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ON THE VARIATION OF THE DISCRETE MAXIMAL OPERATOR

FENG LIU

(Communicated by J. Soria)

Abstract. In this note we study the endpoint regularity properties of the discrete nontangential
fractional maximal operator

Mα,β f (n) = sup
r∈N

|m−n|�β r

1
(2r +1)1−α

r

∑
k=−r

| f (m+ k)|,

where α ∈ [0,1) , β ∈ [0,∞) and N = {0,1,2, . . . ,} , covering the discrete centered Hardy-
Littlewood maximal operator and its fractional variant. More precisely, we establish the sharp
boundedness and continuity for Mα,β from �1(Z) to BV(Z) . When α = 0 , we prove that the
operator Mα,β is bounded and continuous on BV(Z) . Here BV(Z) denotes the set of functions
of bounded variation defined on Z . Our main results represent generalizations as well as natural
extensions of many previously known ones.

1. Introduction

The regularity theory of maximal operators has been the subject of many recent
articles in harmonic analysis. The first work was contributed by Kinnunen [11], who
studied the Sobolev regularity of the usual centered Hardy-Littlewood maximal func-
tion M and showed that M is bounded on the first order Sobolev spaces W 1,p(Rd)
for all 1 < p � ∞ . It was noticed that the W 1,p -bound for the uncentered maximal
operator M̃ also holds by a simple modification of Kinnunen’s arguments or [10, The-
orem 1]. Later on, Kinnunen’s results were extended to a local version in [12], to a
fractional version in [13], to a multisublinear version in [7, 20] and to a one-sided ver-
sion in [19]. Since M lacks the sublinear at the derivative level, the continuity of
M :W 1,p(Rd)→W 1,p(Rd) for 1 < p < ∞ is certainly a nontrivial issue. This problem
was solved by Luiro [25] in the affirmative and was later extended to the local version
in [26] and the multisublinear version in [7, 16].

Due to lack of L1 -boundedness, the W 1,1 -regularity for the maximal operator is
delicate. A crucial question was posed by Hajłasz and Onninen in [10]: Is the operator
f �→ |∇M f | bounded from W 1,1(Rd) to L1(Rd)? A complete solution was obtained
only in dimension d = 1 and partial progress on the general dimension d � 2 was given
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by Hajłasz and Malý [9] and Luiro [27]. Tanaka [31] first observed that if f ∈W 1,1(R) ,
then the maximal function M̃ f is weakly differentiable and

‖(M̃ f )′‖L1(R) � 2‖ f ′‖L1(R). (1)

This result was later sharpened by Aldaz and Pérez Lázaro [1] who proved that if f is
of bounded variation on R , then M̃ f is absolutely continuous and

Var
(
M̃ f

)
� Var( f ), (2)

where Var( f ) denotes the total variation of f on R . This yields

‖(M̃ f )′‖L1(R) � ‖ f ′‖L1(R) (3)

if f ∈ W 1,1(R) . Notice that the constant C = 1 in inequalities (2) and (3) is sharp.
Later on, Liu et al. [18] gave a simple proof of inequality (3) by an adaptation of the
methods in [31] and [1]. Recently, inequality (2) was extended to a fractional setting
in [5, Theorem 1] and to a multisublinear fractional setting in [21, Theorems 1.3-1.4].
Very recently, Carneiro et al. [6] proved that the map f �→ (M̃ f )′ is continuous from
W 1,1(R) to L1(R) . In the centered setting, Kurka [14] showed that if f is of bounded
variation on R , then inequality (2) holds for M (with constant C = 240,004). It was
also shown in [14] that if f ∈ W 1,1(R) , then M f is weakly differentiable and (1)
holds for M with constant C = 240,004. It is currently unknown whether inequality
(3) holds for M and the map f �→ (M f )′ is continuous from W 1,1(R) to L1(R) . For
other interesting works related to this theory, we refer the reader to [8, 17, 23, 30],
among others. Specially, Ramos [30] investigated the total variation inequalities for a
wider class of nontangential maximal operators

M α f (x) = sup
|x−y|�αt

1
2t

∫ y+t

y−t
| f (s)|ds,

where α � 0, which cover the centered and uncentered Hardy-Littlewood maximal
operators. More precisely, it is clear that M 0 = M and M 1 = M̃ . In [30], Ramos
proved that

Var(M α f ) � Var( f ),

if α ∈ [ 1
3 ,∞) and f is of bounded variation on R .

