SOBOLEV'S THEOREM FOR DOUBLE PHASE FUNCTIONALS

Yoshihiro Mizuta, Takao Ohno* and Tetsu Shimomura

(Communicated by I. Perić)

Abstract

Our aim in this paper is to establish generalizations of Sobolev's theorem for double phase functionals $\Phi(x, t)=t^{p}+\left\{b(x) t(\log (e+t))^{\tau}\right\}^{q}$, where $1<p \leqslant q<\infty, \tau>0$ and b is a nonnegative bounded function satisfying $|b(x)-b(y)| \leqslant C|x-y|^{\theta}\left(\log \left(e+|x-y|^{-1}\right)\right)^{-\tau}$ for $0 \leqslant \theta<1$.

1. Introduction

In harmonic analysis, the maximal operator is a classical tool when studying Sobolev functions and partial differential equations. This also plays a central role in the study of differentiation, singular integrals, smoothness of functions and so on ($[5,21,25]$, etc.). It is well known that the maximal operator is bounded on the Lebesgue space $L^{p}\left(\mathbf{R}^{N}\right)$ if $p>1$ ([25]).

One of important applications of the boundedness of the maximal operator is Sobolev's inequality; in the classical case,

$$
\left\|I_{\alpha} * f\right\|_{p^{*}} \leqslant C\|f\|_{p}
$$

for $f \in L^{p}\left(\mathbf{R}^{N}\right), 0<\alpha<N$ and $1<p<N / \alpha$, where I_{α} is the Riesz kernel of order α and $1 / p^{*}=1 / p-\alpha / N$ (see, e.g. [2, Theorem 3.1.4]).

There has been a considerable amount of studies on the variable exponent Lebesgue spaces and Sobolev spaces; see $[11,13]$ for a survey. We refer to $[1,24]$ for the study of elasticity and fluid mechanics, [7, 19] for the study of image processing, and [9, 10] for double phase variational problems. Capone, Cruz-Uribe and Fiorenza [6] studied a Sobolev type inequality for Riesz potentials in the variable exponent Lebesgue space $L^{p(\cdot)}\left(\mathbf{R}^{N}\right)$. For Sobolev's theorem for Riesz potentials, see also [12], [14], [20] etc..

Recently, regarding regularity theory of differential equations, Baroni, Colombo and Mingione $[3,4,9,10]$ studied a double phase functional $\Phi(x, t)=t^{p}+a(x) t^{q}, x \in$ $\mathbf{R}^{N}, t \geqslant 0$ where $1<p<q, a(\cdot)$ is non-negative, bounded and Hölder continuous of order $\theta \in(0,1]$. In [9], the minimization problem of the double phase functional was discussed under the assumption $q<(1+\theta / N) p$. Regularity for general functionals

[^0]was studied under the condition $q \leqslant(1+\theta / N) p$ in [4]. In [3], the border-line $(p=q)$ double phase functional
$$
\Phi(x, t)=t^{p}+a(x) t^{p}(\log (e+t)
$$
was considered. In [18], Harjulehto, Hästö and Karppinen studied local higher integrability of the gradient of a quasiminimizer of the double phase functional $\Phi(x, t)=$ $t^{p}+a(x) t^{q}$. See Colasuonno and Squassina [8] for the eigenvalue problem for the double phase functional $\Phi(x, t)=t^{p}+a(x) t^{q}$. See also [16].

In the present paper, for $1<p \leqslant q<\infty$ and $\tau \geqslant 0$, let us consider the double phase functional

$$
\Phi(x, t)=t^{p}+\left\{b(x) t(\log (e+t))^{\tau}\right\}^{q}
$$

where b is a nonnegative bounded function satisfying

$$
|b(x)-b(y)| \leqslant C|x-y|^{\theta}\left(\log \left(e+|x-y|^{-1}\right)\right)^{-\tau}
$$

for $0 \leqslant \theta<1$. Hästö [15, Theorem 4.7] showed the boundedness of the maximal operator on $L^{\Phi}(G)$ when $a(x)=b(x)^{q}$ is θ-Hölder continuous and $\tau=0$. See also [17, Proposition 7.2.3].

Our first aim in this paper is to give the boundedness of the maximal operator for the double phase functional $\Phi(x, t)$ (Theorem 1), as an extension of [15, Theorem 4.7]. To show this, we apply [23, Corollary 3.2]. Our strategy is to check all the conditions required in [23, Corollary 3.2] as in the proof of [23, Corollary 5.3]. Next, we give a Sobolev type inequality for $\Phi(x, t)$ (Theorem 2) by applying [23, Theorem 4.9] as in the proof of [23, Corollary 5.9].

For reader's convenience we give direct proofs of Theorems 1 and 2 in the Appendix, by applying the boundedness of the maximal operator on $L^{p}\left(\mathbf{R}^{N}\right)$ and $L^{q}\left(\mathbf{R}^{N}\right)$.

Finally, we discuss the continuity of the fractional maximal functions and Riesz potentials for the double phase functional $\Phi(x, t)$ (see Theorems 3-5). The result is new even for the case $\tau=0$.

Throughout this paper, let C denote various constants independent of the variables in question and $C(a, b, \cdots)$ be a constant that depends on a, b, \cdots. The symbol $g \sim h$ means that $C^{-1} h \leqslant g \leqslant C h$ for some constant $C>0$.

2. Preliminaries

In this paper, we consider the following double phase functional

$$
\Phi(x, t)=t^{p}+\left\{b(x) t(\log (e+t))^{\tau}\right\}^{q}
$$

for $1<p \leqslant q<\infty$ and $\tau \geqslant 0$, where b is a nonnegative bounded function satisfying

$$
\begin{equation*}
|b(x)-b(y)| \leqslant C|x-y|^{\theta}\left(\log \left(e+|x-y|^{-1}\right)\right)^{-\tau} \tag{1}
\end{equation*}
$$

for $0 \leqslant \theta<1$.

