result is due to Pečarić and
Varošanec and it is given in [7]. This result covers results of Pólya and Szegö from
[8], Alzer’s result from [2], Volkov’s result from [13] etc. Precisely they proved the
following theorem.

THEOREM 1. Let p1, . . . , pn be positive real numbers such that
n

∑
i=1

1
pi

= 1 . Let

f , x1, . . . ,xn : [a,b]→R be non-negative non-decreasing functions such that x1, . . . ,xn ,

∏n
i=1 x1/pi

i have continuous first derivatives. Then

∫ b

a

(
n

∏
i=1

(xi(t))1/pi

)′
f (t)dt �

n

∏
i=1

(∫ b

a
x′i(t) f (t)dt

)1/pi

. (1)

If f is a non-increasing non-negative function, xi satisfy the above assumptions and
xi(a) = 0 for all i = 1, . . . ,n, then (1) holds with the reversed sign of inequality.

Putting in (1) xi(t) = tai pi+1 , where aipi > −1 for all i = 1, . . . ,n , then for non-
negative non-decreasing f we get

∫ b

a
ta1+...+an f (t)dt � ∏n

i=1(aipi +1)1/pi

1+a1 + . . .+an

n

∏
i=1

(∫ b

a
tai pi f (t)dt

)1/pi

. (2)
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If a = 0 and f is a non-negative non-increasing function, then the reversed in-
equality in (2) holds. In this case, b can be a real number or even b = ∞ (see [12]).

For n = 2, p1 = p2 = 2, a = 0, b = 1 inequality (2) collapses to an inequality
given in [8, Vol. II, p.129], while the reversed inequality with b = ∞ is given in [8,
Vol. I, p.83]. If n = 2, p1 = p2 = 2, then (2) becomes an inequality which was proved
by Alzer under the additional assumptions: x1(a) = x2(a) , x1(b) = x2(b) . His method
was not suitable for considering the reversed inequality.

It is worth to mention that Volkov’s result from [13] (see also [9]) for a non-
decreasing function f and functions x �→ xai , i = 1, . . . ,n , coincides with the reversed
inequality in (2) on the interval [0,∞〉 .

And finally, the Gauss inequality between the second and the fourth absolute mo-
ments, (see [3]),

5m4 � 9m2
2, where mr =

∫ ∞

0
xr f (x)dx, m1 = 1,

where f is a non-increasing non-negative function, can be recognized as a particular
case of the reversed inequality (2). Nowadays, inequality (2) and its reverse are known
as Gauss-Pólya type inequalities.

A crucial role in the proof of the above-mentioned Theorem 1 has the well-known
Hölder inequality in integral and discrete forms as well as its reverse known as the
Popoviciu inequality. Very recently a continuous form (i.e. a form involving infinitely
many functions) of the Popoviciu inequality has been obtained in [6]. Here we give
results from that paper which will be used in the forthcoming text.

Let (X ,μ) and (Y,ν) denote two σ -finite measure spaces. The following in-
equalities are known.

THEOREM 2. (Continuous form of the Hölder inequality, [4, 5])
Let f be positive and measurable on (X ×Y,μ ×ν) , let u and v be weight func-

tions on the measure spaces (X ,μ) and (Y,ν), respectively, with
∫
X u(x)dμ(x) = 1.

Then ∫
Y

exp

(∫
X

log f (x,y)u(x)dμ(x)
)

v(y)dν(y)

�exp

(∫
X

log

(∫
Y

f (x,y)v(y)dν(y)
)

u(x)dμ(x)
)

. (3)

THEOREM 3. (Continuous form of the Popoviciu inequality, [6])
Let u and v be weight functions on the measure spaces (X ,μ) and (Y,ν), respec-

tively, and
∫
X u(x)dμ(x) = 1. Let f be a positive measurable function on X ×Y , v0 is

a positive real number and assume that f0 is a positive function on X such that
v0 f0(x) >

