athematical
nequalities
& Papplications

Volume 23, Number 1 (2020), 17-33 doi:10.7153/mia-2020-23-02

SOBOLEV’S THEOREM FOR DOUBLE PHASE FUNCTIONALS

YOSHIHIRO MIZUTA, TAKAO OHNO* AND TETSU SHIMOMURA

(Communicated by I. Peri¢)

Abstract. Our aim in this paper is to establish generalizations of Sobolev’s theorem for double
phase functionals ®(x,7) = 1 + {b(x)t(log(e+1))*}7, where 1 < p< g <o, T>0 and b is
a nonnegative bounded function satisfying |b(x) — b(y)| < Clx —y|® (log(e + |x — y|~1))~7 for
0<06<1.

1. Introduction

In harmonic analysis, the maximal operator is a classical tool when studying
Sobolev functions and partial differential equations. This also plays a central role
in the study of differentiation, singular integrals, smoothness of functions and so on
([5, 21, 25], etc.). It is well known that the maximal operator is bounded on the
Lebesgue space L? (RY) if p > 1 ([25]).

One of important applications of the boundedness of the maximal operator is
Sobolev’s inequality; in the classical case,

oo fll - < I

for f€LP(RY), 0 <« <N and 1 < p < N/, where I, is the Riesz kernel of order
o and 1/p*=1/p—o/N (see, e.g. [2, Theorem 3.1.4]).

There has been a considerable amount of studies on the variable exponent Lebesgue
spaces and Sobolev spaces; see [11, 13] for a survey. We refer to [1, 24] for the study
of elasticity and fluid mechanics, [7, 19] for the study of image processing, and [9, 10]
for double phase variational problems. Capone, Cruz-Uribe and Fiorenza [6] studied a
Sobolev type inequality for Riesz potentials in the variable exponent Lebesgue space
LP(')(RN ). For Sobolev’s theorem for Riesz potentials, see also [12], [14], [20] etc..

Recently, regarding regularity theory of differential equations, Baroni, Colombo
and Mingione [3, 4, 9, 10] studied a double phase functional ®(x,7) = t” +a(x)t?, x €
RY , 1 >0 where 1 < p <gq, a(-) is non-negative, bounded and Holder continuous of
order 6 € (0,1]. In [9], the minimization problem of the double phase functional was
discussed under the assumption g < (1+ 6/N)p. Regularity for general functionals
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was studied under the condition ¢ < (1 + 6 /N)p in [4]. In [3], the border-line (p = q)
double phase functional

D(x,1) = 1" +a(x)t”(log(e +1)

was considered. In [18], Harjulehto, Histo and Karppinen studied local higher inte-
grability of the gradient of a quasiminimizer of the double phase functional ®(x,7) =
t? + a(x)t?. See Colasuonno and Squassina [8] for the eigenvalue problem for the dou-
ble phase functional ®(x,z) =¢” + a(x)t?. See also [16].
In the present paper, for 1 < p < g <o and 7 > 0, let us consider the double
phase functional
D(x,t) =1t" + {b(x)t(log(e +1))"},

where b is a nonnegative bounded function satisfying
|6(x) = b(y)| < Cle—y|°(log(e + |x—y| "))~

for 0 < 6 < 1. Histo [15, Theorem 4.7] showed the boundedness of the maximal
operator on L®(G) when a(x) = b(x)? is 6-Holder continuous and T = 0. See also
[17, Proposition 7.2.3].

Our first aim in this paper is to give the boundedness of the maximal operator for
the double phase functional ®(x,7) (Theorem 1), as an extension of [15, Theorem 4.7].
To show this, we apply [23, Corollary 3.2]. Our strategy is to check all the conditions
required in [23, Corollary 3.2] as in the proof of [23, Corollary 5.3]. Next, we give a
Sobolev type inequality for @(x,#) (Theorem 2) by applying [23, Theorem 4.9] as in
the proof of [23, Corollary 5.9].

For reader’s convenience we give direct proofs of Theorems | and 2 in the Ap-
pendix, by applying the boundedness of the maximal operator on L”(R") and L4 (R").

