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Abstract. Let Xλ1
, . . . ,Xλn be continuous and dependent non-negative random variables and

Yi = IpiXλi
, i = 1, . . . ,n , where Ip1 , . . . ,Ipn are independent Bernoulli random variables inde-

pendent of Xλi
’s, with E[Ipi ] = pi , i = 1, . . . ,n . In actuarial sciences, Yi corresponds to the

claim amount in a portfolio of risks. In this paper, we compare the largest claim amounts of two
sets of interdependent portfolios, in the sense of usual stochastic order, when the variables in
one set have the parameters λ1, . . . ,λn and p1, . . . , pn and the variables in the other set have the
parameters λ ∗

1 , . . . ,λ ∗
n and p∗1, . . . , p

∗
n . For illustration, we apply the results to some important

models in actuary.

1. Introduction

Suppose that Xλi
, with survival function F(x;λi) , denotes the total random sever-

ities of i th (i = 1, . . . ,n) policyholder in an insurance period, and let Ipi be a Bernoulli
random variable associated with Xλi

, such that Ipi = 1 whenever the i th policyholder
makes random claim amount Xλi

and Ipi = 0 whenever does not make a claim. In
this notation, Yi = IpiXλi

is the claim amount associated with i th policyholder and
(Y1, . . . ,Yn) is said to be a portfolio of risks. Further, consider another portfolio of risks
(Y ∗

1 , . . . ,Y ∗
n ) with the parameters λ ∗

1 , . . . ,λ ∗
n and p∗1, . . . , p

∗
n .

The annual premium is the amount paid by the policyholder as the cost of the in-
surance cover being purchased. In fact, it is the primary cost to the policyholder for
assigning the risk to the insurer which depends on the type of insurance. Determination
of the annual premium is one of the important problems in insurance analysis. De-
riving preferences between random future gains or losses is an appealing topic for the
actuaries. For this purpose, stochastic orderings are very helpful. Stochastic orderings
have been extensively used in some areas of sciences such as management science, fi-
nancial economics, insurance, actuarial science, operation research, reliability theory,
queuing theory and survival analysis. For more details on stochastic orderings, we refer
to Müller and Stoyan [32], Shaked and Shanthikumar [34] and Li and Li [26].
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The problem of stochastic comparisons of some important statistics in (Y1, . . . ,Yn)
and (Y ∗

1 , . . . ,Y ∗
n ) , such as the number of claims, ∑n

i=1 Ipi , the aggregate claim amounts,
∑n

i=1Yi , the smallest, Y1:n = min(Y1, . . . ,Yn) , and the largest claim amounts, Yn:n =
max(Y1, . . . ,Yn) in two portfolios, have been discussed by many researchers in liter-
ature; see, e.g., Karlin and Novikoff [21], Ma [27], Frostig [17], Hu and Ruan [20],
Denuit and Frostig [10], Khaledi and Ahmadi [22], Zhang and Zhao [36], Barmalzan et
al. [4], Li and Li [24], Barmalzan et al. [7], Barmalzan and Najafabadi [3], Barmalzan
et al. [5], Barmalzan et al. [6], Balakrishnan et al. [2] and Li and Li [25].

When the critical situations occur, such as earthquakes, tornadoes and epidemics,
the role of the insurance companies is very highlighted. Usually, in these situations
many of policies are simultaneously at risk and the severities have a positive depen-
dence. The most of published articles consider the case that the severities are indepen-
dent, while sometimes this assumption is not satisfied.

Assume that Xλ1
, . . . ,Xλn are continuous and non-negative random variables with

the joint distribution function H(x1, . . . ,xn) , marginal distribution (survival) functions
F(x;λ1), . . . ,F(x;λn) (F(x;λ1), . . . ,F(x;λn)), and the copula C through the relation
H(x1, . . . ,xn) = C (F(x;λ1), . . . ,F(x;λn)) in the view of Sklar’s Theorem; see Nelsen
[33].

In this paper, we first focus on the stochastic comparisons of the largest claim
amounts from two sets of heterogeneous portfolios in the sense of usual stochastic
ordering, when the both portfolios include two policies. Then, some results in the case
that the portfolios include more than two policies are provided.

The rest of the paper is organized as follows. In Section 2, we recall some defini-
tions and lemmas which will be used in the sequel. In Section 3, stochastic comparisons
of the largest claim amounts from two interdependent heterogeneous portfolios of risks
in a general model in the sense of the usual stochastic ordering is discussed. Also, some
examples are illustrated to show the validity of the results.

2. The basic definitions and some prerequisites

In this section, we recall some notions of stochastic orderings, majorization, weak
majorization, copula and some useful lemmas which are helpful to prove the main
results. Throughout the paper, we use the notations R = (−∞,+∞) , R+ = [0,+∞)
and R++ = (0,+∞)

DEFINITION 1. X is said to be smaller than Y in the usual stochastic ordering,
denoted by X �st Y , if F(x) � G(x) for all x ∈ R , which F(x) and G(x) denote the
survival functions of X and Y , respectively.

For a comprehensive discussion of various stochastic orderings, we refer to Li and
Li [26] and Shaked and Shanthikumar [34].

We also need the concept of majorization of vectors and the Schur-convexity and
Schur-concavity of functions. For a comprehensive discussion of these topics, we refer
to Marshall et al. [28]. We use the notation x1:n � x2:n � . . . � xn:n to denote the
increasing arrangement of the components of the vector xxxxx = (x1, . . . ,xn) .
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DEFINITION 2. The vector xxxxx is said to be

(i) weakly submajorized by the vector yyyyy (denoted by xxxxx�w yyyyy) if ∑n
i= j xi:n � ∑n

i= j yi:n

for all j = 1, . . . ,n ,

(ii) weakly supermajorized by the vector yyyyy (denoted by xxxxx
w�yyyyy) if ∑ j

i=1 xi:n � ∑ j
i=1 yi:n

for all j = 1, . . . ,n ,

(iii) majorized by the vector yyyyy (denoted by xxxxx
m�yyyyy) if ∑n

i=1 xi = ∑n
i=1 yi and ∑ j

i=1 xi:n �
∑ j

i=1 yi:n for all j = 1, . . . ,n−1.

