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SOBOLEV’S THEOREM FOR DOUBLE PHASE FUNCTIONALS

YOSHIHIRO MIZUTA, TAKAO OHNO ∗ AND TETSU SHIMOMURA

(Communicated by I. Perić)

Abstract. Our aim in this paper is to establish generalizations of Sobolev’s theorem for double
phase functionals Φ(x,t) = t p + {b(x)t(log(e+ t))τ}q , where 1 < p � q < ∞ , τ > 0 and b is
a nonnegative bounded function satisfying |b(x)− b(y)| � C|x− y|θ (log(e+ |x− y|−1))−τ for
0 � θ < 1 .

1. Introduction

In harmonic analysis, the maximal operator is a classical tool when studying
Sobolev functions and partial differential equations. This also plays a central role
in the study of differentiation, singular integrals, smoothness of functions and so on
([5, 21, 25], etc.). It is well known that the maximal operator is bounded on the
Lebesgue space Lp(RN) if p > 1 ([25]).

One of important applications of the boundedness of the maximal operator is
Sobolev’s inequality; in the classical case,

‖Iα ∗ f‖p∗ � C‖ f‖p

for f ∈ Lp(RN) , 0 < α < N and 1 < p < N/α , where Iα is the Riesz kernel of order
α and 1/p∗ = 1/p−α/N (see, e.g. [2, Theorem 3.1.4]).

There has been a considerable amount of studies on the variable exponent Lebesgue
spaces and Sobolev spaces; see [11, 13] for a survey. We refer to [1, 24] for the study
of elasticity and fluid mechanics, [7, 19] for the study of image processing, and [9, 10]
for double phase variational problems. Capone, Cruz-Uribe and Fiorenza [6] studied a
Sobolev type inequality for Riesz potentials in the variable exponent Lebesgue space
Lp(·)(RN) . For Sobolev’s theorem for Riesz potentials, see also [12], [14], [20] etc..

Recently, regarding regularity theory of differential equations, Baroni, Colombo
and Mingione [3, 4, 9, 10] studied a double phase functional Φ(x,t) = t p +a(x)tq, x ∈
RN , t � 0 where 1 < p < q , a(·) is non-negative, bounded and Hölder continuous of
order θ ∈ (0,1] . In [9], the minimization problem of the double phase functional was
discussed under the assumption q < (1+ θ/N)p . Regularity for general functionals
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was studied under the condition q � (1+θ/N)p in [4]. In [3], the border-line ( p = q )
double phase functional

Φ(x,t) = t p +a(x)t p(log(e+ t)

was considered. In [18], Harjulehto, Hästö and Karppinen studied local higher inte-
grability of the gradient of a quasiminimizer of the double phase functional Φ(x,t) =
t p +a(x)tq . See Colasuonno and Squassina [8] for the eigenvalue problem for the dou-
ble phase functional Φ(x,t) = t p +a(x)tq . See also [16].

In the present paper, for 1 < p � q < ∞ and τ � 0, let us consider the double
phase functional

Φ(x,t) = t p +{b(x)t(log(e+ t))τ}q ,

where b is a nonnegative bounded function satisfying

|b(x)−b(y)|� C|x− y|θ(log(e+ |x− y|−1))−τ

for 0 � θ < 1. Hästö [15, Theorem 4.7] showed the boundedness of the maximal
operator on LΦ(G) when a(x) = b(x)q is θ -Hölder continuous and τ = 0. See also
[17, Proposition 7.2.3].

Our first aim in this paper is to give the boundedness of the maximal operator for
the double phase functional Φ(x,t) (Theorem 1), as an extension of [15, Theorem 4.7].
To show this, we apply [23, Corollary 3.2]. Our strategy is to check all the conditions
required in [23, Corollary 3.2] as in the proof of [23, Corollary 5.3]. Next, we give a
Sobolev type inequality for Φ(x,t) (Theorem 2) by applying [23, Theorem 4.9] as in
the proof of [23, Corollary 5.9].

For reader’s convenience we give direct proofs of Theorems 1 and 2 in the Ap-
pendix, by applying the boundedness of the maximal operator on Lp(RN) and Lq(RN) .

Finally, we discuss the continuity of the fractional maximal functions and Riesz
potentials for the double phase functional Φ(x,t) (see Theorems 3-5). The result is new
even for the case τ = 0.

Throughout this paper, let C denote various constants independent of the variables
in question and C(a,b, · · ·) be a constant that depends on a,b, · · · . The symbol g ∼ h
means that C−1h � g � Ch for some constant C > 0.