Finally, we discuss the continuity of the fractional maximal functions and Riesz
potentials for the double phase functional ®(x,7) (see Theorems 3-5). The result is new
even for the case 7=0.

Throughout this paper, let C denote various constants independent of the variables
in question and C(a,b,---) be a constant that depends on a,b,---. The symbol g ~ h
means that C~1h < g < Ch for some constant C > 0.

2. Preliminaries
In this paper, we consider the following double phase functional
D(x,1) =17 + {b(x)t(log(e +1))"}*,
for 1 < p<g<-eoand 7> 0, where b is a nonnegative bounded function satisfying
[6(x) = b(y)| < Cle—y|°(log(e + |x—y| 1))~ (D

for0< O <1.
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The Musielak-Orlicz space LP(R") is defined by

L®(RY) = {fGme(RN) /RN(D<y’|f§L—y)|> dy < oo for some A >O}.

It is a Banach space with respect to the norm

Hf”LCD(RN) =1nf{l >O/RN(I)<y’|f§,—y>|> dy< l}

For later use, we prepare the following result.

LEMMA 1. Let 1 < g <o and T > 0. Then there exists a constant C > 0 such
that

1 BTN
= [ 170)ldy <Cllogle+r1)"
E] JE
1 _ Sy —
< g7 0] Qog(e-+ [FOID)* dy -~ 4(0(e+ 7))
for all r > 0 and measurable sets E C RV of positive measure.

Proof. Set R=r"N/4(log(e+r~"))~7. We have

log(e + /()"
\E\/‘f |dy\\E\/|f ( log(e +R) ) dy+R
<C(log(e+r~ ))_TE/E\f(y)l(log(eJrlf(y)\))Tdy
+r Ma(log(e+r )77,
as required. [J

COROLLARY 1. Let 1 < g <o and T > 0. Then there exists a constant C > 0
such that

ﬁ /Eb(y)\f(y>|dy < C{’N/q(log(e +r71) 7+ (log(e+ 7)) "

1/q
< (13 GO0 togte 1700 as) |

for all r > 0 and measurable sets E C RV of positive measure.

In fact, Lemma 1, the boundedness of b and Jensen’s inequality give

ﬁ [e0lrolay
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<c{rogte-t r ) F 4 ogte-tr ) F i [ B0)I0) ogte-t L0 v}

N

C{r_N/q(log(e + r_l))_f + (IOg(e + r—l))—‘r
1/q
< (3 [ GO0 Gogte 17010 )}

3. Maximal operator

For a locally integrable function f on R", the Hardy-Littlewood maximal func-
tion Mf is defined by

M d
S = r>o|er|/xr O)ldy:

where B(x,r) is the ball in RV with center x and of radius » > 0 and |B(x,r)| denotes
its Lebesgue measure. The mapping f +— M f is called the maximal operator.
Recall that

D(x,t) =17 +{b(x)t(log(e +1))*}",

where 1 < p < g <, T2>0 and b is a nonnegative bounded function satisfying (1)
with 0< 0 < 1.

In [23], we consider the following conditions for ®(x,7). It is easy to check the
following conditions on @ required in [23]:

(®1) ®(-,¢) is measurable on RV for each t > 0 and ®(x, -) is continuous on [0, )
for each x € RV ;

(d2) there exists a constant A} > 1 such that

A< D(x,1) <Ay forallx e RY;
(®3;0;p) ¢+t PD(x,t) is increasing on (0, 1] for each x € RV;
(®3;00;p) t >t~ PD(x,¢) is increasing on [1,e0) for each x € RV.

LEMMA 2. ®(x,t) satisfies

(®@5;v) forevery y> 0, there exists a constant By, > 1 such that

q)(xat) < B%Vq)(yat)
whenever x,y €RY, |x—y| <yt~ and t > 1

for v = (q—p)/(q0): and
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(D6;w)  there exist a function g on R" and a constant B.. > 1 such that 0 < g (x) <1
forall x e RV, g € L°(RY) and

BZ'd(x,1) < ®(¥,1) < B.D(x,1)
whenever x,x' € RV, |x/| > |x| and g(x) <t <1,
forevery > 0.
Proof. Letv=(q—p)/(¢gB).If [x—y| <y~ and r > 1, then
D(x,1) =1’ +{b(x)t(log(e+1))"}*
<17+ {bly)t(logle+1))* +Cla—y{ (log(e+ br—y|~)~“r(log(e+1))"}’
< C{Q(y,t)+t(1‘ev)q} SC{O(y,1) +17} < CD(y,1).