DEFINITION 3. A real valued function φ defined on a set A ⊆ Rn is said to be
Schur-convex (Schur-concave) on A if

xxxxx
m�yyyyy on A =⇒ φ(xxxxx) � (�)φ(yyyyy).

LEMMA 1. (Marshall et al. [28], Theorem 3.A.4) Let A ⊆ R be an open set and
let φ : A n → R be continuously differentiable. φ is Schur-convex (Schur-concave) on
A n if and only if, φ is symmetric on A n and for all i �= j ,

(xi − x j)
(

∂φ(xxxxx)
∂xi

− ∂φ(xxxxx)
∂x j

)
� (�)0, for all xxxxx ∈ A n.

LEMMA 2. (Marshall et al. [28], Theorem 3.A.7) Let φ be a continuous real val-
ued function on the set D = {xxxxx : x1 � x2 � . . . � xn} and continuously differentiable on
the interior of D . Denote the partial derivative of φ with respect to i th argument by
φ(i)(zzzzz) = ∂φ(zzzzz)/∂ zi . Then,

φ(xxxxx) � φ(yyyyy) whenever xxxxx �w yyyyy on D

if and only if
φ(1)(zzzzz) � φ(2)(zzzzz) � . . . � φ(n)(zzzzz) � 0,

i.e. the gradient 	φ(zzzzz) ∈ D+ = {xxxxx : x1 � x2 � . . . � xn � 0} , for all zzzzz in the interior
of D . Similarly,

φ(xxxxx) � φ(yyyyy) whenever xxxxx
w�yyyyy on D

if and only if
0 � φ(1)(zzzzz) � φ(2)(zzzzz) � . . . � φ(n)(zzzzz),

i.e. the gradient 	φ(zzzzz) ∈ D− = {xxxxx : 0 � x1 � x2 � . . . � xn} , for all zzzzz in the interior
of D .

One of the needed concepts in this paper is Archimedean copula. The class of
Archimedean copulas has a wide range of dependence structures including the inde-
pendent copula. First, we consider the definition of Archimedean copula according to
McNeil and Nešlehová [29] as the below.
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DEFINITION 4. Let

C(v1, . . . ,vn) = φ

(
n

∑
i=1

φ−1(vi)

)
, (v1, . . . ,vn) ∈ [0,1]n,

where φ : [0,∞)→ [0,1] is called a generator function which satisfies φ(0)= 1, lim
x→∞

φ(x)

= 0 and which is strictly decreasing on [0, inf{x : φ(x) = 0}) . Its inverse φ−1 : (0,1]→
[0,∞) is extended at zero to φ−1(0) = inf{x : φ(x) = 0} . For some given dimensions n ,
the function C is Archimedean copula if and only if φ is n -monotone; that is φ is dif-
ferentiable on (0,∞) up to the order n−2, (−1)kφ (k)(x) � 0, for k = 1, . . . ,n−2, and
(−1)n−2φ (n−2)(x) is decreasing and convex on (0,∞) . In this setting, φ (i)(x) denotes
the i th derivative of function φ(x) .

DEFINITION 5. A two dimentional copula C is positively quadrant dependent
(PQD) if for all (v1,v2) ∈ [0,1]2 , we have C(v1,v2) � v1v2 .

In the following, we state some useful definitions and lemmas related to copulas.

DEFINITION 6. Let C1 and C2 be two copulas. C1 is less positively lower orthant
dependent (PLOD) than C2 , denoted by C1 ≺C2 , if for all vvvvv ∈ [0,1]n , C1(vvvvv) � C2(vvvvv) .

We state the following lemmas from Durante [12] and Dolati and Dehghan Nezhad
[11] related to Schur-concavity of copulas.

LEMMA 3. Let C be a continuously differentiable copula. C is Schur-concave on
[0,1]n , if and only if,

(i) C is symmetric;

(ii) ∂C(vvvvv)
∂v1

� ∂C(vvvvv)
∂v2

on the set {vvvvv ∈ [0,1]n : v1 � . . . � vn} .

LEMMA 4. Every Archimedean copula is Schur-concave.

An important copula in application, is the Farlie-Gumbel-Morgenstern (FGM) copula
which was introduced by Morgenstern [31] with a trace back to Eyraud [13] and was

discussed by Gumbel [18] and Farlie [14], of the form Cθ (vvvvv) =
n
∏
i=1

vi +θ
n
∏
i=1

vi(1− vi) ,

where θ ∈ [−1,1] .

LEMMA 5. The FGM copula is Schur-concave for any θ ∈ [−1,1] .

For a comprehensive discussion in the topic of copula and the different types of depen-
dency, one may refer to Nelsen [33].

Also, we define a required space as below:

S =
{

(xxxxx,yyyyy) =
[
x1 x2

y1 y2

]
: (xi − x j)(yi − y j) � 0, i, j = 1,2

}
.
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3. Main results

In this section, we compare the largest claim amounts from two interdependent
heterogeneous portfolios of risks in the sense of the usual stochastic ordering. Also, we
present some examples to illustrate the validity of the results.

The following theorem provides a comparison between the largest claim amounts
in two heterogeneous portfolios of risks, in terms of ppppp .

THEOREM 1. Let Xλ1
and Xλ2

be non-negative random variables with Xλi
∼

F(x;λi) , i = 1,2 , and associated copula C. Further, suppose that Ip1 , Ip2 ( Ip∗1 , Ip∗2 )
is a set of independent Bernoulli random variables, independent of the Xλi

’s, with
E[Ipi ] = pi (E[Ip∗i ] = p∗i ), i = 1,2 . Assume that the following conditions hold:

(i) h : (0,1]→ I ⊂ R++ is a differentiable and strictly increasing concave function,
with the log-concave inverse;

(ii) F(x;λ ) is decreasing in λ for any x ∈ R+ ;

(iii) C is PQD.

Then, for (λλλλλ ,h(ppppp)) ∈ S and (λλλλλ ,h(ppppp∗)) ∈ S , we have

(h(p∗1),h(p∗2))
m�(h(p1),h(p2)) =⇒ Y ∗

2:2 �st Y2:2.