The main purpose of this paper is to study the regularity properties of the discrete
nontangential fractional maximal operator, which covers the discrete centered Hardy-
Littlewood maximal operator and its fractional version. Precisely, let α ∈ [0,1) and
β ∈ [0,∞) , the discrete nontangential fractional maximal operator Mα ,β is given by

Mα ,β f (n) = sup
r∈N

|m−n|�βr

1
(2r+1)1−α

r

∑
k=−r

| f (m+ k)|,

where N = {0,1,2,3, . . . ,} . Clearly, Mα ,0 (resp., M0,0 ) is just the classical discrete
centered fractional (resp., Hardy-Littlewood) maximal operator. However, Mα ,1 (resp.,
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M0,1 ) is not the classical discrete uncentered fractional (resp., Hardy-Littlewood) maxi-
mal operator. Recall that the discrete uncentered fractional maximal operator is defined
by

M̃α f (n) = sup
r,s∈N

1
(r+ s+1)1−α

s

∑
k=−r

f (n+ k), ∀n ∈ Z,

where α ∈ [0,1) . Particularly, when α = 0, M̃α reduces to the usual discrete uncen-
tered Hardy-Littlewood maximal operator M̃ .

Before stating our main results, let us recall some pertinent definitions, notation
and background. For a discrete function f : Z→R and 1 � p < ∞ , we define its �p(Z)-
norm by ‖ f‖�p(Z) := (∑n∈Z | f (n)|p)1/p and �∞(Z)-norm by ‖ f‖�∞(Z) := supn∈Z | f (n)| .
We also define the total variation of f by

Var( f ) = ‖ f ′‖�1(Z) = ∑
n∈Z

| f (n+1)− f (n)|,

where f ′(n) = f (n+1)− f (n) is the first derivative of f . We also write

Var( f ; [a,b]) = ‖ f ′‖�1([a,b]) =
b−1

∑
n=a

| f (n+1)− f (n)|

for the variation of f on the interval [a,b] , where a and b are integers (or possibly
a = −∞ , or b = ∞). It is clear that Var( f ;(−∞,∞)) = Var( f ) . We denote by BV(Z)
the set of functions of bounded variation defined on Z , which is a Banach space with
the norm

‖ f‖BV(Z) := | f (−∞)|+Var( f ),

where f (−∞) := limn→−∞ f (n) . It is clear that

‖ f‖�∞(Z) � ‖ f‖BV(Z) � 3‖ f‖�1(Z). (4)

Recently, the investigation of the regularity properties of the discrete maximal
operators has also attracted the attention of many authors. A good start was due to
Bober et al. [3] in 2012 when they proved that

Var(M̃ f ) � Var( f ) (5)

if Var( f ) < ∞ , and

Var(M0,0 f ) �
(
2+

146
315

)
‖ f‖�1(Z) (6)

if f ∈ �1(Z) . Observe that inequality (5) is sharp. It was pointed out in [2] that

Var(M0,1 f ) � Var( f ) (7)

if Var( f ) < ∞ . Later on, inequality (5) for M0,0 was established by Temur in [32] (with
constant C = 294,912,004). From (4) we see that

‖M0,β f‖�∞(Z) � ‖ f‖�∞(Z) � ‖ f‖BV(Z) (8)
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for all β ∈ [0,∞) . (8) together with the above conclusions yields that M̃ , M0,0 and M0,1

are bounded from BV(Z) to BV(Z) . Notice that inequality (6) is not optimal, and it
was asked in [3] whether the sharp constant for (6) is in fact C = 2, which was resolved
by Madrid in [28]. It’s worth mentioning that the continuity of M̃ : BV(Z) → BV(Z)
and M0,0 : BV(Z) → BV(Z) was established by Carneiro et al. [6] and Madrid [29]
respectively. For the fractional case, Carneiro and Madrid [5] showed that if 0 � α < 1,
q = 1

1−α , f ∈ BV(Z) and M̃α f �≡ ∞ , then

‖(M̃α f )′‖�q(Z) � 41/qVar( f ).