Hence ®(x,7) satisfies (®5;V).
Let g € L?(RY) for @ > 0. If g(x) <t < 1, then

(1) < (14C]2 g ) < (1+Cb] - o JOLE1)
for every x, ¥ € RV and |¥/| > |x|. Therefore ®(x,t) satisfies (®6;®). O

As an extension of [ 15, Theorem 4.7], we obtain the following result by Lemma 2
and [23, Corollary 3.2] (see also [17, Proposition 7.2.3] and [22]).

THEOREM 1. Suppose | < p<g<oo,t>0and 1/p—1/q<6/N. Then there
is a constant C > 0 such that

/ D(x, Mf(x))dx < C
RN
forall f € LP(RY) with || f]| o) < 1.

REMARK 1. When 7= 0, ®(x,¢) =" +a(x)t?, 1 < p < q, G C R" is bounded,
a € C%(G) is non-negative and ¢ < (1+ 0/N)p, Histo showed Theorem 1 in [15,
Theorem 4.7].

4. Sobolev’s inequality

For 0 < oo < N, we define the Riesz potential of order o of a function f €
loc(RN) by
af(0)= [ b=y|"VF()dy

In this section, let g(x) = (1 + |x|)~(¥*1). Then

g" (x) = min{g(x), Mg(x)} < C(1+ |x|) ™"
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Further set
D (1) =1

as in [23]. Then it satisfies the following conditions:
(P.0) Doo(t) is continuous, P, (r) > 0 for # > 0 and D (¢)/¢ is increasing on [0,00);
(®..1) there exists a constant B.. > 1 such that
BZ'®(x,1) < ®uo(t) < B®(x,1)  whenever g(x) <7< 1

for g(x) in condition (®6;®);

(D2) there exists a constant c., > 1 such that
D (g"(x)) < a1+ x)

forall x e RV;

(®.N) 7 r7®_'(r~N) is increasing on (1,c0) for some 0 < y < N.
LEMMA 3. (1) If g<N/c, then

(ONw) s r®Ted~ 1 (x,r~N) is uniformly almost decreasing on (0,) for some
€ > 0, that is, there exists a constant C > 0 such that

rocheq)fl(x’ rfN) < CSaJqu)fl(x,st)
forall 0 <s<r and x € RV.
(2) If p<N/c, then

(®Na) 1 r* €D (r~N) is increasing on (1,0) for some € > 0.

Proof.
(1) Since

! (x,5) ~ min{sl/”, (b(x)~7s5)"/ (1og(e+b(x)*qs))*’}

for x € RV, we have

rocheq)fl (x’ rfN)
Nmin{ra—N/pﬁ-e,b(x)—(a+e)q/N (b(x)qu) (a—N/q+£)/N(10g(e n b(x)_ql"_N)) —1} .
Choose € > 0 such that N/g— o > €. Then we obtain that 7+ r*+ed=1 (x, r=)
is uniformly almost decreasing.

(2) Since @' (rN) = rN/P for r > 1, we find r*®Z!(rN) = r*N/P_ Thus,
(P.No) holdsif p<N/a. O
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Now, consider the double phase functional
P(x,r) =17 + {b(x)t (log (e +1))° }
and X
* ™™g
¥ (x,r) =17+ {b(x)t (1og <e + b(x)“q/Nt>> } :

where 1/p*=1/p—o/N>0and 1/¢g* =1/g— o¢/N > 0. Then there is C > 1 such
that
C ' (x,1) < ¥y (x,1) < C¥(x,1) (2)

for all x € RY and ¢ > 0. In fact, the right inequality is clear since b is bounded. To
show the left inequality for # > 1, take € such that 0 < & < p*/q". If b(x)t < ¥ and
t > 1, then