The Musielak-Orlicz space $L^{\Phi}\left(\mathbf{R}^{N}\right)$ is defined by

$$
L^{\Phi}\left(\mathbf{R}^{N}\right)=\left\{f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{N}\right): \int_{\mathbf{R}^{N}} \Phi\left(y, \frac{|f(y)|}{\lambda}\right) d y<\infty \text { for some } \lambda>0\right\}
$$

It is a Banach space with respect to the norm

$$
\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)}=\inf \left\{\lambda>0: \int_{\mathbf{R}^{N}} \Phi\left(y, \frac{|f(y)|}{\lambda}\right) d y \leqslant 1\right\} .
$$

For later use, we prepare the following result.
Lemma 1. Let $1 \leqslant q<\infty$ and $\tau \geqslant 0$. Then there exists a constant $C>0$ such that

$$
\begin{aligned}
\frac{1}{|E|} \int_{E}|f(y)| d y \leqslant & C\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \\
& \times \frac{1}{|E|} \int_{E}|f(y)|(\log (e+|f(y)|))^{\tau} d y+r^{-N / q}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}
\end{aligned}
$$

for all $r>0$ and measurable sets $E \subset \mathbf{R}^{N}$ of positive measure.
Proof. Set $R=r^{-N / q}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}$. We have

$$
\begin{aligned}
\frac{1}{|E|} \int_{E}|f(y)| d y \leqslant & \frac{1}{|E|} \int_{E}|f(y)|\left(\frac{\log (e+f(y))}{\log (e+R)}\right)^{\tau} d y+R \\
\leqslant & C\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \frac{1}{|E|} \int_{E}|f(y)|(\log (e+|f(y)|))^{\tau} d y \\
& +r^{-N / q}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}
\end{aligned}
$$

as required.
Corollary 1. Let $1 \leqslant q<\infty$ and $\tau \geqslant 0$. Then there exists a constant $C>0$ such that

$$
\begin{aligned}
\frac{1}{|E|} \int_{E} b(y)|f(y)| d y \leqslant C\{ & r^{-N / q}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}+\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \\
& \left.\times\left(\frac{1}{|E|} \int_{E}\left(b(y)|f(y)|(\log (e+|f(y)|))^{\tau}\right)^{q} d y\right)^{1 / q}\right\}
\end{aligned}
$$

for all $r>0$ and measurable sets $E \subset \mathbf{R}^{N}$ of positive measure.
In fact, Lemma 1, the boundedness of b and Jensen's inequality give

$$
\frac{1}{|E|} \int_{E} b(y)|f(y)| d y
$$

$$
\begin{aligned}
\leqslant C & \left\{r^{-N / q}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}+\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \frac{1}{|E|} \int_{E} b(y)|f(y)|(\log (e+|f(y)|))^{\tau} d y\right\} \\
\leqslant C & \left\{r^{-N / q}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}+\left(\log \left(e+r^{-1}\right)\right)^{-\tau}\right. \\
& \left.\times\left(\frac{1}{|E|} \int_{E}\left(b(y)|f(y)|(\log (e+|f(y)|))^{\tau}\right)^{q} d y\right)^{1 / q}\right\}
\end{aligned}
$$

3. Maximal operator

For a locally integrable function f on \mathbf{R}^{N}, the Hardy-Littlewood maximal function $M f$ is defined by

$$
M f(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y
$$

where $B(x, r)$ is the ball in \mathbf{R}^{N} with center x and of radius $r>0$ and $|B(x, r)|$ denotes its Lebesgue measure. The mapping $f \mapsto M f$ is called the maximal operator.

Recall that

$$
\Phi(x, t)=t^{p}+\left\{b(x) t(\log (e+t))^{\tau}\right\}^{q}
$$

where $1<p \leqslant q<\infty, \tau \geqslant 0$ and b is a nonnegative bounded function satisfying (1) with $0 \leqslant \theta<1$.

In [23], we consider the following conditions for $\Phi(x, t)$. It is easy to check the following conditions on Φ required in [23]:
$(\Phi 1) \Phi(\cdot, t)$ is measurable on \mathbf{R}^{N} for each $t \geqslant 0$ and $\Phi(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in \mathbf{R}^{N}$;
($\Phi 2$) there exists a constant $A_{1} \geqslant 1$ such that

$$
A_{1}^{-1} \leqslant \Phi(x, 1) \leqslant A_{1} \quad \text { for all } x \in \mathbf{R}^{N}
$$

($\Phi 3 ; 0 ; p) t \mapsto t^{-p} \Phi(x, t)$ is increasing on $(0,1]$ for each $x \in \mathbf{R}^{N}$;
$(\Phi 3 ; \infty ; p) t \mapsto t^{-p} \Phi(x, t)$ is increasing on $[1, \infty)$ for each $x \in \mathbf{R}^{N}$.
Lemma 2. $\Phi(x, t)$ satisfies
$(\Phi 5 ; v)$ for every $\gamma>0$, there exists a constant $B_{\gamma, v} \geqslant 1$ such that

$$
\Phi(x, t) \leqslant B_{\gamma, v} \Phi(y, t)
$$

$$
\text { whenever } x, y \in \mathbf{R}^{N},|x-y| \leqslant \gamma t^{-v} \text { and } t \geqslant 1
$$

for $v \geqslant(q-p) /(q \theta)$; and
$(\Phi 6 ; \omega)$ there exist a function g on \mathbf{R}^{N} and a constant $B_{\infty} \geqslant 1$ such that $0 \leqslant g(x) \leqslant 1$ for all $x \in \mathbf{R}^{N}, g \in L^{\omega}\left(\mathbf{R}^{N}\right)$ and

$$
B_{\infty}^{-1} \Phi(x, t) \leqslant \Phi\left(x^{\prime}, t\right) \leqslant B_{\infty} \Phi(x, t)
$$

whenever $x, x^{\prime} \in \mathbf{R}^{N},\left|x^{\prime}\right| \geqslant|x|$ and $g(x) \leqslant t \leqslant 1$,
for every $\omega>0$.
Proof. Let $v \geqslant(q-p) /(q \theta)$. If $|x-y| \leqslant \gamma t^{-v}$ and $t \geqslant 1$, then

$$
\begin{aligned}
\Phi(x, t) & =t^{p}+\left\{b(x) t(\log (e+t))^{\tau}\right\}^{q} \\
& \leqslant t^{p}+\left\{b(y) t(\log (e+t))^{\tau}+C|x-y|^{\theta}\left(\log \left(e+|x-y|^{-1}\right)\right)^{-\tau} t(\log (e+t))^{\tau}\right\}^{q} \\
& \leqslant C\left\{\Phi(y, t)+t^{(1-\theta v) q}\right\} \leqslant C\left\{\Phi(y, t)+t^{p}\right\} \leqslant C \Phi(y, t) .
\end{aligned}
$$

Hence $\Phi(x, t)$ satisfies $(\Phi 5 ; v)$.
Let $g \in L^{\omega}\left(\mathbf{R}^{N}\right)$ for $\omega>0$. If $g(x) \leqslant t \leqslant 1$, then

$$
\Phi(x, t) \leqslant\left(1+C\|b\|_{L^{\infty}\left(\mathbf{R}^{N}\right)}^{q}\right) t^{p} \leqslant\left(1+C\|b\|_{L^{\infty}\left(\mathbf{R}^{N}\right)}^{q}\right) \Phi\left(x^{\prime}, t\right)
$$

for every $x, x^{\prime} \in \mathbf{R}^{N}$ and $\left|x^{\prime}\right| \geqslant|x|$. Therefore $\Phi(x, t)$ satisfies $(\Phi 6 ; \omega)$.
As an extension of [15, Theorem 4.7], we obtain the following result by Lemma 2 and [23, Corollary 3.2] (see also [17, Proposition 7.2.3] and [22]).