∫
Y f (x,y)v(y)dν(y) for all x ∈ X . Then the following inequality holds

exp

(∫
X

log(v0 f0(x))u(x)dμ(x)
)
−
∫
Y

exp

(∫
X

log f (x,y)u(x)dμ(x)
)

v(y)dν(y)

�exp

[∫
X

log

(
v0 f0(x)−

∫
Y

f (x,y)v(y)dν(y)
)

u(x)dμ(x)
]
. (4)



CONTINUOUS FORMS OF GAUSS-PÓLYA TYPE INEQUALITIES 1387

In [6] it was open the general question to create a theory concerning such contin-
uous forms of classical inequalities. In this paper we derive such results concerning
Pólya type inequalities (see Section 2). Moreover, in Section 3 we show that the corre-
sponding functionals also have more useful properties.

2. Main results

Before our first main theorem let us prove an useful variant of the Popoviciu in-
equality.

LEMMA 1. Let w1 > 0 , w2, . . . ,wm � 0 be reals, p,ai,(i = 1,2, . . . ,m) be positive

functions on X such that
∫

X

dμ(x)
p(x)

= 1 and ap
i are measurable on X . Then

w1 exp

(∫
X

loga1(x)dμ(x)
)
−

m

∑
i=2

wi exp

(∫
X

logai(x)dμ(x)
)

� exp

{∫
X

log

[
w1(a1(x))p(x) −

m

∑
i=2

wi(ai(x))p(x)

]
dμ(x)
p(x)

}
, (5)

provided that all integrals exist.

Proof. Without loss of generality we can assume that all wi are positive. Put in
Theorem 3:

f0(x) = w1(a1(x))p(x), v0 = 1, u(x) =
1

p(x)
, v(y) = 1, dν(y) = dy,

Y = [1,m], Yi = [i−1, i], i = 2, . . . ,m and f (x,y) = wi(ai(x))p(x) for y ∈ Yi.

Then

exp

{∫
X

log

[
w1(a1(x))p(x) −

m

∑
i=2

wi(ai(x))p(x)

]
dμ(x)
p(x)

}

= exp

[∫
X

log

(
f0(x)−

∫
Y

f (x,y)v(y)dν(y)
)

u(x)dμ(x)
]

� exp

(∫
X

log f0(x)u(x)dμ(x)
)

−
∫
Y

exp

(∫
X

log f (x,y)u(x)dμ(x)
)

v(y)dν(y)

= w1 exp

(∫
X

loga1(x)dμ(x)
)
−

m

∑
i=2

wi exp

(∫
X

logai(x)dμ(x)
)

. �

By applying the same method on the continuous Hölder inequality (3) we obtain
the following variant of the Hölder inequality.
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LEMMA 2. Let w1, . . . ,wm � 0 be reals, p,ai,(i = 1,2, . . . ,m) be positive func-

tions on X such that
∫

X

dμ(x)
p(x)

= 1 and ap
i are measurable on X . Then

m

∑
i=1

wi exp

(∫
X

logai(x)dμ(x)
)

� exp

{∫
X

log

[
m

∑
i=1

wi(ai(x))p(x)

]
dμ(x)
p(x)

}
, (6)

provided that all integrals exist.

Now, let us state and prove our first main theorem, i.e. a continuous form of Gauss-
Pólya inequality involving derivatives.

THEOREM 4. (i) Suppose that f :[a,b]→R is non-negative and non-decreasing,
g(x, t) is a positive measurable function on X × [a,b] such that the functions
t �→ g(x, t) (for x ∈ X ) are non-decreasing with continuous first derivative.

If p(x) > 0,
∫

X

dμ(x)
p(x)

= 1 , then

∫ b

a

[
exp

(∫
X
logg(x,t)

dμ(x)
p(x)

)]′
f (t)dt � exp

[∫
X
log

(∫ b

a
g′t(x,t) f (t)dt

)
dμ(x)
p(x)

]
,

(7)
provided that all integrals exist and where g′t(x,t) = d

dt g(x, t) .