{b(x)t (log(e+1)) }q <cr”

and if b(x)r > 1€ > 1, then b(x)*4/Nt > ¢1=(@a/N)(1-€) ‘g0 that
. ™
W () =1+ {b(x)t <log (e+z1*<°‘q/N><1*€>)) } > C¥(x,1)

since o,g/N < 1, which proves (2).
Further we see that both ¥ and W, satisfy

(¥1) W(-,t) is measurable on RY foreach t >0 and ¥(x, -) is continuous on [0, )
for each x € RY;

(W2) there exists a constant Ql > 1 such that

Qfl <W¥(x,1)< 0, forallxeRY;
(W3) t+ W(x,1)/t is increasing on (0,0) forall x € RV.

LEMMA 4. Both ¥ and V¥, satisty

(W4) there exists a constant Q3 1 such that
¥ (x,zqn(x,t)*a/N) < 030(x,1)
forall x € RN andt > 0.
Proof. Since ®(x,t) > max {t?,{b(x)t(log(e+1))"}9}, we see that
1®(x,1) "N < min{zP/P*,b(x)—aq/Nﬂ/q* (log(e—i-t))_o‘qT/N}.
Hence

‘I’l(x,td)(x,t)*a/N) gc[{tﬁ/ﬁ‘}p + {b(x)‘”q*tq/q*(log(e+t))*°“1’/N
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PR
<C [P+ {b(x)t(log(e+1))"}] = CD(x,1),

as required. [
Consequently we apply [23, Theorem 4.9] to obtain the following result.

THEOREM 2. Suppose 1 <p<g<N/a, t>0and 1/p—1/q<6/N. Then
there is a constant C > 0 such that

[ ltafol) <
RN
forall f € L®(RN) with || f| o gy < 1.
REMARK 2. If 1/p—1/g< 0/N, then take 6; such that

1/p—1/q=6,/N.

Then b is 6;-Holder continuous when it is 6 -Hdlder continuous and bounded, and
thus we may assume from the beginning that 1/p—1/q=6/N.

5. Continuity

For 0 < 0 < N and a function f € L}, (RY) we define the fractional maximal

function by
B X, /
f( ) r>0 ‘ r | B(x,r) |

THEOREM 3. Suppose |l <p<g<e,720,0-N/p<0,0<0+6—-N/p<
1/p' and 1/p—1/q=60/N > 0. Then there is a constant C > 0 such that

|b()Mo f(x) = b(2)Mof(2)| < Cle—2 7T NP (log(e + |k —2[71)) " (3)

forall x,z € RN with 0 < |x—z| < 1/2 and f € L®(RN) with [l o@myy < 1.

Proof. Let f be a measurable function on RV with || f]|;egv) < 1. For x € RY
and r > 0 set

1) =b0) s [ 1l

First we consider the case 0 < r < 2|x —z| < 1. Then we have

6 = G oo GO =B+ s [ b))y
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1 s |y+ |/

<Crot9(og(e+r71))

=L+

By Holder’s inequality, we have

1
h< e tiogte ) (e [ o) !
< CrotO NP (log(e+r )"
By Corollary | with E = B(x,r), we have

L <Cr®Ma(log(e+r"))7".
Therefore
I(x,r) <C {r"+9_N/p(log(e +r )T+ N (log(e + r_l))_f}
<Crot O NP (log(e+r7")) 7T < Cle =270 NP (log(e + [x— 2 1) 7,