Theorem 1. Suppose $1<p \leqslant q<\infty, \tau \geqslant 0$ and $1 / p-1 / q \leqslant \theta / N$. Then there is a constant $C>0$ such that

$$
\int_{\mathbf{R}^{N}} \Phi(x, M f(x)) d x<C
$$

for all $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ with $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leqslant 1$.
REMARK 1. When $\tau=0, \Phi(x, t)=t^{p}+a(x) t^{q}, 1<p<q, G \subset \mathbf{R}^{N}$ is bounded, $a \in C^{\theta}(\bar{G})$ is non-negative and $q \leqslant(1+\theta / N) p$, Hästö showed Theorem 1 in [15, Theorem 4.7].

4. Sobolev's inequality

For $0<\alpha<N$, we define the Riesz potential of order α of a function $f \in$ $L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{N}\right)$ by

$$
I_{\alpha} f(x)=\int_{\mathbf{R}^{N}}|x-y|^{\alpha-N} f(y) d y
$$

In this section, let $g(x)=(1+|x|)^{-(N+1)}$. Then

$$
g^{*}(x)=\min \{g(x), M g(x)\} \leqslant C(1+|x|)^{-N}
$$

Further set

$$
\Phi_{\infty}(t)=t^{p}
$$

as in [23]. Then it satisfies the following conditions:
$\left(\Phi_{\infty} 0\right) \quad \Phi_{\infty}(t)$ is continuous, $\Phi_{\infty}(t)>0$ for $t>0$ and $\Phi_{\infty}(t) / t$ is increasing on $[0, \infty)$;
($\Phi_{\infty} 1$) there exists a constant $\tilde{B}_{\infty} \geqslant 1$ such that

$$
\tilde{B}_{\infty}^{-1} \Phi(x, t) \leqslant \Phi_{\infty}(t) \leqslant \tilde{B}_{\infty} \Phi(x, t) \quad \text { whenever } g(x) \leqslant t \leqslant 1
$$

for $g(x)$ in condition $(\Phi 6 ; \omega)$;
$\left(\Phi_{\infty} 2\right)$ there exists a constant $c_{\infty} \geqslant 1$ such that

$$
\Phi_{\infty}\left(g^{*}(x)\right) \leqslant c_{\infty}(1+|x|)^{-N}
$$

for all $x \in \mathbf{R}^{N}$;
$\left(\Phi_{\infty} N\right) r \mapsto r^{\gamma} \Phi_{\infty}^{-1}\left(r^{-N}\right)$ is increasing on $(1, \infty)$ for some $0<\gamma<N$.
Lemma 3. (1) If $q<N / \alpha$, then
$(\Phi N \alpha) r \mapsto r^{\alpha+\varepsilon} \Phi^{-1}\left(x, r^{-N}\right)$ is uniformly almost decreasing on $(0, \infty)$ for some $\varepsilon>0$, that is, there exists a constant $C>0$ such that

$$
r^{\alpha+\varepsilon} \Phi^{-1}\left(x, r^{-N}\right) \leqslant C s^{\alpha+\varepsilon} \Phi^{-1}\left(x, s^{-N}\right)
$$

for all $0<s<r$ and $x \in \mathbf{R}^{N}$.
(2) If $p<N / \alpha$, then
$\left(\Phi_{\infty} N \alpha\right) \quad r \mapsto r^{\alpha+\varepsilon} \Phi_{\infty}^{-1}\left(r^{-N}\right)$ is increasing on $(1, \infty)$ for some $\varepsilon>0$.

Proof.

(1) Since

$$
\Phi^{-1}(x, s) \sim \min \left\{s^{1 / p},\left(b(x)^{-q} s\right)^{1 / q}\left(\log \left(e+b(x)^{-q} s\right)\right)^{-\tau}\right\}
$$

for $x \in \mathbf{R}^{N}$, we have

$$
\begin{aligned}
& r^{\alpha+\varepsilon} \Phi^{-1}\left(x, r^{-N}\right) \\
\sim & \min \left\{r^{\alpha-N / p+\varepsilon}, b(x)^{-(\alpha+\varepsilon) q / N}\left(b(x)^{q} r^{N}\right)^{(\alpha-N / q+\varepsilon) / N}\left(\log \left(e+b(x)^{-q} r^{-N}\right)\right)^{-\tau}\right\} .
\end{aligned}
$$

Choose $\varepsilon>0$ such that $N / q-\alpha>\varepsilon$. Then we obtain that $r \mapsto r^{\alpha+\varepsilon} \Phi^{-1}\left(x, r^{-N}\right)$ is uniformly almost decreasing.
(2) Since $\Phi_{\infty}^{-1}\left(r^{-N}\right)=r^{-N / p}$ for $r \geqslant 1$, we find $r^{\alpha} \Phi_{\infty}^{-1}\left(r^{-N}\right)=r^{\alpha-N / p}$. Thus, $\left(\Phi_{\infty} N \alpha\right)$ holds if $p<N / \alpha$.

Now, consider the double phase functional

$$
\Psi(x, t)=t^{p^{*}}+\left\{b(x) t(\log (e+t))^{\tau}\right\}^{q^{*}}
$$

and

$$
\Psi_{1}(x, t)=t^{p^{*}}+\left\{b(x) t\left(\log \left(e+b(x)^{\alpha q / N} t\right)\right)^{\tau}\right\}^{q^{*}}
$$

where $1 / p^{*}=1 / p-\alpha / N>0$ and $1 / q^{*}=1 / q-\alpha / N>0$. Then there is $C>1$ such that

$$
\begin{equation*}
C^{-1} \Psi(x, t) \leqslant \Psi_{1}(x, t) \leqslant C \Psi(x, t) \tag{2}
\end{equation*}
$$

for all $x \in \mathbf{R}^{N}$ and $t>0$. In fact, the right inequality is clear since b is bounded. To show the left inequality for $t>1$, take ε such that $0<\varepsilon<p^{*} / q^{*}$. If $b(x) t \leqslant t^{\varepsilon}$ and $t>1$, then

$$
\left\{b(x) t(\log (e+t))^{\tau}\right\}^{q^{*}} \leqslant C t^{p^{*}}
$$

and if $b(x) t \geqslant t^{\varepsilon}>1$, then $b(x)^{\alpha q / N} t \geqslant t^{1-(\alpha q / N)(1-\varepsilon)}$, so that

$$
\Psi_{1}(x, t) \geqslant t^{p^{*}}+\left\{b(x) t\left(\log \left(e+t^{1-(\alpha q / N)(1-\varepsilon)}\right)\right)^{\tau}\right\}^{q^{*}} \geqslant C \Psi(x, t)
$$

since $\alpha q / N<1$, which proves (2).
Further we see that both Ψ and Ψ_{1} satisfy
($\Psi 1) \Psi(\cdot, t)$ is measurable on \mathbf{R}^{N} for each $t \geqslant 0$ and $\Psi(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in \mathbf{R}^{N}$;
($\Psi 2$) there exists a constant $\widehat{Q}_{1} \geqslant 1$ such that

$$
\widehat{Q}_{1}^{-1} \leqslant \Psi(x, 1) \leqslant \widehat{Q}_{1} \quad \text { for all } x \in \mathbf{R}^{N}
$$