2. Preliminaries

In this paper, we consider the following double phase functional

Φ(x,t) = t p +{b(x)t(log(e+ t))τ}q ,

for 1 < p � q < ∞ and τ � 0, where b is a nonnegative bounded function satisfying

|b(x)−b(y)|� C|x− y|θ(log(e+ |x− y|−1))−τ (1)

for 0 � θ < 1.
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The Musielak-Orlicz space LΦ(RN) is defined by

LΦ(RN) =
{

f ∈ L1
loc(R

N) :
∫

RN
Φ
(

y,
| f (y)|

λ

)
dy < ∞ for some λ > 0

}
.

It is a Banach space with respect to the norm

‖ f‖LΦ(RN) = inf

{
λ > 0 :

∫
RN

Φ
(

y,
| f (y)|

λ

)
dy � 1

}
.

For later use, we prepare the following result.

LEMMA 1. Let 1 � q < ∞ and τ � 0. Then there exists a constant C > 0 such
that

1
|E|

∫
E
| f (y)|dy �C(log(e+ r−1))−τ

× 1
|E|

∫
E
| f (y)|(log(e+ | f (y)|))τ dy+ r−N/q(log(e+ r−1))−τ

for all r > 0 and measurable sets E ⊂ RN of positive measure.

Proof. Set R = r−N/q(log(e+ r−1))−τ . We have

1
|E|

∫
E
| f (y)|dy � 1

|E|
∫

E
| f (y)|

(
log(e+ f (y))
log(e+R)

)τ
dy+R

�C(log(e+ r−1))−τ 1
|E|

∫
E
| f (y)|(log(e+ | f (y)|))τ dy

+ r−N/q(log(e+ r−1))−τ ,

as required. �

COROLLARY 1. Let 1 � q < ∞ and τ � 0. Then there exists a constant C > 0
such that

1
|E|

∫
E

b(y)| f (y)|dy � C

{
r−N/q(log(e+ r−1))−τ +(log(e+ r−1))−τ

×
(

1
|E|

∫
E

(
b(y)| f (y)|(log(e+ | f (y)|))τ)q dy

)1/q}
for all r > 0 and measurable sets E ⊂ RN of positive measure.

In fact, Lemma 1, the boundedness of b and Jensen’s inequality give

1
|E|

∫
E

b(y)| f (y)|dy
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�C

{
r−N/q(log(e+ r−1))−τ +(log(e+ r−1))−τ 1

|E|
∫

E
b(y)| f (y)|(log(e+ | f (y)|))τ dy

}
�C

{
r−N/q(log(e+ r−1))−τ +(log(e+ r−1))−τ

×
(

1
|E|

∫
E

(
b(y)| f (y)|(log(e+ | f (y)|))τ)q dy

)1/q}
.

3. Maximal operator

For a locally integrable function f on RN , the Hardy-Littlewood maximal func-
tion M f is defined by

M f (x) = sup
r>0

1
|B(x,r)|

∫
B(x,r)

| f (y)|dy,

where B(x,r) is the ball in RN with center x and of radius r > 0 and |B(x,r)| denotes
its Lebesgue measure. The mapping f �→ M f is called the maximal operator.

Recall that
Φ(x,t) = t p +{b(x)t(log(e+ t))τ}q ,

where 1 < p � q < ∞ , τ � 0 and b is a nonnegative bounded function satisfying (1)
with 0 � θ < 1.

In [23], we consider the following conditions for Φ(x, t) . It is easy to check the
following conditions on Φ required in [23]:

(Φ1) Φ( · , t) is measurable on RN for each t � 0 and Φ(x, ·) is continuous on [0,∞)
for each x ∈ RN ;

(Φ2) there exists a constant A1 � 1 such that

A−1
1 � Φ(x,1) � A1 for all x ∈ RN ;

(Φ3;0; p ) t �→ t−pΦ(x,t) is increasing on (0,1] for each x ∈ RN ;

(Φ3;∞; p ) t �→ t−pΦ(x,t) is increasing on [1,∞) for each x ∈ RN .

LEMMA 2. Φ(x,t) satisfies

(Φ5;ν) for every γ > 0, there exists a constant Bγ,ν � 1 such that

Φ(x,t) � Bγ,ν Φ(y,t)

whenever x,y ∈ RN , |x− y|� γt−ν and t � 1

for ν � (q− p)/(qθ ) ; and
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(Φ6;ω) there exist a function g on RN and a constant B∞ � 1 such that 0 � g(x) � 1
for all x ∈ RN , g ∈ Lω (RN) and

B−1
∞ Φ(x,t) � Φ(x′,t) � B∞Φ(x,t)

whenever x,x′ ∈ RN , |x′| � |x| and g(x) � t � 1,

for every ω > 0.