In [6], Carneiro et al. observed that the map f �→ (M̃α f )′ is not continuous from BV(Z)
to �q(Z) if 0 < α < 1 and q = 1

1−α . However, Carneiro and Madrid [5] established that

both Mα ,0 and M̃α are bounded and continuous from �1(Z) to BV(Z) when 0 � α < 1
(also see [15, 24]). Particularly, Liu [15] proved that

Var(Mα ,0 f ) � 2‖ f‖�1(Z) and Var(M̃α f ) � 2‖ f‖�1(Z) if f ∈ �1(Z),

and the constants C = 2 are the best possible. Liu [15] also pointed out that both Mα ,0

and M̃α are not bounded from BV(Z) to BV(Z) when 0 < α < 1. For the general
dimension d � 2, we refer the reader to [4, 5, 22].

In light of the aforementioned facts concerning the discrete Hardy-Littlewood
maximal operator and its fractional version, it is natural to ask the following question:

QUESTION. Whether Mα ,β has the similar endpoint regularity properties as that
of the discrete centered and uncentered Hardy-Littlewood maximal functions and their
fractional variants when α ∈ (0,1) and β ∈ (0,∞)?

This problem is resolved by our main theorem:

THEOREM 1. Let α ∈ [0,1) and β ∈ [0,∞) . Then
(i) M0,β is bounded and continuous from BV(Z) to BV(Z) . Moreover, if f is a

function satisfying Var( f ) < ∞ , then

Var(M0,β f ) � CVar( f ).

Specially, when β � 1 , the constant C = 1 .
(ii) Mα ,β is bounded and continuous from �1(Z) to BV(Z) . Specially, if f ∈

�1(Z) , then
Var(Mα ,β f ) � 2‖ f‖�1(Z).

REMARK 1. (i) When α ∈ [0,1) and β ∈ [0,1] , then

sup
f∈�1(Z)

f �≡0

Var(Mα ,β f )
‖ f‖�1(Z)

= 2.

This can be seen by (ii) of Theorem 1, [15, Theorem 1.2] and Proposition 1 in Section 2.
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(ii) Ramos [30] proved that Var(M α f )� Var( f ) if α ∈ [ 1
3 ,∞) and f is of bounded

variation on R . This poses a natural question that whether Ramos’s result can be ex-
tended to the discrete setting, which is very interesting.

The paper is organized as follows. After presenting some auxiliary lemmas in
Section 2, we shall prove Theorem 1 in Section 3. The proof of Theorem 1 is based
on some previous results followed from [2, 3, 15, 29, 32] and some technical results
(see Proposition 1 and Lemma 2). It should be pointed out that Proposition 1 is the key
that allows to extend some known results to the nontangential operators. Throughout
the paper, the letter C or c , sometimes with certain parameters, will stand for positive
constants not necessarily the same one at each occurrence, but are independent of the
essential variables.

2. Preliminary Lemmas

This section is devoted to presenting some preliminary results, which will play key
roles in the proof of Theorem 1. For an integer r ∈N and a discrete function f : Z→R ,
we define the fractional average function Ar( f ) by

Ar( f )(n) =
1

(2r+1)1−α

r

∑
k=−r

| f (n+ k)|.

LEMMA 1. Let α ∈ [0,1) and β ∈ [0,∞) . Let f ∈ �∞(Z) such that Mα ,β f �≡ ∞
and n ∈ Z .

(i) If Mα ,β f (n) > Mα ,β f (a) for some a ∈ Z , then Mα ,β f (n) is attained by a
average Ar( f )(z) with (z,r) ∈ Z×N and |n− z| � β r . Moreover, we have that z <
a−β r whenever n < a and z > a+ β r whenever a < n.

(ii) Assume that there exist two integers a1, b1 such that n ∈ (a1,b1) and

Mα ,β f (n) > max{Mα ,β f (a1),Mα ,β f (b1)}.
Then Mα ,β f (n) is attained by a average Ar( f )(z) with (z,r) ∈Z×N and |n−z|� β r .
Moreover,

[z−β r,z+ β r]⊂ [a1,b1]. (9)

(iii) Let [a,b] be an interval with a, b ∈ Z∪{−∞,∞} and n ∈ (a,b) . Assume that
Mα ,β f is monotonically non-decreasing on [a,n] and is monotonically non-increasing
on [n,b] . Suppose also that there exist two integers a1, b1 such that a1 ∈ [a,n) , b1 ∈
(n,b] and Mα ,β f (n) > max{Mα ,β f (a1),Mα ,β f (b1)} , then, for any 0 � γ < β , it holds
that