Proof. Without loss of generality, we suppose that λ1 � λ2 . For (λλλλλ ,h(ppppp))∈ S and
(λλλλλ ,h(ppppp∗)) ∈ S , we have h(p1) � h(p2) and h(p∗1) � h(p∗2) . Let h−1 be the inverse of
the function h , ui = h(pi) and u∗i = h(p∗i ) , for i = 1,2. It can be easily verified that
the distribution function of Y2:2 is given by

GY2:2(x) =
2

∏
i=1

(
1−h−1(ui)F(x;λi)

)

+h−1(u1)h−1(u2)
[
C
(
F(x;λ1),F(x;λ2)

)−F(x;λ1)F(x;λ2)
]
. (1)

Let
GY2:2(x) = −Ψ1(uuuuu)−Ψ2(uuuuu),

where

Ψ1(uuuuu) = −
2

∏
i=1

(
1−h−1(ui)F(x;λi)

)
,

and

Ψ2(uuuuu) = −h−1(u1)h−1(u2)
[
C
(
F(x;λ1),F(x;λ2)

)−F(x;λ1)F(x;λ2)
]
.
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The partial derivative of Ψ1(uuuuu) with respect to ui is given by

∂Ψ1(uuuuu)
∂ui

= −
F(x;λi)

dh−1(ui)
dui

1−h−1(ui)F(x;λi)
Ψ1(uuuuu) � 0.

Since F(x;λ ) is decreasing in λ , by using the increasing and convexity properties of
h−1(x) in x ∈ R+ , for λ1 � λ2 and u1 � u2 , we have

0 � 1−h−1(u1)F(x;λ1) � 1−h−1(u2)F(x;λ2), (2)

and

F(x;λ1)
dh−1(u1)

du1
� F(x;λ2)

dh−1(u2)
du2

� 0. (3)

Using (2) and (3), we obtain

∂Ψ1(uuuuu)
∂u1

− ∂Ψ1(uuuuu)
∂u2

= −
[ F(x;λ1)

dh−1(u1)
du1

1−h−1(u1)F(x;λ1)
−

F(x;λ2)
dh−1(u2)

du2

1−h−1(u2)F(x;λ2)

]
Ψ1(uuuuu) � 0.

Applying the Lemma 2 and the assumption (u∗1,u
∗
2)

m�(u1,u2) , imply that

Ψ1(uuuuu∗) � Ψ1(uuuuu). (4)

Now, the partial derivative of Ψ2(uuuuu) with respect to ui is given by

∂Ψ2(uuuuu)
∂ui

=
dh−1(ui)

dui

h−1(ui)
Ψ2(uuuuu) =

dlogh−1(ui)
dui

Ψ2(uuuuu) � 0.

Therefore, for u1 � u2 , we obtain

∂Ψ2(uuuuu)
∂u1

− ∂Ψ2(uuuuu)
∂u2

=
[
dlogh−1(u1)

du1
− dlogh−1(u2)

du2

]
Ψ2(uuuuu) � 0,

where the inequality follows from log-concavity of h−1 and negativity of Ψ2(uuuuu) which

is due to PQD property of C . Thus, applying Lemma 2 and the assumption (u∗1,u
∗
2)

m�
(u1,u2) , imply that

Ψ2(uuuuu∗) � Ψ2(uuuuu). (5)

By using (4) and (5), the proof is completed. �
The following theorem provides a comparison between the largest claim amounts

in two heterogeneous portfolios of risks, in terms of λλλλλ .

THEOREM 2. Let Xλ1
and Xλ2

(Xλ ∗
1

and Xλ ∗
2
) be non-negative random variables

with Xλi
∼ F(x;λi) (Xλ ∗

i
∼ F(x;λ ∗

i )), i = 1,2 , and associated copula C. Further,
suppose that Ip1 , Ip2 is a set of independent Bernoulli random variables, independent
of the Xλi

’s (Xλ ∗
i
’s), with E[Ipi ] = pi , i = 1,2 . Assume that the following conditions

hold:
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(i) h : [0,1] → I ⊂ R+ is a differentiable and strictly increasing function;

(ii) F(x;λ ) is decreasing and convex in λ for any x ∈ R+ ;

(iii) ∂C(v1,v2)
∂v1

� ∂C(v1,v2)
∂v2

, for all 0 � v1 � v2 � 1 .

Then, for (λλλλλ ,h(ppppp)) ∈ S and (λλλλλ ∗,h(ppppp)) ∈ S , we have

(λ ∗
1 ,λ ∗

2 )
w�(λ1,λ2) =⇒ Y ∗

2:2 �st Y2:2.

Proof. Without loss of generality, we suppose that λ1 � λ2 , u1 � u2 and u∗1 � u∗2 .
By some algebraic calculations in (1), the distribution function of Y2:2 can be rewritten
as the following form:

GY2:2(x) = (1−h−1(u1))(1−h−1(u2))+h−1(u1)h−1(u2)

×
[
C
(
F(x;λ1),F(x;λ2)

)
+

1−h−1(u2)
h−1(u2)

F(x;λ1)+
1−h−1(u1)

h−1(u1)
F(x;λ2)

]
.