Proof. Let ν � (q− p)/(qθ ) . If |x− y|� γt−ν and t � 1, then

Φ(x, t) = t p +{b(x)t(log(e+ t))τ}q

� t p +
{
b(y)t(log(e+ t))τ +C|x− y|θ(log(e+ |x− y|−1))−τ t(log(e+ t))τ

}q

� C
{

Φ(y, t)+ t(1−θν)q
}

� C{Φ(y,t)+ t p} � CΦ(y,t).

Hence Φ(x, t) satisfies (Φ5;ν) .
Let g ∈ Lω (RN) for ω > 0. If g(x) � t � 1, then

Φ(x, t) � (1+C‖b‖q
L∞(RN))t

p � (1+C‖b‖q
L∞(RN))Φ(x′,t)

for every x, x′ ∈ RN and |x′| � |x| . Therefore Φ(x,t) satisfies (Φ6;ω) . �
As an extension of [15, Theorem 4.7], we obtain the following result by Lemma 2

and [23, Corollary 3.2] (see also [17, Proposition 7.2.3] and [22]).

THEOREM 1. Suppose 1 < p � q < ∞ , τ � 0 and 1/p−1/q � θ/N . Then there
is a constant C > 0 such that ∫

RN
Φ(x,M f (x))dx < C

for all f ∈ LΦ(RN) with ‖ f‖LΦ(RN) � 1.

REMARK 1. When τ = 0, Φ(x,t) = t p +a(x)tq , 1 < p < q , G⊂ RN is bounded,
a ∈ Cθ (G) is non-negative and q � (1 + θ/N)p , Hästö showed Theorem 1 in [15,
Theorem 4.7].

4. Sobolev’s inequality

For 0 < α < N , we define the Riesz potential of order α of a function f ∈
L1

loc(R
N) by

Iα f (x) =
∫

RN
|x− y|α−N f (y)dy.

In this section, let g(x) = (1+ |x|)−(N+1) . Then

g∗(x) = min{g(x),Mg(x)} � C(1+ |x|)−N.
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Further set
Φ∞(t) = t p

as in [23]. Then it satisfies the following conditions:

(Φ∞0) Φ∞(t) is continuous, Φ∞(t) > 0 for t > 0 and Φ∞(t)/t is increasing on [0,∞) ;

(Φ∞1) there exists a constant B̃∞ � 1 such that

B̃−1
∞ Φ(x,t) � Φ∞(t) � B̃∞Φ(x,t) whenever g(x) � t � 1

for g(x) in condition (Φ6;ω) ;

(Φ∞2) there exists a constant c∞ � 1 such that

Φ∞(g∗(x)) � c∞(1+ |x|)−N

for all x ∈ RN ;

(Φ∞N) r �→ rγ Φ−1
∞ (r−N) is increasing on (1,∞) for some 0 < γ < N .

LEMMA 3. (1) If q < N/α , then

(ΦNα) r �→ rα+εΦ−1(x,r−N) is uniformly almost decreasing on (0,∞) for some
ε > 0, that is, there exists a constant C > 0 such that

rα+εΦ−1(x,r−N) � Csα+εΦ−1(x,s−N)

for all 0 < s < r and x ∈ RN .

(2) If p < N/α , then

(Φ∞Nα) r �→ rα+εΦ−1
∞ (r−N) is increasing on (1,∞) for some ε > 0.

Proof.

(1) Since

Φ−1(x,s) ∼ min
{

s1/p,
(
b(x)−qs

)1/q (log(e+b(x)−qs)
)−τ
}

for x ∈ RN , we have

rα+εΦ−1(x,r−N)

∼min
{

rα−N/p+ε ,b(x)−(α+ε)q/N(b(x)qrN)(α−N/q+ε)/N(
log(e+b(x)−qr−N)

)−τ
}

.

Choose ε > 0 such that N/q−α > ε . Then we obtain that r �→ rα+εΦ−1(x,r−N)
is uniformly almost decreasing.