(世3) $\quad t \mapsto \Psi(x, t) / t$ is increasing on $(0, \infty)$ for all $x \in \mathbf{R}^{N}$.
Lemma 4. Both Ψ and Ψ_{1} satisfy
($\Psi 4$) there exists a constant $\widehat{Q}_{3} \geqslant 1$ such that

$$
\Psi\left(x, t \Phi(x, t)^{-\alpha / N}\right) \leqslant \widehat{Q}_{3} \Phi(x, t)
$$

for all $x \in \mathbf{R}^{N}$ and $t>0$.

Proof. Since $\Phi(x, t) \geqslant \max \left\{t^{p},\left\{b(x) t(\log (e+t))^{\tau}\right\}^{q}\right\}$, we see that

$$
t \Phi(x, t)^{-\alpha / N} \leqslant \min \left\{t^{p / p^{*}}, b(x)^{-\alpha q / N} t^{q / q^{*}}(\log (e+t))^{-\alpha q \tau / N}\right\} .
$$

Hence

$$
\Psi_{1}\left(x, t \Phi(x, t)^{-\alpha / N}\right) \leqslant C\left[\left\{t^{p / p^{*}}\right\}^{p^{*}}+\left\{b(x)^{q / q^{*}} t^{q / q^{*}}(\log (e+t))^{-\alpha q \tau / N}\right.\right.
$$

$$
\begin{aligned}
& \left.\left.\times\left(\log \left(e+t^{q / q^{*}}(\log (e+t))^{-\alpha q \tau / N}\right)\right)^{\tau}\right\}^{q^{*}}\right] \\
\leqslant & C\left[t^{p}+\left\{b(x) t(\log (e+t))^{\tau}\right\}^{q}\right]=C \Phi(x, t),
\end{aligned}
$$

as required.
Consequently we apply [23, Theorem 4.9] to obtain the following result.
THEOREM 2. Suppose $1<p \leqslant q<N / \alpha, \tau \geqslant 0$ and $1 / p-1 / q \leqslant \theta / N$. Then there is a constant $C>0$ such that

$$
\int_{\mathbf{R}^{N}} \Psi\left(x,\left|I_{\alpha} f(x)\right|\right) d x<C
$$

for all $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ with $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leqslant 1$.
REMARK 2. If $1 / p-1 / q \leqslant \theta / N$, then take θ_{1} such that

$$
1 / p-1 / q=\theta_{1} / N
$$

Then b is θ_{1}-Hölder continuous when it is θ-Hölder continuous and bounded, and thus we may assume from the beginning that $1 / p-1 / q=\theta / N$.

5. Continuity

For $0<\sigma<N$ and a function $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{N}\right)$ we define the fractional maximal function by

$$
M_{\sigma} f(x)=\sup _{r>0} \frac{r^{\sigma}}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y
$$

THEOREM 3. Suppose $1<p \leqslant q<\infty, \tau \geqslant 0, \sigma-N / p \leqslant 0,0 \leqslant \sigma+\theta-N / p<$ $1 / p^{\prime}$ and $1 / p-1 / q=\theta / N \geqslant 0$. Then there is a constant $C>0$ such that

$$
\begin{equation*}
\left|b(x) M_{\sigma} f(x)-b(z) M_{\sigma} f(z)\right| \leqslant C|x-z|^{\sigma+\theta-N / p}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau} \tag{3}
\end{equation*}
$$

for all $x, z \in \mathbf{R}^{N}$ with $0<|x-z|<1 / 2$ and $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ with $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leqslant 1$.
Proof. Let f be a measurable function on \mathbf{R}^{N} with $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leqslant 1$. For $x \in \mathbf{R}^{N}$ and $r>0$ set

$$
I(x, r)=b(x) \frac{r^{\sigma}}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y
$$

First we consider the case $0<r<2|x-z|<1$. Then we have
$I(x, r)=\frac{r^{\sigma}}{|B(x, r)|} \int_{B(x, r)}(b(x)-b(y))|f(y)| d y+\frac{r^{\sigma}}{|B(x, r)|} \int_{B(x, r)} b(y)|f(y)| d y$

$$
\begin{aligned}
& \leqslant C r^{\sigma+\theta}\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y+\frac{r^{\sigma}}{|B(x, r)|} \int_{B(x, r)} b(y)|f(y)| d y \\
& =I_{1}+I_{2}
\end{aligned}
$$

By Hölder's inequality, we have

$$
\begin{aligned}
I_{1} & \leqslant C r^{\sigma+\theta}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}\left(\frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)|^{p} d y\right)^{1 / p} \\
& \leqslant C r^{\sigma+\theta-N / p}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}
\end{aligned}
$$

By Corollary 1 with $E=B(x, r)$, we have

$$
I_{2} \leqslant C r^{\sigma-N / q}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}
$$

Therefore

$$
\begin{aligned}
I(x, r) & \leqslant C\left\{r^{\sigma+\theta-N / p}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}+r^{\sigma-N / q}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}\right\} \\
& \leqslant C r^{\sigma+\theta-N / p}\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \leqslant C|x-z|^{\sigma+\theta-N / p}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau}
\end{aligned}
$$

since $\sigma+\theta-N / p \geqslant 0$.
Next we consider the case $0<2|x-z|<r<1$. We have

$$
\begin{aligned}
I(x, r)-I(z, r)= & b(x) \frac{r^{\sigma}}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y-b(z) \frac{r^{\sigma}}{|B(z, r)|} \int_{B(z, r)}|f(y)| d y \\
\leqslant & |b(x)-b(z)| \frac{r^{\sigma}}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y \\
& +b(z) \frac{r^{\sigma}}{|B(z, r)|} \int_{B(x, r) \Delta B(z, r)}|f(y)| d y \\
\leqslant & C|x-z|^{\theta}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau} \frac{r^{\sigma}}{|B(z, r)|} \int_{B(z, r)}|f(y)| d y \\
& +\frac{r^{\sigma}}{|B(x, r)|} \int_{B(x, r) \Delta B(z, r)}|b(z)-b(y)||f(y)| d y \\
& +\frac{r^{\sigma}}{|B(z, r)|} \int_{B(x, r) \Delta B(z, r)} b(y)|f(y)| d y \\
\leqslant & C\left\{|x-z|^{\theta}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau} \frac{r^{\sigma}}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y\right. \\
& +r^{\theta}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau} \frac{r^{\sigma}}{|B(z, r)|} \int_{B(x, r) \Delta B(z, r)}|f(y)| d y \\
& \left.+\frac{r^{\sigma}}{|B(z, r)|} \int_{B(x, r) \Delta B(z, r)} b(y)|f(y)| d y\right\} .
\end{aligned}
$$