(ii) Suppose that f : [a,b]→ R is non-negative and non-increasing, g(x, t) is a posi-
tive measurable function on X × [a,b] with respect to measure μ × (− f )dx such
that the functions t �→ g(x,t) (for x ∈ X ) are non-decreasing with continuous
first derivative and g(x,a) = 0 for all x ∈ X .

If p(x) > 0,

∫
X

dμ(x)
p(x)

= 1 , then the reverse inequality in (7) holds.

Proof.

(i) Without loss of generality we assume that f (b) > 0. Integrating by parts and
then using the continuous Hölder inequality we get:

∫ b

a

[
exp

(∫
X

logg(x,t)
dμ(x)
p(x)

)]′
f (t)dt

= f (b)exp

(∫
X

logg(x,b)
dμ(x)
p(x)

)
− f (a)exp

(∫
X

logg(x,a)
dμ(x)
p(x)

)

−
∫ b

a
exp

(∫
X

logg(x,t)
dμ(x)
p(x)

)
d f (t)

� f (b)exp

(∫
X

logg(x,b)
dμ(x)
p(x)

)
− f (a)exp

(∫
X

logg(x,a)
dμ(x)
p(x)

)

−exp

[∫
X

log

(∫ b

a
g(x,t)d f (t)

)
dμ(x)
p(x)

]
.
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Putting in Lemma 1

m = 3, w1 = f (b), w2 = f (a), w3 = 1,

a1(x) = (g(x,b))
1

p(x) , a2(x) = (g(x,a))
1

p(x) and a3(x) =
(∫ b

a
g(x, t)d f (t)

) 1
p(x)

we get

f (b)exp

(∫
X

logg(x,b)
dμ(x)
p(x)

)
− f (a)exp

(∫
X

logg(x,a)
dμ(x)
p(x)

)

−exp

[∫
X

log

(∫ b

a
g(x,t)d f (t)

)
dμ(x)
p(x)

]

� exp

[∫
X

log

(
f (b)g(x,b)− f (a)g(x,a)−

∫ b

a
g(x,t)d f (t)

)
dμ(x)
p(x)

]

= exp

[∫
X

log

(∫ b

a
f (t)g′t (x,t)dt

)
dμ(x)
p(x)

]
.

Here we integrated by parts once more and the proof of (i) has been established.

(ii) In the proof of (ii) we use the same method as in the previous proof only instead
of Lemma 1 we use Lemma 2 with

m = 2, w1 = f (b), w2 = 1,

a1(x) = (g(x,b))
1

p(x) , a2(x) =
(∫ b

a
g(x,t)d(− f (t))

) 1
p(x)

. �

REMARK 1. If X = [0,n], p(x) = pi , for x ∈ [i− 1, i] and g(x, t) = xi(t) , for
x ∈ [i−1, i] , i = 1, . . . ,n , then Theorem 4 coincides with Theorem 1.

If in Theorem 4 we put g(x,t) = (g(t))a(x)p(x)+1 , then we get the following result.
It is a continuous form of the Gauss-Polya inequality proved in [12].

COROLLARY 1. Let g : [a,b] → R be a non-negative increasing differentiable
function and let f : [a,b]→ R be a non-negative function such that the quotient f/g′ is
non-decreasing. Let p be a positive function such that

∫
X

dx
p(x) = 1 . If a(x) is such that

a(x) > −1/p(x) , then

∫ b

a
(g(t))

∫
X a(x)dx f (t)dt

�
exp
(∫

X log[a(x)p(x)+1] dx
p(x)

)
1+

∫
X a(x)dx

exp

{∫
X

[
log

(∫ b

a
(g(t))a(x)p(x) f (t)dt

)]
dx

p(x)

}
,

provided that all integrals exist.
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The following theorem is also one generalization of the Gauss-Pólya inequalities.
Integral form of that result is given in [1] and here we give a continuous form of it.