(2) Since Φ−1
∞ (r−N) = r−N/p for r � 1, we find rα Φ−1

∞ (r−N) = rα−N/p . Thus,
(Φ∞Nα) holds if p < N/α . �
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Now, consider the double phase functional

Ψ(x,t) = t p∗ +
{
b(x)t (log(e+ t))τ}q∗

and

Ψ1(x,t) = t p∗ +
{
b(x)t

(
log
(
e+b(x)αq/Nt

))τ}q∗
,

where 1/p∗ = 1/p−α/N > 0 and 1/q∗ = 1/q−α/N > 0. Then there is C > 1 such
that

C−1Ψ(x,t) � Ψ1(x,t) � CΨ(x,t) (2)

for all x ∈ RN and t > 0. In fact, the right inequality is clear since b is bounded. To
show the left inequality for t > 1, take ε such that 0 < ε < p∗/q∗ . If b(x)t � tε and
t > 1, then {

b(x)t (log(e+ t))τ}q∗ � Ct p∗

and if b(x)t � tε > 1, then b(x)αq/Nt � t1−(αq/N)(1−ε) , so that

Ψ1(x, t) � t p∗ +
{
b(x)t

(
log
(
e+ t1−(αq/N)(1−ε)

))τ}q∗
� CΨ(x, t)

since αq/N < 1, which proves (2).
Further we see that both Ψ and Ψ1 satisfy

(Ψ1) Ψ( · , t) is measurable on RN for each t � 0 and Ψ(x, ·) is continuous on [0,∞)
for each x ∈ RN ;

(Ψ2) there exists a constant Q̂1 � 1 such that

Q̂−1
1 � Ψ(x,1) � Q̂1 for all x ∈ RN ;

(Ψ3) t �→ Ψ(x, t)/t is increasing on (0,∞) for all x ∈ RN .

LEMMA 4. Both Ψ and Ψ1 satisfy

(Ψ4) there exists a constant Q̂3 � 1 such that

Ψ
(
x,tΦ(x,t)−α/N

)
� Q̂3Φ(x, t)

for all x ∈ RN and t > 0.

Proof. Since Φ(x,t) � max{t p,{b(x)t(log(e+ t))τ}q} , we see that

tΦ(x, t)−α/N � min

{
t p/p∗ ,b(x)−αq/Ntq/q∗(log(e+ t))−αqτ/N

}
.

Hence

Ψ1
(
x, tΦ(x, t)−α/N)�C

[{
t p/p∗

}p∗
+
{
b(x)q/q∗tq/q∗(log(e+ t))−αqτ/N
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×
(
log
(
e+ tq/q∗(log(e+ t))−αqτ/N

))τ}q∗ ]
�C
[
t p +{b(x)t(log(e+ t))τ}q]= CΦ(x,t),

as required. �
Consequently we apply [23, Theorem 4.9] to obtain the following result.

THEOREM 2. Suppose 1 < p � q < N/α , τ � 0 and 1/p− 1/q � θ/N . Then
there is a constant C > 0 such that∫

RN
Ψ(x, |Iα f (x)|)dx < C

for all f ∈ LΦ(RN) with ‖ f‖LΦ(RN) � 1.

REMARK 2. If 1/p−1/q � θ/N , then take θ1 such that

1/p−1/q = θ1/N.

Then b is θ1 -Hölder continuous when it is θ -Hölder continuous and bounded, and
thus we may assume from the beginning that 1/p−1/q = θ/N .

5. Continuity

For 0 < σ < N and a function f ∈ L1
loc(R

N) we define the fractional maximal
function by

Mσ f (x) = sup
r>0

rσ

|B(x,r)|
∫

B(x,r)
| f (y)|dy.

THEOREM 3. Suppose 1 < p � q < ∞ , τ � 0, σ −N/p � 0, 0 � σ +θ −N/p <
1/p′ and 1/p−1/q = θ/N � 0. Then there is a constant C > 0 such that

|b(x)Mσ f (x)−b(z)Mσ f (z)| � C|x− z|σ+θ−N/p(log(e+ |x− z|−1))−τ (3)

for all x,z ∈ RN with 0 < |x− z|< 1/2 and f ∈ LΦ(RN) with ‖ f‖LΦ(RN) � 1.

Proof. Let f be a measurable function on RN with ‖ f‖LΦ(RN ) � 1. For x ∈ RN

and r > 0 set

I(x,r) = b(x)
rσ

|B(x,r)|
∫

B(x,r)
| f (y)|dy.

First we consider the case 0 < r < 2|x− z|< 1. Then we have

I(x,r) =
rσ

|B(x,r)|
∫

B(x,r)
(b(x)−b(y))| f (y)|dy+

rσ

|B(x,r)|
∫

B(x,r)
b(y)| f (y)|dy
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� Crσ+θ (log(e+ r−1))−τ 1
|B(x,r)|

∫
B(x,r)

| f (y)|dy+
rσ

|B(x,r)|
∫

B(x,r)
b(y)| f (y)|dy

= I1 + I2.

By Hölder’s inequality, we have

I1 � Crσ+θ (log(e+ r−1))−τ
(

1
|B(x,r)|

∫
B(x,r)

| f (y)|p dy

)1/p

� Crσ+θ−N/p(log(e+ r−1))−τ .