Var(Mα ,β f ; [a,b]) � Var(Mα ,γ f ; [a,b]). (10)

(iv) Let b ∈ Z and Mα ,β f be monotonically non-increasing on (−∞,b] , then

Var(Mα ,β f ;(−∞,b]) � Var(Mα ,γ f ;(−∞,b]). (11)
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(v) Let a ∈ Z and Mα ,β f be monotonically non-decreasing on [a,∞) , then

Var(Mα ,β f ; [a,∞)) � Var(Mα ,γ f ; [a,∞)).

Proof. We first prove (i). Assume that Mα ,β f (n) is not attained for any pair
(z,r) ∈ Z×N . There exists an increasing sequence of positive integer numbers {ri}i�1

satisfying r1 � |n−a|
2 and limi→∞ ri = ∞ such that

Mα ,β f (n) = sup
N∈N,N�ri
|z−n|�βN

1
(2N +1)1−α

N

∑
k=−N

| f (z+ k)|, ∀i � 1.

Fix i � 1, N � ri and z with |z− n| � βN . Notice that [z−N,z+N]∩ [z+ a− n−
N,z+a−n+N]= [z+a−n−N,z+N] if a > n and [z−N,z+N]∩ [z+a−n−N,z+
a−n+N] = [z−N,z+a−n+N] if a < n . This yields that

∣∣∣ 1
(2N +1)1−α

N

∑
k=−N

| f (z+ k)|− 1
(2N +1)1−α

N

∑
k=−N

| f (z+a−n+ k)|
∣∣∣

�
2‖ f‖�∞(Z)|n−a|

(2N +1)1−α .

This together with the fact that |(z+a−n)−a|� βN implies that

Mα ,β f (n) � Mα ,β f (a)+
2‖ f‖�∞(Z)|n−a|

(2ri +1)1−α , ∀i � 1.

This leads to Mα ,β f (n) � Mα ,β f (a) by letting i→ ∞ , which is a contradiction. Hence,
Mα ,β f (n) is attained by a average Ar( f )(z) with (z,r) ∈ Z×N and |n− z| � β r . It
follows that |a− z| > β r since Mα ,β f (n) = Ar( f )(z) > Mα ,β f (a) . So, z > a+ β r if
n > a and z < a−β r if n < a since |n− z|� β r .

Next we verify (ii). It follows from (i) that there exists (z,r) ∈ Z×N such that
Mα ,β f (n) = Ar( f )(z) and |n− z| � β r . Assume that (9) doesn’t hold. Since n ∈ [z−
β r,z+ β r]∩ (a1,b1) , then either a1 ∈ [z−β r,z+ β r] or b1 ∈ [z−β r,z+ β r] . Without
loss of generality we assume that a1 ∈ [z−β r,z+ β r] . Then Mα ,β f (a1) � Ar( f )(z) =
Mα ,β f (n) , which is a contradiction. Thus (9) holds.

It remains to show (iii). By (ii), there exist z∈ [a,b] and r∈N such that Mα ,β f (n)=
Ar( f )(z) � Mα ,γ f (z) . We now prove (10) by considering the following different cases.
If a, b ∈ Z . Then

Var(Mα ,β f ; [a,b]) = 2Mα ,β f (n)−Mα ,β f (a)−Mα ,β f (b)
� 2Mα ,γ f (z)−Mα ,γ f (a)−Mα ,γ f (b)
� Var(Mα ,γ f ; [a,b]).

This proves (10) in this case. If a = −∞ or b = ∞ . Without loss of generality we may
assume that a = −∞ and b = ∞ (since other cases can be obtained similarly). It is
obvious that both limm→−∞ Mα ,β f (m) and limn→+∞ Mα ,β f (n) exist. Moreover,

lim
m→−∞

Mα ,β f (m) � liminf
m→−∞

Mα ,γ f (m);
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lim
p→+∞

Mα ,β f (p) � liminf
p→+∞

Mα ,γ f (p).

Then we have

Var(Mα ,β f ; [−∞,∞]) � 2Mα ,β f (n)− lim
m→−∞

Mα ,β f (m)− lim
p→+∞

Mα ,β f (p)

� 2Mα ,γ f (z)− liminf
m→−∞

Mα ,γ f (m)− liminf
p→+∞

Mα ,γ f (p)

� Var(Mα ,γ f ; [−∞,∞]).