Define Ψ(λλλλλ ) = −GY2:2(x) . The partial derivatives of Ψ(λλλλλ ) with respect to λi , i = 1,2
are given by

∂Ψ(λλλλλ )
∂λ1

= −h−1(u1)h−1(u2)
dF(x;λ1)

dλ1

[
∂C
(
F(x;λ1),F(x;λ2)

)
∂v1

+
1−h−1(u2)

h−1(u2)

]
� 0,

and

∂Ψ(λλλλλ )
∂λ2

= −h−1(u1)h−1(u2)
dF(x;λ2)

dλ2

[
∂C
(
F(x;λ1),F(x;λ2)

)
∂v2

+
1−h−1(u1)

h−1(u1)

]
� 0,

where the inequalities are due to decreasing property of F(x;λ ) in λ and positivity of
1−h−1(x)
h−1(x) in x ∈ R+ . Since h−1 is increasing in x ∈ R+ and F(x;λ ) is decreasing and

convex in λ for any x ∈ R+ , then for λ1 � λ2 and u1 � u2 , we have

0 � 1−h−1(u1)
h−1(u1)

� 1−h−1(u2)
h−1(u2)

, (6)

and
dF(x;λ1)

dλ1
� dF(x;λ2)

dλ2
� 0. (7)

The decreasing property of F(x;λ ) in λ and the condition (iii) imply that

∂C
(
F(x;λ1),F(x;λ2)

)
∂v1

�
∂C
(
F(x;λ1),F(x;λ2)

)
∂v2

� 0. (8)

Using (6), (7) and (8), we obtain
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∂Ψ(λλλλλ )
∂λ2

− ∂Ψ(λλλλλ )
∂λ1

= −h−1(u1)h−1(u2)

×
[
dF(x;λ2)

dλ2

∂C
(
F(x;λ1),F(x;λ2)

)
∂v2

+
dF(x;λ2)

dλ2

1−h−1(u1)
h−1(u1)

−dF(x;λ1)
dλ1

∂C
(
F(x;λ1),F(x;λ2)

)
∂v1

− dF(x;λ1)
dλ1

1−h−1(u2)
h−1(u2)

]
� 0.

Therefore, under the assumption λλλλλ ∗ w�λλλλλ , Lemma 2 implies that

Ψ(λλλλλ ∗) � Ψ(λλλλλ ),

which completes the proof. �
The following theorem provides a comparison between the largest claim amounts in
two heterogeneous portfolios of risks, in terms of ppppp and λλλλλ .

THEOREM 3. Let Xλ1
and Xλ2

(Xλ ∗
1

and Xλ ∗
2
) be non-negative random variables

with Xλi
∼ F(x;λi) (Xλ ∗

i
∼ F(x;λ ∗

i )), i = 1,2 , and associated copula C. Further, sup-
pose that Ip1 , Ip2 ( Ip∗1 , Ip∗2 ) is a set of independent Bernoulli random variables, inde-
pendent of the Xλi

’s (Xλ ∗
i
’s), with E[Ipi ] = pi (E[Ip∗i ] = p∗i ), i = 1,2 . Assume that the

following conditions hold:

(i) h : (0,1]→ I ⊂ R++ is a differentiable and strictly increasing concave function,
with a log-concave inverse;

(ii) F(x;λ ) is decreasing and convex in λ for any x ∈ R+ ;

(iii) C is PQD and ∂C(v1,v2)
∂v1

� ∂C(v1,v2)
∂v2

, for all 0 � v1 � v2 � 1 .

Then, for (λλλλλ ,h(ppppp)) ∈ S and (λλλλλ ∗,h(ppppp∗)) ∈ S , we have

(h(p∗1),h(p∗2))
m�(h(p1),h(p2)) and (λ ∗

1 ,λ ∗
2 )

w�(λ1,λ2) =⇒ Y ∗
2:2 �st Y2:2.

Proof. Let V2:2 , Z2:2 and W2:2 be the largest claim amounts from the portfolios
(Ip∗1:2

Xλ ∗
2:2

, Ip∗2:2
Xλ ∗

1:2
) , (Ip1:2Xλ ∗

2:2
, Ip2:2Xλ ∗

1:2
) and (Ip1:2Xλ2:2

, Ip2:2Xλ1:2
) , respectively. It

can be verified that Y ∗
2:2

st=V2:2 and Y2:2
st=W2:2 . On the other hand, Theorem 1 and

Theorem 2 imply that V2:2 �st Z2:2 and Z2:2 �st W2:2 , respectively. Hence, the required
result is obtained. �

The scale family is an applicable model in reliability theory and actuarial sci-
ence. Xλ is said to follow the scale family, if its survival function can be expressed as
F(x;λ ) = F(λx) , where F(x) is the baseline survival function with the corresponding
density function f (x) and λ > 0.

The following theorem provides a comparison between the largest claim amounts
in two heterogeneous portfolio of risks, whenever the marginal distributions belonging
to the scale family.
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THEOREM 4. Let F(x;λi) = F(λix) and F(x;λ ∗
i ) = F(λ ∗

i x) , for i = 1,2 . Under
the setup of Theorem 3, suppose that the following conditions hold:

(i) h : (0,1]→ I ⊂ R++ is a differentiable and strictly increasing concave function,
with a log-concave inverse;

(ii) f (x) is decreasing in x ∈ R+ ;

(iii) C is PQD and ∂C(v1,v2)
∂v1

� ∂C(v1,v2)
∂v2

, for all 0 � v1 � v2 � 1 .

Then, for (λλλλλ ,h(ppppp)) ∈ S and (λλλλλ ∗,h(ppppp∗)) ∈ S , we have

(h(p∗1),h(p∗2))
m�(h(p1),h(p2)) and (λ ∗

1 ,λ ∗
2 )

w�(λ1,λ2) =⇒ Y ∗
2:2 �st Y2:2.

Proof. Note that the conditions (i) and (iii) are similar to the conditions (i) and
(iii) of Theorem 3. Also, it can be easily verified that the condition (ii) of this theorem,
satisfies the condition (ii) of Theorem 3, which holds the desired result. �

Gamma distribution is one of the most applicable distributions to depict the claim
amounts whenever the shape parameter is less than 1. X has the gamma distribution
with the shape parameter α and the rate parameter λ , denoted by X ∼ Γ(α,λ ) , if its
density function is given by

f (x;α,λ ) =
λ α

Γ(α)
xα−1e−λ x, x ∈ R++.

The following example provides a numerical example to illustrate the validity of Theo-
rem 4.