THEOREM 5. Let w,wx,(x∈X) be non-negative and integrable functions on [a,b]
such that

∫ b
a wx(s)ds �= 0 ,

∫ b
a w(s)ds �= 0 and let W and Wx be defined by

W (t) =
∫ t
a w(s)ds∫ b
a w(s)ds

and Wx(t) =
∫ t
a wx(s)ds∫ b
a wx(s)ds

, respectively.

Let p(x) > 0 and
∫
X

dx
p(x) = 1 .

a) If f is a non-negative non-increasing function on [a,b] and if

exp
∫

X
logWx(t)

dx
p(x)

� W (t) (8)

for all t ∈ [a,b], then

∫ b
a w(t) f (t)dt∫ b

a w(t)dt
� exp

[∫
X

log

(∫ b
a wx(t) f (t)dt∫ b

a wx(t)dt

)
dx
p(x)

]
. (9)

b) If f is a non-negative non-decreasing function on [a,b] and the reverse inequal-
ity in (8) is valid, then the inequality (9) is reversed.

Proof.

a) Let us denote the right-hand side in (9) by A . Using integration by parts we get

A = exp

[∫
X

log

(∫ b

a

d
dt

Wx(t) f (t)dt

)
dx

p(x)

]

= exp

[∫
X

log

(
f (b)+

∫ b

a
Wx(t)d(− f (t))dt

)
dx
p(x)

]
.

Putting in Lemma 2 the following:

m = 2, w1 = w2 = 1, a1(x)= ( f (b))
1

p(x) and a2(x)=
(∫ b

a
Wx(t)d(− f (t))

) 1
p(x)

we get that

A � f (b)+ exp

[∫
X

log

(∫ b

a
Wx(t)d(− f (t))

)
dx

p(x)

]
.

Once again we use the Hölder inequality and get that

A � f (b)+
∫ b

a
exp

[∫
X

log(Wx(t))
dx
p(x)

]
d(− f (t)) � f (b)+

∫ b

a
W (t)d(− f (t))

=
∫ b

a
W ′(t) f (t)dt =

∫ b
a w(t) f (t)dt∫ b

a w(t)dt
.
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b) The proof is similar, only instead of the discrete Hölder inequality from Lemma
2 we use the discrete Popoviciu inequality from Lemma 1. �

REMARK 2. Putting wx(t) = g′t(x,t),w(t) =
[
exp
(∫

X logg(x,t) dx
p(x)

)]′
, then we

get

Wx(t) =
g(x,t)
g(x,b)

and W (t) =
exp
(∫

X logg(x,t) dx
p(x)

)
exp
(∫

X logg(x,b) dx
p(x)

)
and, hence,

exp
∫

X
logWx(t)

dx
p(x)

= W (t).

So we can apply Theorem 5 in both cases a) and b) and we get the result of Theo-
rem 4.

3. Some further results for the corresponding functionals

There are several functionals which are connected with inequalities from the pre-
vious chapter. These functionals have properties which lead to refinements and im-
provements of the original inequalities.

Firstly, let us define the functional G :

G( f )=exp

[∫
X

log

(∫ b

a
g′t(x,t) f (t)dt

)
dμ(x)
p(x)

]
−
∫ b

a

[
exp

(∫
X

logg(x,t)
dμ(x)
p(x)

)]′
f (t)dt.

Under the assumptions of Theorem 4 (i) G is non-positive, while under the assumptions
given in Theorem 4 (ii) G is non-negative. Also, note that G( f ) is positive homoge-
neous. But, G has more useful properties which are described in the following theorem.

THEOREM 6. Let the functions p and g satisfy the assumptions from Theorem 4.
Let f1 , f2 be non-negative functions monotone in the same sense and such that G( f1)
and G( f2) are well-defined. Then

G( f1 + f2) � G( f1)+G( f2).