By Hölder's inequality and Corollary 1 with $E=B(x, r) \Delta B(z, r)$, we establish

$$
I(x, r)-I(z, r) \leqslant C\left\{|x-z|^{\theta}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau} r^{\sigma-N / p}\right.
$$

$$
\begin{aligned}
& +|B(x, r) \Delta B(z, r)|^{1 / p^{\prime}} r^{\sigma+\theta-N}\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \\
& +|B(x, r) \Delta B(z, r)| r^{\sigma-N-N / q}\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \\
& \left.+|B(x, r) \Delta B(z, r)|^{1 / q^{\prime}} r^{\sigma-N}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}\right\} \\
\leqslant & C\left\{|x-z|^{\theta}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau} r^{\sigma-N / p}\right. \\
& +\left(r^{N-1}|x-z|\right)^{1 / p^{\prime}} r^{\sigma+\theta-N}\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \\
& +r^{N-1}|x-z| r^{\sigma-N-N / q}\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \\
& \left.+\left(r^{N-1}|x-z|\right)^{1 / q^{\prime}} r^{\sigma-N}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}\right\} \\
\leqslant & C\left\{|x-z|^{\theta}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau} r^{\sigma-N / p}\right. \\
& +|x-z|^{1 / p^{\prime}} r^{\sigma+\theta-N / p-1 / p^{\prime}}\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \\
& +|x-z|^{\sigma-1-N / q}\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \\
& \left.+|x-z|^{1 / q^{\prime}} r^{\sigma-N / q-1 / q^{\prime}}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}\right\} \\
\leqslant & C|x-z|^{\sigma+\theta-N / p}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau},
\end{aligned}
$$

since $\sigma-N / p \leqslant 0$ and $\sigma-N / q=\sigma+\theta-N / p<1 / p^{\prime} \leqslant 1 / q^{\prime}<1$.
Therefore

$$
I(x, r) \leqslant I(z, r)+C|x-z|^{\sigma+\theta-N / p}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau}
$$

which gives the theorem.
THEOREM 4. Suppose $1<p<q<\infty, \tau>1 / q^{\prime}, \alpha+\theta=N / p$ and $1 / p-1 / q=$ $\theta / N>0$. Then there is a constant $C>0$ such that

$$
\left|b(x) I_{\alpha} f(x)-b(z) I_{\alpha} f(z)\right| \leqslant C\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau+1 / q^{\prime}}
$$

for all $x, z \in \mathbf{R}^{N}$ with $0<|x-z|<1 / 2$ and $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ with $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leqslant 1$.
Proof. Let f be a measurable function on \mathbf{R}^{N} with $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leqslant 1$. For $x, z \in \mathbf{R}^{N}$, write

$$
\begin{aligned}
& b(x) I_{\alpha} f(x)-b(z) I_{\alpha} f(z) \\
= & \int_{\mathbf{R}^{N}}|x-y|^{\alpha-N}(b(x)-b(y)) f(y) d y+\int_{\mathbf{R}^{N}}|x-y|^{\alpha-N} b(y) f(y) d y \\
& -\int_{\mathbf{R}^{N}}|z-y|^{\alpha-N}(b(z)-b(y)) f(y) d y-\int_{\mathbf{R}^{N}}|z-y|^{\alpha-N} b(y) f(y) d y \\
= & J_{1}(x)+J_{2}(x)-J_{1}(z)-J_{2}(z) .
\end{aligned}
$$

For $\delta=2|x-z|<1$, we have by Hölder's inequality
$J_{11}(x)=\int_{B(x, \delta)}|x-y|^{\alpha-N}(b(x)-b(y)) f(y) d y$

$$
\begin{aligned}
& \leqslant C \int_{B(x, \delta)}|x-y|^{\alpha-N+\theta}\left(\log \left(e+|x-y|^{-1}\right)\right)^{-\tau}|f(y)| d y \\
& \leqslant C\left(\int_{B(x, \delta)}\left(|x-y|^{\alpha-N+\theta}\left(\log \left(e+|x-y|^{-1}\right)\right)^{-\tau}\right)^{p^{\prime}} d y\right)^{1 / p^{\prime}}\left(\int_{B(x, \delta)}|f(y)|^{p} d y\right)^{1 / p} \\
& \leqslant C\left(\int_{0}^{\delta} t^{N}\left(t^{\alpha-N+\theta}\left(\log \left(e+t^{-1}\right)\right)^{-\tau}\right)^{p^{\prime}} \frac{d t}{t}\right)^{1 / p^{\prime}} \leqslant C\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau+1 / p^{\prime}}
\end{aligned}
$$

since $\alpha+\theta-N / p=0$ and $\tau>1 / p^{\prime}$. Further, we obtain by Hölder's inequality for $0<\beta<\alpha$

$$
\begin{aligned}
J_{21}(x)= & \int_{B(x, \delta)}|x-y|^{\alpha-N} b(y) f(y) d y \\
\leqslant & C \int_{B(x, \delta)}|x-y|^{\alpha-N}\left(\frac{\log (e+|f(y)|)}{\log \left(e+|x-y|^{-\beta}\right)}\right)^{\tau} b(y)|f(y)| d y \\
& +\int_{B(x, \delta)}|x-y|^{\alpha-N} b(y)|x-y|^{-\beta} d y \\
\leqslant & C\left\{\left(\int_{B(x, \delta)}\left(|x-y|^{\alpha-N}\left(\log \left(e+|x-y|^{-1}\right)\right)^{-\tau}\right)^{q^{\prime}} d y\right)^{1 / q^{\prime}}\right. \\
& \left.\times\left(\int_{B(x, \delta)}\left(b(y)|f(y)|(\log (e+|f(y)|))^{\tau}\right)^{q} d y\right)^{1 / q}+\delta^{\alpha-\beta}\right\} \\
\leqslant & C\left\{\left(\int_{0}^{\delta} t^{N}\left(t^{\alpha-N}\left(\log \left(e+t^{-1}\right)\right)^{-\tau}\right)^{q^{\prime}} \frac{d t}{t}\right)^{1 / q^{\prime}}+\delta^{\alpha-\beta}\right\} \\
\leqslant & C\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau+1 / q^{\prime}},
\end{aligned}
$$

since $\alpha-N / q=0$ and $\tau>1 / q^{\prime}$. Similarly,

$$
J_{11}(z)=\int_{B(x, \delta)}|z-y|^{\alpha-N}(b(z)-b(y)) f(y) d y \leqslant C\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau+1 / p^{\prime}}
$$

and

$$
J_{21}(z)=\int_{B(x, \delta)}|z-y|^{\alpha-N} b(y) f(y) d y \leqslant C\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau+1 / q^{\prime}} .
$$