EXAMPLE 1. Let Xλi
∼ Γ(0.8,λi) (Xλ ∗

i
∼ Γ(0.8,λ ∗

i )), for i = 1,2, with the as-
sociated FGM copula. It is clear that this copula is PQD if θ ∈ [0,1] . Further, sup-
pose that Ip1 , Ip2 ( Ip∗1 , Ip∗2 ) is a set of independent Bernoulli random variables, in-
dependent of the Xλi

’s (Xλ ∗
i
’s), with E[Ipi ] = pi (E[Ip∗i ] = p∗i ), for i = 1,2. We

take h(p) = p , (λ1,λ2) = (0.26,0.74) , (p1, p2) = (0.03,0.02) , (λ ∗
1 ,λ ∗

2 ) = (0.4,0.6) ,
(p∗1, p

∗
2) = (0.026,0.024) and θ = 0.5. Using Lemma 3 and Lemma 5, we get the con-

dition (iii) of Theorem 4, and obviously can be verified that the other conditions are
also satisfied. So, we have Y ∗

2:2 �st Y2:2 . Figure 1 represents the survival functions of
Y2:2 and Y ∗

2:2 , which agrees with the intended result.

The following example illustrates that the conditions (λλλλλ ,h(ppppp))∈ S and (λλλλλ ∗,h(ppppp∗))
∈ S is an important condition and can not be dropped.

EXAMPLE 2. Under the same setup in Example 1, we take (p1, p2) = (0.02,0.03)
and (p∗1, p

∗
2)= (0.028,0.022) with the other unchanged values. It is clear that (λλλλλ ,h(ppppp))

/∈ S , but it can be easily verified that the other conditions of Theorem 4 are satisfied.
Figure 2 represents the survival functions of Y2:2 and Y ∗

2:2 , which cross each other.
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Figure 1: Plots of the survival functions of Y2:2 and Y ∗
2:2 in Example 1.
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Figure 2: Plots of the survival functions of Y2:2 and Y ∗
2:2 in Example 2.

The proportional hazard rate (PHR) model is a flexible family of distributions with
important role in reliability theory, actuarial science and other fields; see for example
Cox [9], Finkelstein [15], Kumar and Klefsjö [23], Balakrishnan et al. [2] and Li and
Li [25]. Xλ is said to follow the PHR model, if its survival function can be expressed
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as F(x;λ ) = [F(x)]λ , where F(x) is the baseline survival function and λ > 0.
The following theorem provides a comparison between the largest claim amounts

in two heterogeneous portfolio of risks, whenever the marginal distributions belonging
to the PHR model.

THEOREM 5. Let F(x;λi) = [F(x)]λi and F(x;λ ∗
i ) = [F(x)]λ

∗
i , for i = 1,2 . Un-

der the setup of Theorem 3, suppose that the following conditions hold:

(i) h : (0,1]→ I ⊂ R++ is a differentiable and strictly increasing concave function,
with the log-concave inverse;

(ii) C is PQD and ∂C(v1,v2)
∂v1

� ∂C(v1,v2)
∂v2

, for all 0 � v1 � v2 � 1 .

Then, for (λλλλλ ,h(ppppp)) ∈ S and (λλλλλ ∗,h(ppppp∗)) ∈ S , we have

(h(p∗1),h(p∗2))
m�(h(p1),h(p2)) and (λ ∗

1 ,λ ∗
2 )

w�(λ1,λ2) =⇒ Y ∗
2:2 �st Y2:2.

Proof. Note that F(x;λ ) = [F(x)]λ is decreasing and convex in λ , which sat-
isfies the condition (ii) of Theorem 3. Therefore, applying Theorem 3 completes the
proof. �

The Pareto distribution is a special case of the PHR model, which is commonly
used as the distribution of claim severity from policyholders in insurance. X has the
Pareto distribution with parameters β and λ , denoted by X ∼ Pareto(β ,λ ) , if its sur-
vival function is given by

F(x;β ,λ ) = (
β
x

)λ , x � β .

The following example provides a numerical example to illustrate the validity of Theo-
rem 5.

EXAMPLE 3. Let Xλi
∼ Pareto(1,λi) (Xλ ∗

i
∼ Pareto(1,λ ∗

i )), for i = 1,2, with
the associated Ali-Mikhail-Haq copula, which was introduced by Ali et al. [1], of
the form Cθ (v1,v2) = v1v2

1−θ(1−v1)(1−v2)
, where θ ∈ [−1,1] . According to Nelsen [33],

this copula is Archimedean and obviously is PQD if θ ∈ [0,1] . Further, suppose
that Ip1 , Ip2 ( Ip∗1 , Ip∗2 ) is a set of independent Bernoulli random variables, independent
of the Xλi

’s (Xλ ∗
i
’s), with E[Ipi ] = pi (E[Ip∗i ] = p∗i ), for i = 1,2. We take h(p) =

log(p + 2) , (λ1,λ2) = (4,2) , (p1, p2) = (0.02,0.06) , (λ ∗
1 ,λ ∗

2 ) = (4,6) , (p∗1, p
∗
2) =

(0.0479,0.0319) and θ = 0.3. Lemma 3 and Lemma 4 imply the condition (ii) of
Theorem 5, and it can be easily verified that the other condition is also satisfied. So, we
have Y ∗

2:2 �st Y2:2 . Figure 3 represents the survival functions of Y2:2 and Y ∗
2:2 , which

agrees with the intended result.

The transmuted-G (TG) model, which was introduced by Mirhossaini and Dolati
[30] and Shaw and Buckley [35], is an attractive model for constructing new flexible
distributions by adding a new parameter. The random variable Xλ said to belong to the
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Figure 3: Plots of the survival functions of Y2:2 and Y ∗
2:2 in Example 3.

TG model with the baseline distribution function F(x) and survival F(x) , if its survival
function can be expressed as F(x;λ ) = F(x)(1−λF(x)) , where λ ∈ [−1,1] .

The following theorem provides a comparison between the largest claim amounts
in two heterogeneous portfolios of risks, whenever the marginal distributions belonging
to the TG model.

THEOREM 6. Let F(x;λi)= F(x)(1−λiF(x)) and F(x;λ ∗
i )= F(x)(1−λ ∗

i F(x)) ,
for i = 1,2 . Under the setup of Theorem 3, suppose that the following conditions hold:

(i) h : (0,1]→ I ⊂ R++ is a differentiable and strictly increasing concave function,
with the log-concave inverse;

(ii) C is PQD and ∂C(v1,v2)
∂v1

� ∂C(v1,v2)
∂v2

, for all 0 � v1 � v2 � 1 .