since 64+60—N/p=>0
Next we consider the case 0 < 2|x—z| < r < 1. We have

1) = 1) bl i [ Oy —be) i [ 10y
<[b(x) ~ b(z) |er|/“ ()| dy
|B |/xr AB(z,r) y)ldy

<Clx—z|%(log(e+|x—z| 1)~ F |BZ |/ f)ldy
I ZV

|/xrABzr ()Hf( )|dy

T s OO

{|x o og(e + b2l ) [ o)lay

rf(log(e+ | —2[ )" y)ldy

|B(z,r)| /B .,>AB<z.,r>| 0)
821

)| /(xr
L b dy ;.
* |B(z,7)| /B(x,r)AB(z,r) Olf y}
AB(z

By Holder’s inequality and Corollary | with E = B(x,r) ,r), we establish

1(5,1) = 1(z,r) <C{ br— 2| (log(e + v — 2 ~)) " ro NP
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—|—|B(x,r)AB(z,r)|1/17/r6+9*N(10g(e_|_r71))71
+ [B(x,r)AB(z,r)[r° N "Nd(log(e +r~1)) "
F1B(x,AB )| 7 (logle-+ 7)) 7}

<C{|x—z|9(log(e+|x—z|*1))*fr0*N/17
+ (A =) P o0 N (log(e+ 1)) T
+ N = 2NN a(log(e+ 1)) T
+(VN_l|x—z|)1/q/r6_N(log(e+r‘l))—f}
<C{\x—z|9(10g(e+|x—z|*1))*TrU*N/17
+ |x— 2| MP O ONp Y (1og(e 4 1)) T
+|x—z|r071*N/‘1(10g(e+r*1))*T
=g 4o NV (log e+ 1))}
<Clx 2|70~V P(log(e+ v —2 1)) ",

since 6 —N/p<0and 6 —N/q=0+60—-N/p<1/p'<1/qd < 1.
Therefore

1(x,r) < 1(z,r) +Clx =20 NP (log(e+ [x— 2| 1) 7,

which gives the theorem. [J

THEOREM 4. Suppose | <p<qg<e,7>1/¢,00+0=N/pand1/p—1/q=
0/N > 0. Then there is a constant C > 0 such that

[b(x) e f (x) = b(2)la f (2)] < Cllog(e+[x—2 1) T/
forall x,z € RN with 0 < |x—z| < 1/2 and f € L®(RN) with [/l omyy < 1.

Proof. Let f be ameasurable function on RY with || /| ogv) < 1. For x,z € RY,
write

b(x)lo.f (x) = b(2)lef(2)
= [ == e b))y + [ ey Nb) s ) dy
—/N 2= y[*(b(2) —b(y))f(y)dy—/N 2= y[* b (y)f(v)dy
R R
=J1(x) +12(x) = J1(2) = Na(2)-

For 6 = 2|x—z| < 1, we have by Holder’s inequality

) = [ N CO R R
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SC [ el (oglent ls—y7) IOl

o N\ P 1/p
C(/B(xé)(|x_y|a—1v+9(log(e+|x—y|—1)) )de> </B(x.8)|f(y)|pdy)

6 / 1/p )
<C (/ N (ta7N+e (log(e—i—fl))_T)p ?) < C(log(e—i— 571))—7""1/17 7
0

N

since «+6 —N/p=0 and T > 1/p’. Further, we obtain by Holder’s inequality for
0<f<a

I (x) = A( o=y Nb(y) £(y) dy

a- log(e+ D) \°
/ - N(m) b(y)|f(v)|dy

/ =y Vb(y)|x — y[Pdy
{< |x_y|a7N (log(e+ |x—y|71))fr>¢1’ dy)l/q’
</ )| (log(e+ |f(y )|>)T)qdy)l/q_|_5aﬁ}

C{( N (log(e+1~ 1))#)‘1’ ?) l/q’+6a—l3}

<C(log(e+871) M

since @ —N/g=0 and 7> 1/4’. Similarly,
Ji(z) = /B( 5 lz—y|*N(b(z) — b)) f(y)dy < C (log(e+ 5’1))_”1/”

and

—1+1/q

1@ = [ sl b))y < (logle+ 67
Noting that
e =y %N = 2=y * N < Che— e —y|* !

when |x — y| > 2|x — z|, we have by Holder’s inequality

1= fen ) (he=y1%N =z =y*N) (b(x) = b)) f(y) dy

ng—z/ x—y| & V10 (g (et [x—y| 1)) " d
T T ] e
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N—1+6 1y -7\ /¢
<he=dl ([, (w1 ote i) ) ay)
RV\B(x,5)