Noting that

$$
\left||x-y|^{\alpha-N}-|z-y|^{\alpha-N}\right| \leqslant C|x-z||x-y|^{\alpha-N-1}
$$

when $|x-y|>2|x-z|$, we have by Hölder's inequality

$$
\begin{aligned}
J_{31} & =\int_{\mathbf{R}^{N} \backslash B(x, \delta)}\left(|x-y|^{\alpha-N}-|z-y|^{\alpha-N}\right)(b(x)-b(y)) f(y) d y \\
& \leqslant C|x-z| \int_{\mathbf{R}^{N} \backslash B(x, \delta)}|x-y|^{\alpha-N-1+\theta}\left(\log \left(e+|x-y|^{-1}\right)\right)^{-\tau}|f(y)| d y
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant C|x-z|\left(\int_{\mathbf{R}^{N} \backslash B(x, \delta)}\left(|x-y|^{\alpha-N-1+\theta}\left(\log \left(e+|x-y|^{-1}\right)\right)^{-\tau}\right)^{p^{\prime}} d y\right)^{1 / p^{\prime}} \\
& \times\left(\int_{\mathbf{R}^{N} \backslash B(x, \delta)}|f(y)|^{p} d y\right)^{1 / p} \\
& \leqslant C|x-z|\left(\int_{\delta}^{\infty} t^{N}\left(t^{\alpha-N-1+\theta}\left(\log \left(e+t^{-1}\right)\right)^{-\tau}\right)^{p^{\prime}} \frac{d t}{t}\right)^{1 / p^{\prime}} \leqslant C\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau}
\end{aligned}
$$

and

$$
\begin{aligned}
& J_{32}= \int_{\mathbf{R}^{N} \backslash B(x, \delta)}|z-y|^{\alpha-N}(b(x)-b(z)) f(y) d y \\
& \leqslant C|x-z|^{\theta}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau} \int_{\mathbf{R}^{N} \backslash B(x, \delta)}|z-y|^{\alpha-N} f(y) d y \\
& \leqslant C|x-z|^{\theta}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau}\left(\int_{\mathbf{R}^{N} \backslash B(x, \delta)}|z-y|^{(\alpha-N) p^{\prime}} d y\right)^{1 / p^{\prime}} \\
& \times\left(\int_{\mathbf{R}^{N} \backslash B(x, \delta)}|f(y)|^{p} d y\right)^{1 / p} \\
& \leqslant C|x-z|^{\theta}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau} \delta^{\alpha-N / p} \leqslant C\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau}
\end{aligned}
$$

Therefore

$$
J_{31}+J_{32} \leqslant C\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau}
$$

Similarly, we have for $\max \{0, \alpha-1\}<\beta<\alpha$

$$
\begin{aligned}
J_{33}= & \int_{\mathbf{R}^{N} \backslash B(x, \delta)}\left(|x-y|^{\alpha-N}-|z-y|^{\alpha-N}\right) b(y) f(y) d y \\
\leqslant & C|x-z| \int_{\mathbf{R}^{N} \backslash B(x, \delta)}|x-y|^{\alpha-N-1} b(y)|f(y)| d y \\
\leqslant & C|x-z|\left\{\int_{\mathbf{R}^{N} \backslash B(x, \delta)}|x-y|^{\alpha-N-1}\left(\frac{\log (e+|f(y)|)}{\log \left(e+|x-y|^{-\beta}\right)}\right)^{\tau} b(y)|f(y)| d y\right. \\
& \left.+\int_{\mathbf{R}^{N} \backslash B(x, \delta)}|x-y|^{\alpha-N-1} b(y)|x-y|^{-\beta} d y\right\} \\
\leqslant & C|x-z|\left\{\left(\int_{\mathbf{R}^{N} \backslash B(x, \delta)}\left(|x-y|^{\alpha-N-1}\left(\log \left(e+|x-y|^{-1}\right)\right)^{-\tau}\right)^{q^{\prime}} d y\right)^{1 / q^{\prime}}\right. \\
& \left.\times\left(\int_{\mathbf{R}^{N} \backslash B(x, \delta)}\left(b(y)|f(y)|(\log (e+|f(y)|))^{\tau}\right)^{q} d y\right)^{1 / q}+\delta^{\alpha-\beta-1}\right\} \\
\leqslant & C\left\{|x-z|\left(\int_{\delta}^{\infty} t^{N}\left(t^{\alpha-N-1}\left(\log \left(e+t^{-1}\right)\right)^{-\tau}\right)^{q^{\prime}} \frac{d t}{t}\right)^{1 / q^{\prime}}+\delta^{\alpha-\beta}\right\} \\
\leqslant & C\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau} .
\end{aligned}
$$

Now we establish

$$
\begin{aligned}
J(x)-J(z) & =J_{1}(x)+J_{2}(x)-J_{1}(z)-J_{2}(z) \\
& =J_{11}(x)+J_{11}(z)+J_{21}(x)+J_{21}(z)+J_{31}+J_{32}+J_{32} \\
& \leqslant C\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau+1 / q^{\prime}}
\end{aligned}
$$

which gives the theorem.
In the same way as above, we obtain the following result.
THEOREM 5. Suppose $1<p<q<\infty, \tau \geqslant 0,0<\alpha+\theta-N / p<\theta$ and $1 / p-$ $1 / q=\theta / N>0$. Then there is a constant $C>0$ such that

$$
\left|b(x) I_{\alpha} f(x)-b(z) I_{\alpha} f(z)\right| \leqslant C|x-z|^{\alpha+\theta-N / p}\left(\log \left(e+|x-z|^{-1}\right)\right)^{-\tau}
$$

for all $x, z \in \mathbf{R}^{N}$ with $0<|x-z|<1 / 2$ and $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ with $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leqslant 1$.

6. Appendix

For reader's convenience, we shall give direct proofs of Theorems 1 and 2 by the boundedness of the maximal operator on $L^{p}\left(\mathbf{R}^{N}\right)$ and $L^{q}\left(\mathbf{R}^{N}\right)$.

THEOREM 6. Suppose $1<p \leqslant q<\infty, \tau \geqslant 0$ and $1 / p-1 / q=\theta / N \geqslant 0$. Then there is a constant $C>0$ such that

$$
\int_{\mathbf{R}^{N}} \Phi(x, M f(x)) d x<C
$$

for all $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ with $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leqslant 1$.