Then, for (λλλλλ ,h(ppppp)) ∈ S and (λλλλλ ∗,h(ppppp∗)) ∈ S , we have

(h(p∗1),h(p∗2))
m�(h(p1),h(p2)) and (λ ∗

1 ,λ ∗
2 )

w�(λ1,λ2) =⇒ Y ∗
2:2 �st Y2:2.

Proof. Note that F(x;λ )= F(x)(1−λF(x)) is decreasing and convex in λ , which
satisfies the condition (ii) of Theorem 3. Therefore, applying Theorem 3 completes the
proof. �

The transmuted exponential distribution, which was introduced by Mirhossaini
and Dolati [30] has non-negative support and can be used to simulate the claim severity
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from policyholders in insurance. X has the transmuted exponential distribution with
parameters μ and λ , denoted by X ∼ TE(μ ,λ ) , if its survival function is given by

F(x,μ ,λ ) = e−x/μ [1−λ (1− e−x/μ)], x � 0, μ > 0, −1 � λ � 1.

The following example provides a numerical example to illustrate the validity of
Theorem 6.

EXAMPLE 4. Let Xλi
∼ TE(3,λi) (Xλ ∗

i
∼ TE(3,λ ∗

i )), for i = 1,2, with the as-
sociated Gumbel-Hougaard copula, which was first introduced by Gumbel [19], of the
form

Cθ (v1,v2) = exp

(
−
[
(− logv1)θ +(− logv2)θ

]1/θ
)

,

where θ ∈ [1,∞) . According to Nelsen [33], this copula is Archimedean and is PQD.
Further, suppose that Ip1 , Ip2 ( Ip∗1 , Ip∗2 ) is a set of independent Bernoulli random vari-
ables, independent of the Xλi

’s (Xλ ∗
i
’s), with E[Ipi ] = pi (E[Ip∗i ] = p∗i ), for i = 1,2. We

take h(p) =
√

p , (λ1,λ2) = (0.6,−0.2) , (p1, p2) = (0.04,0.09) , (λ ∗
1 ,λ ∗

2 ) = (0.1,0.4) ,
(p∗1, p

∗
2) = (0.0676,0.0576) and θ = 10. Lemma 3 and Lemma 4 imply the condition

(ii) of Theorem 6, and it can be easily verified that the other condition is also satisfied.
So, we have Y ∗

2:2 �st Y2:2 . Figure 4 represents the survival functions of Y2:2 and Y ∗
2:2 ,

which coincides with the intended result.
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Figure 4: Plots of the survival functions of Y2:2 and Y ∗
2:2 in Example 4.

Next, we consider the case that the occurrence probabilities are also interdepen-
dent. Here, we denote IIIII = (I1, I2) and P(IIIII = μμμμμ) = p(μμμμμ) . The following lemma consid-
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ers the concept of weakly stochastic arrangement increasing through left tail probability
(LWSAI) for IIIII , which is a particular case of Lemma 5.3 of Cai and Wei [8].

LEMMA 6. A bivariate Bernoulli random vector IIIII is LWSAI , if and only if p(1,0)
� p(0,1) .

The following theorem gives a comparison between the largest claim amounts in
two heterogeneous portfolios of risks, whenever the occurrence probabilities are inter-
dependent.

THEOREM 7. Let Xλ1
and Xλ2

(Xλ ∗
1

and Xλ ∗
2
) be non-negative random variables

with Xλi
∼ F(x;λi) (Xλ ∗

i
∼ F(x;λ ∗

i )), i = 1,2 , and associated copula C. Further, sup-
pose that IIIII is LWSAI , and independent of the Xλi

’s (Xλ ∗
i
’s). Assume that the following

conditions hold:

(i) F(x;λ ) is decreasing and convex in λ for any x ∈ R+ ;

(ii) (λ ∗
1 ,λ ∗

2 )
m�(λ1,λ2) , such that λ1 � λ2 and λ ∗

1 � λ ∗
2 ;

(iii) C is Schur-concave.

Then, we have Y ∗
2:2 �st Y2:2 .

Proof. Let X2:2 = max(Xλ1
,Xλ2

) and X∗
2:2 = max(Xλ ∗

1
,Xλ ∗

2
) . First, we prove that

X∗
2:2 �st X2:2 . It is enough to show that the function

FX2:2(x) = C(F(x;λ1),F(x;λ2)),

is Schur-concave in λλλλλ . According to Marshall et al. [28, Table 2, Page 91], Schur-
concavity of C and increasing and concavity properties of F(x;λ ) in λ , implies that
FX2:2(x) is increasing and Schur-concave in λλλλλ . Thus, condition (ii) implies

X∗
2:2 �st X2:2. (9)

Also, according to Marshall et al. [28], the convexity of F(x;λi) in λi , implies the
Schur-convexity of F(x;λ1)+F(x;λ2) in λλλλλ . Thus, the condition (ii) implies that

F(x;λ ∗
1 )+F(x;λ ∗

2 ) � F(x;λ1)+F(x;λ2). (10)

Note that

GY2:2(x) = p(0,0)+ p(1,1)FX2:2(x)+ p(0,1)F(x;λ2)+ p(1,0)F(x;λ1),

and similarly,

GY∗
2:2

(x) = p(0,0)+ p(1,1)FX∗
2:2

(x)+ p(0,1)F(x;λ ∗
2 )+ p(1,0)F(x;λ ∗

1 ).
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Thus, we have

GY2:2(x)−GY∗
2:2

(x) = p(1,1)[FX2:2(x)−FX∗
2:2

(x)]+ p(0,1)[F(x;λ2)−F(x;λ ∗
2 )]

+p(1,0)[F(x;λ1)−F(x;λ ∗
1 )]

= p(1,1)[FX∗
2:2

(x)−FX2:2(x)]+ p(0,1)[F(x;λ ∗
2 )−F(x;λ2)]

+p(1,0)[F(x;λ ∗
1 )−F(x;λ1)]

� p(0,1)[F(x;λ ∗
2 )−F(x;λ2)]+ p(1,0)[F(x;λ ∗

1 )−F(x;λ1)]
� p(0,1)[F(x;λ ∗

2 )−F(x;λ2)]+ p(0,1)[F(x;λ ∗
1 )−F(x;λ1)]

= p(0,1)[F(x;λ ∗
1 )+F(x;λ ∗

2 )−F(x;λ1)−F(x;λ2)]
� 0,

where the first inequality is due to (9), the second inequality is according to Lemma
6 and the last inequality is based on (10). Hence, it is proved that GY2:2(x) � GY∗

2:2
(x)

which completes the proof. �
In the following, three special cases of Theorem 7 with respect to the scale, PHR

and TG models, are represented.