1/p
Pd
8 </RN\B(x,5) |f(y)| y)
I/Pl

<Clx—¢ (/‘:ZN (t"‘*N*He (log(e—i—fl))_T)p %) <C(logle+871) "

and
_ e Np
52 = [l e £ OW b))y
<Cl—ef? (logle =2l ) T [l N )y
Lo\ P
<Clr—|° (logle +x—2 ) ( / =l dy)
N\B
1/p
rd
(s 1017 )
<Clx—z|? (log(e+ [x—2[™1)) "8 NP < C(logle +87)) *
Therefore

-7

J31+J3 < C(log(e+87"))

Similarly, we have for max{0,a—1} <8 < o

Jan = _ y|o=N _ |, _ |a—N b d
all - (be—yl 2= y[*" ) b) f(y)dy
gc o / _ OC—N—lb d
-2 R B0ed) x—yl WIF )l dy

woner ( Jogle+ D) \°
<cte=al{ [l ol (e D) sy

_ |o—=N—-1 B
+/RN\B(X75)|" ) b(y)lx =yl dy}
/ 1/d
<C=al{ ([ (01 oo 1) )" av)
1/q
. (/ (b(3) () (10g(e + If(y)l))’)‘fdy> + aaﬂl}
RM\B(x,5)

oo / 1/q
<C{x—z| (/5 N (t“_N_l (log(e—l—t_l))fT)q %) + 6“"3}

<C(log(e+671) .
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Now we establish

J(x) = J(z) = J1 (x) + T2 (x) = J1(z) — 2 (2)
=J11(x) +J11(2) + 21 (x) +J21(z) + 31 + T2+ J32

< C (log(e+81)) "

which gives the theorem. [J
In the same way as above, we obtain the following result.

THEOREM 5. Suppose | < p<g<o,720,0<0+6—-N/p<0 and1/p—
1/q=6/N > 0. Then there is a constant C > 0 such that

b af (x) = b(2)af(2)] < Cle—2|* 0N/ P(log(e+ x—2 7))

forall x,z € RN with 0 < [x—z| < 1/2 and f € L*(RY) with || f|| ogy) < 1.

6. Appendix

For reader’s convenience, we shall give direct proofs of Theorems 1 and 2 by the
boundedness of the maximal operator on LP(RY) and L4(R").

THEOREM 6. Suppose 1 <p<g<eo,7>0and1/p—1/q=06/N>0. Then
there is a constant C > 0 such that

/ D(x, Mf(x))dx < C
RN

forall f € L®(RN) with || f| o gy < 1.

Proof. Let f be a measurable function on RY with [|f||,egv) < 1. For x € RY
and r > 0, we have

N S
xr| B(x.r) y)ldy

\er|/“ PO dy + |/“ y)ldy
1
<Crf(logle+r 1)) T d —|— d
(og(e+ ) ey /B " \f(y)l y 5 / [ POy
=L+
ForO<r<§d

I <Cr(logle+ ")) ™M f(x) < C8%(log(e +87")) "M f(x)
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and for 0 < § < r by Holder’s inequality

I <Cro(logle+r71) T<er|/“ |1’dy) ng" NIP(log(e4r71)) 7"
<C89NP(log(e+671)"
since 6 —N/p=—N/q <0. Thus
L < C{Se(log(e+ 8N M (x) 4+ 8°7N/P (log(e + 6’1))*7} .
Now, letting 6 V/? = M f(x), we obtain
I < CMf(x)" " (log(e+Mf(x))) = CMf(x)"/*(log(e + Mf(x))) "

Moreover, for § > 0 we find from Lemma | with E = B(x,r) and r = § and the
boundedness of b

bh< c{ (log(e+67)) " Mh(x) + 5 V/(log(e + 5—1))—1} 7
where h(y) = b(y)|f(v)| (log(e+|f(¥)]))°. Now, letting § /4 = Mh(x), we obtain
L < CMh(x)(log(e + Mh(x))) "
Now we establish
b(x)Mf(x) <C {Mf (x)7/4(log e +Mf(x))) "+ Mh(x) (log(e+Mh(X)))*’} :
When M f(x)/4 > Mh(x), we have
{b(x)Mf(x) (log(e+Mf(x)))"}7
<SC(Mf(x))" (log(e+Mf(x ))) * (log(e+Mf(x)))™ < CMf(x)"
and when M f(x)?/9 < Mh(x), we have

{b(x)Mf(x) (log(e+Mf(x)))"}*
< C(Mh(x))? (log(e +Mh(x))) ™ (log(e+Mf(x)))™ < CMh(x)?.