Proof. Let f be a measurable function on \mathbf{R}^{N} with $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leqslant 1$. For $x \in \mathbf{R}^{N}$ and $r>0$, we have

$$
\begin{aligned}
I & =b(x) \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y \\
& =\frac{1}{|B(x, r)|} \int_{B(x, r)}(b(x)-b(y))|f(y)| d y+\frac{1}{|B(x, r)|} \int_{B(x, r)} b(y)|f(y)| d y \\
& \leqslant C r^{\theta}\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y+\frac{1}{|B(x, r)|} \int_{B(x, r)} b(y)|f(y)| d y \\
& =I_{1}+I_{2} .
\end{aligned}
$$

For $0<r<\delta$

$$
I_{1} \leqslant C r^{\theta}\left(\log \left(e+r^{-1}\right)\right)^{-\tau} M f(x) \leqslant C \delta^{\theta}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau} M f(x)
$$

and for $0<\delta \leqslant r$ by Hölder's inequality

$$
\begin{aligned}
I_{1} & \leqslant C r^{\theta}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}\left(\frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)|^{p} d y\right)^{1 / p} \leqslant C r^{\theta-N / p}\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \\
& \leqslant C \delta^{\theta-N / p}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau}
\end{aligned}
$$

since $\theta-N / p=-N / q<0$. Thus

$$
I_{1} \leqslant C\left\{\delta^{\theta}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau} M f(x)+\delta^{\theta-N / p}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau}\right\}
$$

Now, letting $\delta^{-N / p}=M f(x)$, we obtain

$$
I_{1} \leqslant C M f(x)^{1-\theta p / N}(\log (e+M f(x)))^{-\tau}=C M f(x)^{p / q}(\log (e+M f(x)))^{-\tau}
$$

Moreover, for $\delta>0$ we find from Lemma 1 with $E=B(x, r)$ and $r=\delta$ and the boundedness of b

$$
I_{2} \leqslant C\left\{\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau} M h(x)+\delta^{-N / q}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau}\right\}
$$

where $h(y)=b(y)|f(y)|(\log (e+|f(y)|))^{\tau}$. Now, letting $\delta^{-N / q}=M h(x)$, we obtain

$$
I_{2} \leqslant C M h(x)(\log (e+M h(x)))^{-\tau}
$$

Now we establish

$$
b(x) M f(x) \leqslant C\left\{M f(x)^{p / q}(\log (e+M f(x)))^{-\tau}+M h(x)(\log (e+M h(x)))^{-\tau}\right\}
$$

When $M f(x)^{p / q} \geqslant M h(x)$, we have

$$
\begin{aligned}
& \left\{b(x) M f(x)(\log (e+M f(x)))^{\tau}\right\}^{q} \\
\leqslant & C(M f(x))^{p}(\log (e+M f(x)))^{-\tau q}(\log (e+M f(x)))^{\tau q} \leqslant C M f(x)^{p}
\end{aligned}
$$

and when $M f(x)^{p / q} \leqslant M h(x)$, we have

$$
\begin{aligned}
& \left\{b(x) M f(x)(\log (e+M f(x)))^{\tau}\right\}^{q} \\
& \leqslant C(M h(x))^{q}(\log (e+M h(x)))^{-\tau q}(\log (e+M f(x)))^{\tau q} \leqslant C M h(x)^{q} .
\end{aligned}
$$

Hence we obtain

$$
\left\{b(x) M f(x)(\log (e+M f(x)))^{\tau}\right\}^{q} \leqslant C\left\{M f(x)^{p}+M h(x)^{q}\right\}
$$

Therefore, the boundedness of the maximal operator on $L^{p}\left(\mathbf{R}^{N}\right)$ and $L^{q}\left(\mathbf{R}^{N}\right)$ gives the theorem.

Recall that

$$
\Psi(x, t)=t^{p^{*}}+\left\{b(x) t(\log (e+t))^{\tau}\right\}^{q^{*}}
$$

THEOREM 7. Suppose $1<p \leqslant q<\infty, \tau \geqslant 0, \alpha+\theta<N / p$ and $1 / p-1 / q=$ $\theta / N \geqslant 0$. Then there is a constant $C>0$ such that

$$
\int_{\mathbf{R}^{N}} \Psi\left(x,\left|I_{\alpha} f(x)\right|\right) d x<C
$$

for all $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ with $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leqslant 1$.
Proof. Let f be a measurable function on \mathbf{R}^{N} with $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leqslant 1$. For $x \in \mathbf{R}^{N}$ and $r>0$, we have

$$
\begin{aligned}
& b(x) \int_{\mathbf{R}^{N}}|x-y|^{\alpha-N}|f(y)| d y \\
= & \int_{\mathbf{R}^{N}}|x-y|^{\alpha-N}(b(x)-b(y))|f(y)| d y+\int_{\mathbf{R}^{N}}|x-y|^{\alpha-N} b(y)|f(y)| d y \\
\leqslant & C \int_{\mathbf{R}^{N}}|x-y|^{\alpha-N+\theta}\left(\log \left(e+|x-y|^{-1}\right)\right)^{-\tau}|f(y)| d y+\int_{\mathbf{R}^{N}}|x-y|^{\alpha-N} b(y)|f(y)| d y \\
= & J_{1}+J_{2} .
\end{aligned}
$$

For $\delta>0$, we have
$\int_{B(x, \delta)}|x-y|^{\alpha-N+\theta}\left(\log \left(e+|x-y|^{-1}\right)\right)^{-\tau}|f(y)| d y \leqslant C \delta^{\alpha+\theta}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau} M f(x)$ and by Hölder's inequality

$$
\begin{aligned}
& \int_{\mathbf{R}^{N} \backslash B(x, \delta)}|x-y|^{\alpha-N+\theta}\left(\log \left(e+|x-y|^{-1}\right)\right)^{-\tau}|f(y)| d y \\
\leqslant & C \int_{\delta}^{\infty} r^{\alpha+\theta}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}\left(\frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y\right) \frac{d r}{r} \\
\leqslant & C \int_{\delta}^{\infty} r^{\alpha+\theta}\left(\log \left(e+r^{-1}\right)\right)^{-\tau}\left(\frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)|^{p} d y\right)^{1 / p} \frac{d r}{r} \\
\leqslant & C \int_{\delta}^{\infty} r^{\alpha+\theta-N / p}\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \frac{d r}{r} \leqslant C \delta^{\alpha+\theta-N / p}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau},
\end{aligned}
$$

since $\alpha+\theta-N / p<0$. Hence

$$
J_{1} \leqslant C\left\{\delta^{\alpha+\theta}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau} M f(x)+\delta^{\alpha+\theta-N / p}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau}\right\}
$$