THEOREM 8. Let F(x;λi) = F(λix) and F(x;λ ∗
i ) = F(λ ∗

i x) , for i = 1,2 . Under
the setup of Theorem 7, suppose that the following conditions hold:

(i) f (x) is decreasing in x ∈ R+ ;

(ii) (λ ∗
1 ,λ ∗

2 )
m�(λ1,λ2) , such that λ1 � λ2 and λ ∗

1 � λ ∗
2 ;

(iii) C is Schur-concave.

Then, we have Y ∗
2:2 �st Y2:2 .

Proof. Obviously, the condition (i) of Theorem 8 implies the condition (i) of The-
orem 7 which completes the proof. �

THEOREM 9. Let F(x;λi) = [F(x)]λi and F(x;λ ∗
i ) = [F(x)]λ

∗
i , for i = 1,2 . Un-

der the setup of Theorem 7, suppose that the following conditions hold:

(i) (λ ∗
1 ,λ ∗

2 )
m�(λ1,λ2) , such that λ1 � λ2 and λ ∗

1 � λ ∗
2 ;

(ii) C is Schur-concave.

Then, we have Y ∗
2:2 �st Y2:2 .

Proof. Obviously, F(x;λ )= [F(x)]λ satisfies the condition (i) of Theorem 7 which
completes the proof. �

THEOREM 10. Let F(x;λi)= F(x)(1−λiF(x)) and F(x;λ ∗
i )= F(x)(1−λ ∗

i F(x)) ,
for i = 1,2 . Under the setup of Theorem 7, suppose that the following conditions hold:
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(i) (λ ∗
1 ,λ ∗

2 )
m�(λ1,λ2) , such that λ1 � λ2 and λ ∗

1 � λ ∗
2 ;

(ii) C is Schur-concave.

Then, we have Y ∗
2:2 �st Y2:2 .

Proof. Obviously, F(x;λ ) = F(x)(1−λF(x)) satisfies the condition (i) of Theo-
rem 7 which completes the proof. �

The following example provides a numerical example to illustrate the validity of
Theorem 9.

EXAMPLE 5. Let Xλi
∼ Pareto(1,λi) (Xλ ∗

i
∼ Pareto(1,λ ∗

i )), for i = 1,2, with the
associated FGM copula, with θ = 0.7. Let (λ1,λ2) = (7,2) , (λ ∗

1 ,λ ∗
2 ) = (5.5,3.5) ,

p(0,0) = 0.89, p(0,1) = 0.06, p(1,0) = 0.04 and p(1,1) = 0.01. Using Lemma 5,
we get the condition (ii) of Theorem 9, and obviously can be verified that the other
conditions are also satisfied. So, we have Y ∗

2:2 �st Y2:2 . Figure 5 represents the survival
functions of Y2:2 and Y ∗

2:2 , which approves with the intended result.
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Figure 5: Plots of the survival functions of Y2:2 and Y ∗
2:2 in Example 5.

The following example illustrates that the conditions (ii) of Theorem 7 can not be
dropped.

EXAMPLE 6. Under the same setup in Example 5, we take (λ1,λ2) = (2,7) with
the other unchanged values. It is clear that λ1 � λ2 , but it can be easily verified that the
other conditions of Theorem 7 are satisfied. Figure 6 represents the survival functions
of Y2:2 and Y ∗

2:2 , which cross each other.
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Figure 6: Plots of the survival functions of Y2:2 and Y ∗
2:2 in Example 6.

The following theorem provides a comparison between the largest claim amounts
in two heterogeneous portfolios of risks, in terms of λλλλλ .

THEOREM 11. Let Xλ1
, . . . ,Xλn (Xλ ∗

1
, . . . ,Xλ ∗

n
) be non-negative random variables

with Xλi
∼ F(x;λi) (Xλ ∗

i
∼ F(x;λ ∗

i )), i = 1, . . . ,n, and associated copula C. Further,
suppose that Ip1 , . . . , Ipn is a set of independent Bernoulli random variables, indepen-
dent of the Xλi

’s (Xλ ∗
i
’s), with E[Ipi ] = pi , i = 1, . . . ,n. Assume that F(x;λ ) is de-

creasing in λ for any x ∈ R+ . Then, we have

λi � λ ∗
i , ∀ i = 1, . . . ,n =⇒ Y ∗

n:n �st Yn:n.

Proof. Denote p(μμμμμ) = P(Ip1 = μ1, . . . , Ipn = μn) . The distribution function of Yn:n

can be obtained as follows:

GYn:n(x) = P

(
Y1 � x, . . . ,Yn � x

)

= P

(
Ip1Xλ1

� x, . . . , IpnXλn � x

)

= ∑
μμμμμ∈{0,1}n

p(μμμμμ) P

(
Ip1Xλ1

� x, . . . , IpnXλn � x|Ip1 = μ1, . . . , Ipn = μn

)

= ∑
μμμμμ∈{0,1}n

p(μμμμμ) P

(
μ1Xλ1

� x, . . . ,μnXλn � x|Ip1 = μ1, . . . , Ipn = μn

)
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= ∑
μμμμμ∈{0,1}n

p(μμμμμ) P

(
μ1Xλ1

� x, . . . ,μnXλn � x

)

= ∑
μμμμμ∈{0,1}n

p(μμμμμ) C

(
[F(x;λ1)]μ1 , . . . , [F(x;λn)]μn

)
. (11)

Based on decreasing property of F(x;λ ) in λ and the nature of copula, we immediately
conclude that GYn:n(x) is increasing in λi , for i = 1, . . . ,n . Hence, the desired result
holds. �

The following theorem represents the impact due to degree of dependence in com-
parison the largest claim amounts in two heterogeneous portfolios of risks.