By Corollary 1 with E = B(x,r) , we have

I2 � Crσ−N/q(log(e+ r−1))−τ .

Therefore

I(x,r) � C
{

rσ+θ−N/p(log(e+ r−1))−τ + rσ−N/q(log(e+ r−1))−τ
}

� Crσ+θ−N/p(log(e+ r−1))−τ � C|x− z|σ+θ−N/p(log(e+ |x− z|−1))−τ ,

since σ + θ −N/p � 0.
Next we consider the case 0 < 2|x− z|< r < 1. We have

I(x,r)− I(z,r) =b(x)
rσ

|B(x,r)|
∫

B(x,r)
| f (y)|dy−b(z)

rσ

|B(z,r)|
∫

B(z,r)
| f (y)|dy

� |b(x)−b(z)| rσ

|B(x,r)|
∫

B(x,r)
| f (y)|dy

+b(z)
rσ

|B(z,r)|
∫

B(x,r)ΔB(z,r)
| f (y)|dy

�C|x− z|θ (log(e+ |x− z|−1))−τ rσ

|B(z,r)|
∫

B(z,r)
| f (y)|dy

+
rσ

|B(x,r)|
∫

B(x,r)ΔB(z,r)
|b(z)−b(y)| | f (y)|dy

+
rσ

|B(z,r)|
∫

B(x,r)ΔB(z,r)
b(y)| f (y)|dy

�C

{
|x− z|θ (log(e+ |x− z|−1))−τ rσ

|B(x,r)|
∫

B(x,r)
| f (y)|dy

+ rθ (log(e+ |x− z|−1))−τ rσ

|B(z,r)|
∫

B(x,r)ΔB(z,r)
| f (y)|dy

+
rσ

|B(z,r)|
∫

B(x,r)ΔB(z,r)
b(y)| f (y)|dy

}
.

By Hölder’s inequality and Corollary 1 with E = B(x,r)ΔB(z,r) , we establish

I(x,r)− I(z,r) �C
{
|x− z|θ (log(e+ |x− z|−1))−τ rσ−N/p
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+ |B(x,r)ΔB(z,r)|1/p′rσ+θ−N(log(e+ r−1))−τ

+ |B(x,r)ΔB(z,r)|rσ−N−N/q(log(e+ r−1))−τ

+ |B(x,r)ΔB(z,r)|1/q′rσ−N(log(e+ r−1))−τ
}

�C
{
|x− z|θ (log(e+ |x− z|−1))−τ rσ−N/p

+(rN−1|x− z|)1/p′rσ+θ−N(log(e+ r−1))−τ

+ rN−1|x− z|rσ−N−N/q(log(e+ r−1))−τ

+(rN−1|x− z|)1/q′rσ−N(log(e+ r−1))−τ
}

�C
{
|x− z|θ (log(e+ |x− z|−1))−τ rσ−N/p

+ |x− z|1/p′rσ+θ−N/p−1/p′(log(e+ r−1))−τ

+ |x− z|rσ−1−N/q(log(e+ r−1))−τ

+ |x− z|1/q′rσ−N/q−1/q′(log(e+ r−1))−τ
}

�C|x− z|σ+θ−N/p(log(e+ |x− z|−1))−τ ,

since σ −N/p � 0 and σ −N/q = σ + θ −N/p < 1/p′ � 1/q′ < 1.
Therefore

I(x,r) � I(z,r)+C|x− z|σ+θ−N/p(log(e+ |x− z|−1))−τ ,

which gives the theorem. �

THEOREM 4. Suppose 1 < p < q < ∞ , τ > 1/q′ , α +θ = N/p and 1/p−1/q =
θ/N > 0. Then there is a constant C > 0 such that

|b(x)Iα f (x)−b(z)Iα f (z)| � C(log(e+ |x− z|−1))−τ+1/q′

for all x,z ∈ RN with 0 < |x− z|< 1/2 and f ∈ LΦ(RN) with ‖ f‖LΦ(RN) � 1.

Proof. Let f be a measurable function on RN with ‖ f‖LΦ(RN) � 1. For x,z∈RN ,
write

b(x)Iα f (x)−b(z)Iα f (z)

=
∫

RN
|x− y|α−N(b(x)−b(y)) f (y)dy+

∫
RN

|x− y|α−Nb(y) f (y)dy

−
∫
RN

|z− y|α−N(b(z)−b(y)) f (y)dy−
∫
RN

|z− y|α−Nb(y) f (y)dy

=J1(x)+ J2(x)− J1(z)− J2(z).