Hence we obtain
{b(x)Mf(x) (log(e+Mf(x)))"}! < C{Mf(x)" +Mh(x)7}.

Therefore, the boundedness of the maximal operator on L”(R") and LI(R") gives the
theorem. [

Recall that 7
P(x,t) =17 + {b(x)t (log (e +1))°}*
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THEOREM 7. Suppose 1 <p<g<e, 720, a+0<N/pandl/p—1/g=
0/N > 0. Then there is a constant C > 0 such that

/ W(x, | f(x)]) dx < C
RN
forall f € LP(RY) with || f]| o) < 1.

Proof. Let f be a measurable function on RY with | f||;egy) < 1. For x € RY
and r > 0, we have

o) [ b=yl NA ) dy
= Jou =Y 0) —b(y))\f(y)ldy+/RN =" b)) dy
<C/RN o=y N*O (log(e+ e —y| 1) " \f(y)ldy+/RN =y %oy ()] dy
=J1+ J/».

For 6 > 0, we have
gy 1% Ctogtet L) L)y < 5% logle+571) M
and by Holder’s inequality

(X_N+9 —l —T
- lo + |x— d
/RN\B(X,S) =yl (log(e+x—y™") "1fO)ldy
- dr
< o+60 _ /
C/5 r®*(log(e+r" <|er| o |dy)
< o+ I\\—T Ur 4,
g 1 - - - V4 «r
C/é r“ 7 (log(e+r7")) <|B(x7r)| /B(”) lf )| dy) ;

<C /5 "t ON/ (log(e 4 1)) T ? <C8*H NP (log(e+671)) "
since «4+6 —N/p < 0. Hence

s <C {5“+9(10g(6+ 7)) TM S (x) + 840N/ P (log(e + 5*1))77} :
Now, letting 6 V/? = M f(x), we obtain

JL S CM ()~ OPN (log(e + M f(x))) 7" = CMf(x)"/7 (log(e + Mf (x)))

Moreover, for 6 >0,

[ =y b)) dy
B(x,0)
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“ log(e +/() T
< g OISO ( )),)> dy

log (e+ 8 N4(log(e+ 6!

+C5 Na(log(e+61)) " /( | x—y[* N dy
B(x

)

gc{6°‘ (log(e+87")) " Mh(x)+ 8% N4(log(e + 5*1>>*’},

where h(y) = b(y)|f()| (log(e+ |f(y)]))*. Similarly, we have by Corollary 1 with
E = B(x,r)

/RN\B(JC,S) ‘x_y‘aiN[b(yﬂf(y)”dy / (B .X r | / B(x,r) dy) T

< C/ rO"N/q(log(e+r’l))’T ﬂ
5 r

<C8%Na(log(e+81)) 77

since o« —N/g < 0. Thus
Jr < C{So‘(log(e + 87" Mh(x) + 6% N9 (log(e + 5_1))_7} .

Now, letting 8 V/9 = Mh(x), we obtain
Jo < CMh(x)' 9%V (log(e + Mh(x))) "% = CMh(x)"7 (log(e +Mh(x))) "
Now we establish
b(x) 1 f ()] < C{M ()P4 (log(e +MF(x)))™* +Mh(x)?/4" (log(e + Mh(x))) "}

As in the final discussions of the previous proof, we have

{b(x) I f (x)] (log(e + |Io.f (x) }q < C{Mf(x)? + Mh(x)7} .

Hence we obtain the required result by the boundedness of the maximal operator on
LP(RY) and LY(RY). O
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