THEOREM 12. Let Xλ1
, . . . ,Xλn be non-negative random variables with Xλi

∼

F(x;λi) , i = 1, . . . ,n, and associated copula C (C∗ ). In addition, suppose that Ip1 , . . . ,
Ipn is a set of independent Bernoulli random variables, independent of the Xλi

’s, with
E[Ipi ] = pi , i = 1, . . . ,n. Then, we have

C ≺C∗ =⇒ Y ∗
n:n �st Yn:n.

Proof. By (11) and Definition 6, the proof is immediately completed. �
The following theorem provides a comparison between the largest claim amounts

in two heterogeneous portfolios of risks, in terms of λλλλλ and degree of dependence.

THEOREM 13. Let Xλ1
, . . . ,Xλn (Xλ ∗

1
, . . . ,Xλ ∗

n
) be non-negative random variables

with Xλi
∼ F(x;λi) (Xλ ∗

i
∼ F(x;λ ∗

i )), i = 1, . . . ,n, and associated copula C (C∗ ). Fur-
thermore, suppose that Ip1 , . . . , Ipn is a set of independent Bernoulli random variables,
independent of the Xλi

’s (Xλ ∗
i
’s), with E[Ipi ] = pi , i = 1, . . . ,n. Assume that F(x;λ ) is

decreasing in λ for any x ∈ R+ . Then, we have

C ≺C∗ and λi � λ ∗
i , ∀ i = 1, . . . ,n =⇒ Y ∗

n:n �st Yn:n.

Proof. Let Vn:n , Zn:n and Wn:n be the largest claim amounts from the portfolios
(Ip1Xλ ∗

1
, . . . , IpnXλ ∗

n
) with associated copula C∗ , (Ip1Xλ1

, . . . , IpnXλn) with associated
copula C∗ , and (Ip1Xλ1

, . . . , IpnXλn) with associated copula C , respectively. It is eas-

ily seen that Y ∗
n:n

st=Vn:n and Yn:n
st=Wn:n . On the other hand, Theorem 12 and Theorem

13 imply that Vn:n �st Zn:n and Zn:n �st Wn:n , respectively. Hence, the proof is com-
pleted. �

The three following theorems consider the scale, PHR and TG models as the spe-
cial cases of Theorem 13.

THEOREM 14. Let F(x;λi) = F(λix) and F(x;λ ∗
i ) = F(λ ∗

i x) , for i = 1, . . . ,n.
Under the setup of Theorem 13, Then, we have Y ∗

n:n �st Yn:n .

THEOREM 15. Let F(x;λi) = [F(x)]λi and F(x;λ ∗
i ) = [F(x)]λ

∗
i , for i = 1, . . . ,n.

Under the setup of Theorem 13, we have Y ∗
n:n �st Yn:n .
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THEOREM 16. Let F(x;λi)= F(x)(1−λiF(x)) and F(x;λ ∗
i )= F(x)(1−λ ∗

i F(x)) ,
for i = 1, . . . ,n. Under the setup of Theorem 13, we have Y ∗

n:n �st Yn:n .

Another important distribution used as the distribution of claim severity from pol-
icyholders is Weibull distribution, which is a special case of the scale model. X has
the Weibull distribution with parameters α and λ , denoted by X ∼ Wei(α,λ ) , if its
survival function is given by

F(x;α,λ ) = e−(λ x)α
, x ∈ R++.

The following example provides a numerical example to illustrate the validity of Theo-
rem 14.

EXAMPLE 7. Let Xλi
∼ Wei(3,λi) (Xλ ∗

i
∼ Wei(3,λ ∗

i )), for i = 1,2,3, with the
associated Frank copula, which was introduced by Frank [16], of the form

Cθ (v1,v2,v3) = − 1
θ

log

(
1+

(e−θv1 −1)(e−θv2 −1)(e−θv3 −1)
(e−θ −1)2

)
,

where θ ∈ (0,∞) . Further, suppose that Ip1 , Ip2 , Ip3 is a set of independent Bernoulli
random variables, independent of the Xλi

’s (Xλ ∗
i
’s), with E[Ipi ] = pi , for i = 1,2,3.

We take (λ1,λ2,λ3) = (0.5,0.7,0.3) , (λ ∗
1 ,λ ∗

2 ,λ ∗
3 ) = (0.51,0.7,0.33) , (p1, p2, p3) =

(0.01,0.02,0.07) and θ = 0.6. Obviously, the conditions of Theorem 14 are satisfied.
So, we have Y ∗

3:3 �st Y3:3 . Figure 7 represents the survival functions of Y3:3 and Y ∗
3:3 ,

which coincides with the intended result.
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Figure 7: Plots of the survival functions of Y3:3 and Y ∗
3:3 in Example 7.
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We recall that all the proven results of the paper hold under some sufficient condi-
tions. The following example shows that the mentioned conditions in Theorem 14 are
not necessary.

EXAMPLE 8. Under the same setup in Example 7, we take (λ ∗
1 ,λ ∗

2 ,λ ∗
3 ) =

(0.51,0.68,0.33) with the other unchanged values. It is clear that λ2 � λ ∗
2 , and conse-

quently the conditions of Theorem 14 are not fulfilled but anyhow the desired property
is satisfied; that is Y ∗

3:3 �st Y3:3 . Figure 8 represents this fact.
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Figure 8: Plots of the survival functions of Y3:3 and Y ∗
3:3 in Example 8.

Conclusion

In this paper, under some certain conditions, we discussed stochastic comparisons
between the largest claim amounts under dependency of severities in the sense of usual
stochastic ordering in a general model, which particularly includes some important
models such as the scale, PHR and TG models. However, we applied some distributions
to illustrate the results.
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