For δ = 2|x− z|< 1, we have by Hölder’s inequality

J11(x) =
∫

B(x,δ )
|x− y|α−N(b(x)−b(y)) f (y)dy
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� C
∫

B(x,δ )
|x− y|α−N+θ (log(e+ |x− y|−1)

)−τ | f (y)|dy

� C

(∫
B(x,δ )

(
|x− y|α−N+θ(log(e+ |x− y|−1)

)−τ)p′
dy

)1/p′(∫
B(x,δ )

| f (y)|pdy

)1/p

� C

(∫ δ

0
tN
(
tα−N+θ (log(e+ t−1)

)−τ
)p′ dt

t

)1/p′

� C
(
log(e+ δ−1)

)−τ+1/p′
,

since α + θ −N/p = 0 and τ > 1/p′ . Further, we obtain by Hölder’s inequality for
0 < β < α

J21(x) =
∫

B(x,δ )
|x− y|α−Nb(y) f (y)dy

�C
∫

B(x,δ )
|x− y|α−N

(
log(e+ | f (y)|)

log(e+ |x− y|−β)

)τ
b(y)| f (y)|dy

+
∫
B(x,δ )

|x− y|α−Nb(y)|x− y|−β dy

�C

{(∫
B(x,δ )

(
|x− y|α−N (log(e+ |x− y|−1)

)−τ)q′
dy

)1/q′

×
(∫

B(x,δ )
(b(y)| f (y)|(log(e+ | f (y)|))τ)q dy

)1/q

+ δ α−β
}

�C

{(∫ δ

0
tN
(
tα−N (log(e+ t−1)

)−τ
)q′ dt

t

)1/q′

+ δ α−β

}
�C
(
log(e+ δ−1)

)−τ+1/q′
,

since α −N/q = 0 and τ > 1/q′ . Similarly,

J11(z) =
∫

B(x,δ )
|z− y|α−N(b(z)−b(y)) f (y)dy � C

(
log(e+ δ−1)

)−τ+1/p′

and

J21(z) =
∫

B(x,δ )
|z− y|α−Nb(y) f (y)dy � C

(
log(e+ δ−1)

)−τ+1/q′
.

Noting that

||x− y|α−N −|z− y|α−N| � C|x− z||x− y|α−N−1

when |x− y|> 2|x− z| , we have by Hölder’s inequality

J31 =
∫

RN\B(x,δ )

(|x− y|α−N −|z− y|α−N)(b(x)−b(y)) f (y)dy

�C|x− z|
∫

RN\B(x,δ )
|x− y|α−N−1+θ (log(e+ |x− y|−1)

)−τ | f (y)|dy
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�C|x− z|
(∫

RN\B(x,δ )

(
|x− y|α−N−1+θ (log(e+ |x− y|−1)

)−τ
)p′

dy

)1/p′

×
(∫

RN\B(x,δ )
| f (y)|pdy

)1/p

�C|x− z|
(∫ ∞

δ
tN
(
tα−N−1+θ (log(e+ t−1)

)−τ
)p′ dt

t

)1/p′

� C
(
log(e+ δ−1)

)−τ

and

J32 =
∫

RN\B(x,δ )
|z− y|α−N(b(x)−b(z)) f (y)dy

�C|x− z|θ (log(e+ |x− z|−1)
)−τ

∫
RN\B(x,δ )

|z− y|α−N f (y)dy

�C|x− z|θ (log(e+ |x− z|−1)
)−τ
(∫

RN\B(x,δ )
|z− y|(α−N)p′ dy

)1/p′

×
(∫

RN\B(x,δ )
| f (y)|p dy

)1/p

�C|x− z|θ (log(e+ |x− z|−1)
)−τ δ α−N/p � C

(
log(e+ δ−1)

)−τ
.

Therefore

J31 + J32 � C
(
log(e+ δ−1)

)−τ
.

Similarly, we have for max{0,α −1} < β < α

J33 =
∫

RN\B(x,δ )

(|x− y|α−N −|z− y|α−N)b(y) f (y)dy

�C|x− z|
∫

RN\B(x,δ )
|x− y|α−N−1b(y)| f (y)|dy

�C|x− z|
{∫

RN\B(x,δ )
|x− y|α−N−1

(
log(e+ | f (y)|)

log(e+ |x− y|−β)

)τ
b(y)| f (y)|dy

+
∫
RN\B(x,δ )

|x− y|α−N−1b(y)|x− y|−β dy

}
�C|x− z|

{(∫
RN\B(x,δ )

(
|x− y|α−N−1 (log(e+ |x− y|−1)