Now, letting $\delta^{-N / p}=M f(x)$, we obtain

$$
J_{1} \leqslant C M f(x)^{1-(\alpha+\theta) p / N}(\log (e+M f(x)))^{-\tau}=C M f(x)^{p / q^{*}}(\log (e+M f(x)))^{-\tau} .
$$

Moreover, for $\delta>0$,

$$
\int_{B(x, \delta)}|x-y|^{\alpha-N} b(y)|f(y)| d y
$$

$$
\begin{aligned}
\leqslant & \int_{B(x, \delta)}|x-y|^{\alpha-N} b(y)|f(y)|\left(\frac{\log (e+f(y))}{\log \left(e+\delta^{-N / q}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau}\right)}\right)^{\tau} d y \\
& +C \delta^{-N / q}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau} \int_{B(x, \delta)}|x-y|^{\alpha-N} d y \\
\leqslant & C\left\{\delta^{\alpha}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau} M h(x)+\delta^{\alpha-N / q}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau}\right\}
\end{aligned}
$$

where $h(y)=b(y)|f(y)|(\log (e+|f(y)|))^{\tau}$. Similarly, we have by Corollary 1 with $E=B(x, r)$

$$
\begin{aligned}
\int_{\mathbf{R}^{N} \backslash B(x, \delta)}|x-y|^{\alpha-N}[b(y)|f(y)|] d y & \leqslant C \int_{\delta}^{\infty} r^{\alpha}\left(\frac{1}{|B(x, r)|} \int_{B(x, r)}[b(y)|f(y)|] d y\right) \frac{d r}{r} \\
& \leqslant C \int_{\delta}^{\infty} r^{\alpha-N / q}\left(\log \left(e+r^{-1}\right)\right)^{-\tau} \frac{d r}{r} \\
& \leqslant C \delta^{\alpha-N / q}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau}
\end{aligned}
$$

since $\alpha-N / q<0$. Thus

$$
J_{2} \leqslant C\left\{\delta^{\alpha}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau} M h(x)+\delta^{\alpha-N / q}\left(\log \left(e+\delta^{-1}\right)\right)^{-\tau}\right\}
$$

Now, letting $\delta^{-N / q}=M h(x)$, we obtain

$$
J_{2} \leqslant C M h(x)^{1-q \alpha / N}(\log (e+M h(x)))^{-\tau}=C M h(x)^{q / q^{*}}(\log (e+M h(x)))^{-\tau} .
$$

Now we establish

$$
b(x)\left|I_{\alpha} f(x)\right| \leqslant C\left\{M f(x)^{p / q^{*}}(\log (e+M f(x)))^{-\tau}+M h(x)^{q / q^{*}}(\log (e+M h(x)))^{-\tau}\right\}
$$

As in the final discussions of the previous proof, we have

$$
\left\{b(x)\left|I_{\alpha} f(x)\right|\left(\log \left(e+\left|I_{\alpha} f(x)\right|\right)\right)^{\tau}\right\}^{q^{*}} \leqslant C\left\{M f(x)^{p}+M h(x)^{q}\right\}
$$

Hence we obtain the required result by the boundedness of the maximal operator on $L^{p}\left(\mathbf{R}^{N}\right)$ and $L^{q}\left(\mathbf{R}^{N}\right)$.

REFERENCES

[1] E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), 213-259.
[2] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer, 1996.
[3] P. Baroni, M. Colombo and G. Mingione, Non-autonomous functionals, borderline cases and relatedfunction classes, St Petersburg Math. J. 27 (2016), 347-379.
[4] P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. (2018) 57: 62.
[5] B. Bojarski and P. HajŁasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106(1) (1993), 77-92.
[6] C. Capone, D. Cruz-Uribe and A. Fiorenza, The fractional maximal operator and fractional integrals on variable L^{p} spaces, Rev. Mat. Iberoamericana 23 (2007), no.3, 743-770.
[7] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383-1406.
[8] F. Colasuonno and M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl. (4) 195 (2016), no. 6, 1917-1959.
[9] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Rat. Mech. Anal. 215 (2015), 443-496.
[10] M. Colombo and G. Mingione, Bounded minimizers of double phase variational integrals, Arch. Rat. Mech. Anal. 218 (2015), 219-273.
[11] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis. Applied and Numerical Harmonic Analysis. Birkhauser/Springer, Heidelberg, 2013.
[12] L. Diening, Riesz potential and Sobolev embeddings of generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k, p(\cdot)}$, Math. Nachr. 263 (2004), no. 1, 31-43.
[13] L. Diening, P. Harjulehto, P. Hästö and M. R u ŽIČKa, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.
[14] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embeddings for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 495-522.
[15] P. НӒStÖ, The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 269 (2015), no. 12, 4038-4048; Corrigendum to "The maximal operator on generalized Orlicz spaces", J. Funct. Anal. 271 (2016), no. 1, 240-243.
[16] P. Hardulehto and P. HÄstö, Boundary regularity under generalized growth conditions, Z. Anal. Anwendungen. 38 (2019), no. 1, 73-96.
[17] P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, vol. 2236, Springer-Verlag, Berlin, 2019, to appear.
[18] P. Harjulehto, P. HÄStö and A. Karppinen, Local higher integrability of the gradient of a quasiminimizer under generalized Orlicz growth conditions, Nonlinear Anal. 177 (2018), 543-552.
[19] P. Hardulehto, P. HÄStö, V. Latvala and O. Toivanen, Critical variable exponent functionals in image restoration, Appl. Math. Letters 26 (2013), 56-60.
[20] V. Kokilashvili and S. Samko, On Sobolev theorem for Riesz type potentials in the Lebesgue spaces with variable exponent, Z. Anal. Anwendungen 22 (2003), no. 4, 899-910.
[21] J. L. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations 18(9) (10) (1993), 1515-1537.
[22] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. math. 137 (2013), 76-96.
[23] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequality for double phase functionals with variable exponents, Forum. Math. 31 (2019), no. 2, 517-527.
[24] M. RŮŽIČKA, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000.
[25] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
(Received February 18, 2019)

> Yoshihiro Mizuta 4-13-11 Hachi-Hom-Matsu-Minami Higashi-Hiroshima 739-0144, Japan e-mail: yomizuta@hiroshima-u.ac.jp Takao Ohno Faculty of Education Oita University Dannoharu Oita-city 870-1192, Japan
> e-mail: t-ohno@oita-u.ac.jp
> Tetsu Shimomura Department of Mathematics Graduate School of Education, Hiroshima University Higashi-Hiroshima 739-8524, Japan
> e-mail: tshimo@hiroshima-u.ac.jp

[^1]
[^0]: Mathematics subject classification (2010): 46E30, 42B25, 46 E 35.
 Keywords and phrases: Riesz potentials, fractional maximal functions, maximal functions, Sobolev's theorem, Musielak-Orlicz spaces, double phase functionals, continuity.

 * Corresponding author.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