Moreover, if g(x,a) = 0 for all x ∈ X and if f1 and f2 are non-negative non-
increasing functions such that f2 � f1 , f2 − f1 is non-increasing, G( f1) , G( f2) and
G( f2 − f1) are well-defined, then

G( f2) � G( f1).
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Proof.

(a) Let us estimate the difference G( f1 + f2)−G( f1)−G( f2) .

G( f1 + f2)−G( f1)−G( f2)

=exp

[∫
X

log

(∫ b

a
g′t(x,t)[ f1(t)+ f2(t)]dt

)
dμ(x)
p(x)

]

−
∫ b

a

[
exp

(∫
X

logg(x,t)
dμ(x)
p(x)

)]′
[ f1(t)+ f2(t)]dt

− exp

[∫
X

log

(∫ b

a
g′t(x,t) f1(t)dt

)
dμ(x)
p(x)

]

− exp

[∫
X

log

(∫ b

a
g′t(x,t) f2(t)dt

)
dμ(x)
p(x)

]

+
∫ b

a

[
exp

(∫
X

logg(x,t)
dμ(x)
p(x)

)]′
f1(t)dt

+
∫ b

a

[
exp

(∫
X

logg(x,t)
dμ(x)
p(x)

)]′
f2(t)dt

=exp

[∫
X

log

(∫ b

a
g′t(x,t)[ f1(t)+ f2(t)]dt

)
dμ(x)
p(x)

]

− exp

[∫
X

log

(∫ b

a
g′t(x,t) f1(t)dt

)
dμ(x)
p(x)

]

− exp

[∫
X

log

(∫ b

a
g′t(x,t) f2(t)dt

)
dμ(x)
p(x)

]
� 0,

where we use Lemma 2 with m = 2, wi = 1 and ai(x) = [
∫ b
a g′t(x,t) fi(t)dt]

1
p(x)

for i = 1,2.

(b) Since G( f2 − f1) � 0 by Theorem 4 we have

G( f2) = G( f1 +( f2− f1)) � G( f1)+G( f2− f1) � G( f1). �

Having in mind Corollary 1 we define the functional GP as

GP( f ) = exp

(∫
X
log[a(x)p(x)+1]

dx
p(x)

)
exp

{∫
X

[
log

(∫ b

a
g(t)a(x)p(x) f (t)dt

)]
dx

p(x)

}

−
(

1+
∫
X

a(x)dx

)∫ b

a
g(t)

∫
X a(x)dx f (t)dt.

Using the same method of proving we have results about positivity, superadditivity and
monotonicity which generalizes Theorem 2.1 from [10].

Moreover, we can define the new functional as follows

GW ( f ) = exp

[∫
X

log

(∫ b
a wx(t) f (t)dt∫ b

a wx(t)dt

)
dx
p(x)

]
−
∫ b
a w(t) f (t)dt∫ b

a w(t)dt



CONTINUOUS FORMS OF GAUSS-PÓLYA TYPE INEQUALITIES 1393

and under the conditions like in Theorem 5 we have that the functional GW is superad-
ditive and monotone.

Let w be a positive function on X and let denote W =
∫
X w(x)dμ(x) . The follow-

ing functionals are regarded as the functions of weight w .

K(w) =
{∫ b

a

[
exp

(∫
X

logg(x,t)
w(x)
W

dμ(x)
)]′

f (t)dt

}W

,

H(w) =
exp
[∫

X log
(∫ b

a g′t(x,t) f (t)dt
)

w(x)dμ(x)
]

K(w)
.

THEOREM 7. Let the functions f and g satisfy the assumptions from Theorem 4
(ii). Let v and w be positive functions such that K and H are well-defined for them.
Then

K(v+w) � K(v) ·K(w), H(v+w) � H(v) ·H(w).

If, additionally, v � w, such that H(v−w) is well-defined, then

H(v) � H(w).