)−τ)q′
dy

)1/q′

×
(∫

RN\B(x,δ )
(b(y)| f (y)|(log(e+ | f (y)|))τ)q dy

)1/q

+ δ α−β−1
}

�C

{
|x− z|

(∫ ∞

δ
tN
(
tα−N−1 (log(e+ t−1)

)−τ
)q′ dt

t

)1/q′

+ δ α−β

}
�C
(
log(e+ δ−1)

)−τ
.
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Now we establish

J(x)− J(z) = J1(x)+ J2(x)− J1(z)− J2(z)
= J11(x)+ J11(z)+ J21(x)+ J21(z)+ J31 + J32 + J32

� C
(
log(e+ δ−1)

)−τ+1/q′
,

which gives the theorem. �
In the same way as above, we obtain the following result.

THEOREM 5. Suppose 1 < p < q < ∞ , τ � 0, 0 < α +θ −N/p < θ and 1/p−
1/q = θ/N > 0. Then there is a constant C > 0 such that

|b(x)Iα f (x)−b(z)Iα f (z)| � C|x− z|α+θ−N/p(log(e+ |x− z|−1))−τ

for all x,z ∈ RN with 0 < |x− z|< 1/2 and f ∈ LΦ(RN) with ‖ f‖LΦ(RN) � 1.

6. Appendix

For reader’s convenience, we shall give direct proofs of Theorems 1 and 2 by the
boundedness of the maximal operator on Lp(RN) and Lq(RN) .

THEOREM 6. Suppose 1 < p � q < ∞ , τ � 0 and 1/p−1/q = θ/N � 0. Then
there is a constant C > 0 such that∫

RN
Φ(x,M f (x))dx < C

for all f ∈ LΦ(RN) with ‖ f‖LΦ(RN) � 1.

Proof. Let f be a measurable function on RN with ‖ f‖LΦ(RN ) � 1. For x ∈ RN

and r > 0, we have

I = b(x)
1

|B(x,r)|
∫

B(x,r)
| f (y)|dy

=
1

|B(x,r)|
∫

B(x,r)
(b(x)−b(y))| f (y)|dy+

1
|B(x,r)|

∫
B(x,r)

b(y)| f (y)|dy

� Crθ (log(e+ r−1))−τ 1
|B(x,r)|

∫
B(x,r)

| f (y)|dy+
1

|B(x,r)|
∫

B(x,r)
b(y)| f (y)|dy

= I1 + I2.

For 0 < r < δ

I1 � Crθ (log(e+ r−1))−τM f (x) � Cδ θ (log(e+ δ−1))−τM f (x)
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and for 0 < δ � r by Hölder’s inequality

I1 � Crθ (log(e+ r−1))−τ
(

1
|B(x,r)|

∫
B(x,r)

| f (y)|p dy

)1/p

� Crθ−N/p(log(e+ r−1))−τ

� Cδ θ−N/p(log(e+ δ−1))−τ ,

since θ −N/p = −N/q < 0. Thus

I1 � C
{

δ θ (log(e+ δ−1))−τM f (x)+ δ θ−N/p(log(e+ δ−1))−τ
}

.

Now, letting δ−N/p = M f (x) , we obtain

I1 � CM f (x)1−θ p/N(log(e+M f (x)))−τ = CM f (x)p/q(log(e+M f (x)))−τ .

Moreover, for δ > 0 we find from Lemma 1 with E = B(x,r) and r = δ and the
boundedness of b

I2 � C
{(

log(e+ δ−1)
)−τ

Mh(x)+ δ−N/q(log(e+ δ−1))−τ
}

,

where h(y) = b(y)| f (y)|(log(e+ | f (y)|))τ . Now, letting δ−N/q = Mh(x) , we obtain

I2 � CMh(x)(log(e+Mh(x)))−τ .

Now we establish

b(x)M f (x) � C
{

M f (x)p/q(log(e+M f (x)))−τ +Mh(x)(log(e+Mh(x)))−τ
}

.

When M f (x)p/q � Mh(x) , we have{
b(x)M f (x)(log(e+M f (x)))τ}q

�C (M f (x))p (log(e+M f (x)))−τq (log(e+M f (x)))τq � CM f (x)p

and when M f (x)p/q � Mh(x) , we have{
b(x)M f (x)(log(e+M f (x)))τ}q

� C (Mh(x))q (log(e+Mh(x)))−τq (log(e+M f (x)))τq � CMh(x)q.

Hence we obtain{
b(x)M f (x)(log(e+M f (x)))τ}q � C{M f (x)p +Mh(x)q} .