Proof. For the weights v and w denote V =
∫
X v(x)dμ(x) and W =

∫
X w(x)dμ(x) .

Transforming K(v+w) we get

K(v+w)

=
{∫ b

a

[
exp

(∫
X

logg(x,t)
(

v(x)
V

· V
V +W

+
w(x)
W

· W
V +W

)
dμ(x)

)]′
f (t)dt

}V+W

=
{∫ b

a

[
exp

(∫
X

logg(x,t) · v(x)
V

· V
V +W

dμ(x)
)

·exp

(∫
X

logg(x,t) · w(x)
W

· W
V +W

dμ(x)
)]′

f (t)dt

}V+W

=

{∫ b

a

[(
exp

(∫
X

logg(x,t) · v(x)
V

dμ(x)
)) V

V+W

·
(

exp

(∫
X

logg(x,t) · w(x)
W

dμ(x)
)) W

V+W
]′

f (t)dt

⎫⎬
⎭

V+W

�
{∫ b

a

[
exp

(∫
X

logg(x,t) · v(x)
V

dμ(x)
)]′

f (t)dt

}V
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·
{∫ b

a

[
exp

(∫
X

logg(x,t) · w(x)
W

dμ(x)
)]′

f (t)dt

}W

= K(v) ·K(w),

where the above inequality follows from Theorem 1 for

n = 2, p1 =
V +W

V
, p2 =

V +W
W

,

x1(t)= exp

(∫
X

logg(x,t) · v(x)
V

dμ(x)
)

and x2(t)= exp

(∫
X

logg(x,t) · w(x)
W

dμ(x)
)

.

The above inequality is used in the proof of the property for H . Namely, we get

H(v+w) =
exp
[∫

X log
(∫ b

a g′t(x,t) f (t)dt
)

(v(x)+w(x))dμ(x)
]

K(v+w)

� 1
K(v)K(w)

· exp

[∫
X

log

(∫ b

a
g′t(x,t) f (t)dt

)
v(x)dμ(x)

]

·exp

[∫
X

log

(∫ b

a
g′t(x,t) f (t)dt

)
w(x)dμ(x)

]
= H(v) ·H(w).

The last inequality follows since H(v−w) � 1 by Theorem 4 (ii), so that

H(v) = H(v−w+w) � H(v−w) ·H(w) � H(w). �

If m, M are positive real numbers such that mv � w � Mv and if the assumptions
of the previous theorem hold, then

Hm(v) � H(w) � HM(v).

For the particular choice of v and w we have the following interesting refinement and
improvement of the continuous form of the Gauss-Pólya inequality.

COROLLARY 2. Let f and g satisfy the assumptions from Theorem 4 (ii) and
μ(X) =

∫
X dμ(x) �= 0 and finite. Let w be a positive function such that K and H are

well-defined for w and for the constant function. Then⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
[∫

X log
(∫ b

a g′t(x,t) f (t)dt
)

dμ(x)
]

{∫ b
a

[
exp
(∫

X logg(x,t) dμ(x)
μ(X)

)]′
f (t)dt

}μ(X)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

wmin

�
exp
[∫

X log
(∫ b

a g′t(x,t) f (t)dt
)

w(x)dμ(x)
]

{∫ b
a

[
exp
(∫

X logg(x,t)w(x)
W dμ(x)

)]′
f (t)dt

}W
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�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
[∫

X log
(∫ b

a g′t(x,t) f (t)dt
)

dμ(x)
]

{∫ b
a

[
exp
(∫

X logg(x,t) dμ(x)
μ(X)

)]′
f (t)dt

}μ(X)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

wmax

,

where wmin = min{w(x) : x ∈ X} and wmax = max{w(x) : x ∈ X} .

Proof. It is a consequence of Theorem 7 for the weights wmin , w and wmax . �

REMARK 3. The results of Theorem 7 and Corollary 2 are the continuous forms
of some results given in [11].
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