Therefore, the boundedness of the maximal operator on Lp(RN) and Lq(RN) gives the
theorem. �

Recall that
Ψ(x,t) = t p∗ +

{
b(x)t (log(e+ t))τ}q∗

.
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THEOREM 7. Suppose 1 < p � q < ∞ , τ � 0, α + θ < N/p and 1/p− 1/q =
θ/N � 0. Then there is a constant C > 0 such that∫

RN
Ψ(x, |Iα f (x)|)dx < C

for all f ∈ LΦ(RN) with ‖ f‖LΦ(RN) � 1.

Proof. Let f be a measurable function on RN with ‖ f‖LΦ(RN ) � 1. For x ∈ RN

and r > 0, we have

b(x)
∫

RN
|x− y|α−N| f (y)|dy

=
∫

RN
|x− y|α−N(b(x)−b(y))| f (y)|dy+

∫
RN

|x− y|α−Nb(y)| f (y)|dy

�C
∫

RN
|x− y|α−N+θ (log(e+ |x− y|−1)

)−τ | f (y)|dy+
∫

RN
|x− y|α−Nb(y)| f (y)|dy

=J1 + J2.

For δ > 0, we have∫
B(x,δ )

|x− y|α−N+θ (log(e+ |x− y|−1)
)−τ | f (y)|dy � Cδ α+θ (log(e+ δ−1)

)−τ
M f (x)

and by Hölder’s inequality∫
RN\B(x,δ )

|x− y|α−N+θ (log(e+ |x− y|−1)
)−τ | f (y)|dy

�C
∫ ∞

δ
rα+θ (log(e+ r−1))−τ

(
1

|B(x,r)|
∫

B(x,r)
| f (y)|dy

)
dr
r

�C
∫ ∞

δ
rα+θ (log(e+ r−1))−τ

(
1

|B(x,r)|
∫

B(x,r)
| f (y)|p dy

)1/p dr
r

�C
∫ ∞

δ
rα+θ−N/p(log(e+ r−1))−τ dr

r
� Cδ α+θ−N/p(log(e+ δ−1))−τ ,

since α + θ −N/p < 0. Hence

J1 � C
{

δ α+θ (log(e+ δ−1))−τM f (x)+ δ α+θ−N/p(log(e+ δ−1))−τ
}

.

Now, letting δ−N/p = M f (x) , we obtain

J1 � CM f (x)1−(α+θ)p/N(log(e+M f (x)))−τ = CM f (x)p/q∗(log(e+M f (x)))−τ .

Moreover, for δ > 0,∫
B(x,δ )

|x− y|α−Nb(y)| f (y)|dy
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�
∫

B(x,δ )
|x− y|α−Nb(y)| f (y)|

(
log(e+ f (y))

log
(
e+ δ−N/q(log(e+ δ−1))−τ

))τ

dy

+Cδ−N/q(log(e+ δ−1))−τ
∫

B(x,δ )
|x− y|α−N dy

�C
{

δ α (log(e+ δ−1)
)−τ

Mh(x)+ δ α−N/q(log(e+ δ−1))−τ
}

,

where h(y) = b(y)| f (y)|(log(e+ | f (y)|))τ . Similarly, we have by Corollary 1 with
E = B(x,r)∫

RN\B(x,δ )
|x− y|α−N[b(y)| f (y)|]dy � C

∫ ∞

δ
rα
(

1
|B(x,r)|

∫
B(x,r)

[b(y)| f (y)|]dy

)
dr
r

� C
∫ ∞

δ
rα−N/q(log(e+ r−1))−τ dr

r

� Cδ α−N/q(log(e+ δ−1))−τ

since α −N/q < 0. Thus

J2 � C
{

δ α(log(e+ δ−1))−τMh(x)+ δ α−N/q(log(e+ δ−1))−τ
}

.

Now, letting δ−N/q = Mh(x) , we obtain

J2 � CMh(x)1−qα/N(log(e+Mh(x)))−τ = CMh(x)q/q∗ (log(e+Mh(x)))−τ .

Now we establish

b(x)|Iα f (x)| � C
{

M f (x)p/q∗(log(e+M f (x)))−τ +Mh(x)q/q∗ (log(e+Mh(x)))−τ
}

.

As in the final discussions of the previous proof, we have{
b(x)|Iα f (x)|(log(e+ |Iα f (x)|))τ}q∗ � C{M f (x)p +Mh(x)q} .

Hence we obtain the required result by the boundedness of the maximal operator on
Lp(RN) and Lq(RN) . �
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[16] P. HARJULEHTO AND P. HÄSTÖ, Boundary regularity under generalized growth conditions, Z. Anal.
Anwendungen. 38 (2019), no. 1, 73–96.
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