This proves inequality (10).
Finally, we only prove (iv) and (v) is analogous. If Mα ,β f (m) ≡ Mα ,β (b) for

all m ∈ (−∞,b] , the inequality (11) is trivial. Otherwise, there exists n0 < b such
that Mα ,β f (m) > Mα ,β f (b) for all m � n0 . Fix m � n0 . By (i), there exists a pair
(zm,rm) ∈ Z×N such that Mα ,β f (m) = Arm( f )(zm) and zm < b−β rm . Thus we have

Mα ,β f (m)−Mα ,β f (b) = Arm( f )(zm)−Mα ,γ f (b)
� Mα ,γ f (zm)−Mα ,γ f (b) � Var(Mα ,γ f ;(−∞,b]).

It follows that

Var(Mα ,β f ;(−∞,b]) = limsup
m→−∞

Mα ,β f (m)−Mα ,β f (b) � Var(Mα ,γ f ;(−∞,b]),

which gives (11) and completes the proof of Lemma 1.

In order to formulate the forthcoming results, let us recall the definitions of strings
of local maxima and local minima.

DEFINITION 1. ([5]). For a discrete function g : Z → R , we say that an interval
[n,m] is a string of local maxima of g if

g(n−1) < g(n) = . . . = g(m) > g(m+1).

If n = −∞ or m = ∞ (but not both simultaneously) we modify the definition accord-
ingly, eliminating one of the inequalities. The rightmost point m of such a string is a
right local maximum of g , while the leftmost point n is a left local maximum of g . We
define string of local minima, right local minimum and left local minimum analogously.

In [30], Ramos observed that Var(M β f ) � Var(M α f ) if 0 � α < β . Motivated
by the idea in [30], we show that the maximal operator Mα ,β possess similar char-
acteristic of variation, which plays a key role in the proof of the boundedness part in
Theorem 1.

PROPOSITION 1. Let 0 � α < 1 and 0 � γ < β . If f ∈ �∞(Z) such that Mα ,β f �≡
∞ , then

Var(Mα ,β f ) � Var(Mα ,γ f ). (12)
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Proof. Assume that Mα ,β f is not constant, since the conclusion is obvious in
case Mα ,β f is a constant. Let us consider the alternating sequence of strings of local
maximas {[a−i ,a+

i ]}i∈Z and strings of local minima {[b−i ,b+
i ]}i∈Z of Mα ,β f , satisfying

· · ·< a−−1 � a+
−1 < b−−1 � b+

−1 < a−0 � a+
0 < b−0 � b+

0 < a−1 � a+
1 < b−1 � b+

1 < · · · (13)

In what follows, we consider the different cases.
Case 1. The sequence (13) does not end on both sides.
In this case we can write

Var(Mα ,β f ) =
∞

∑
i=−∞

Var(Mα ,β f ; [b+
i−1,b

+
i ]). (14)

Fix i∈Z , note that Mα ,β f (a+
i )> max{Mα ,β f (b+

i−1),Mα ,β f (b−i )} and Mα ,β f is mono-
tonically non-decreasing on [b+

i−1,a
+
i ] and is monotonically non-increasing on [a+

i ,b−i ] .
Invoking part (iii) of Lemma 1, we have Var(Mα ,β f ; [b+

i−1,b
−
i ])� Var(Mα ,γ f ; [b+

i−1,b
−
i ]) .

It follows that

Var(Mα ,β f ; [b+
i−1,b

+
i ]) = Var(Mα ,β f ; [b+

i−1,b
−
i ]) � Var(Mα ,γ f ; [b+

i−1,b
+
i ]). (15)

Combining (15) with (14) implies that

Var(Mα ,β f )=
∞

∑
i=−∞

Var(Mα ,β f ; [b+
i−1,b

−
i ])�

∞

∑
i=−∞

Var(Mα ,γ f ; [b+
i−1,b

+
i ])= Var(Mα ,γ f ),

which gives (12) in this case.
Case 2. The sequence (13) terminates on one (or both) side(s).
In this case several different behaviors might occur. We only consider the case that

the sequence terminates on both sides, since the other cases can be obtained similarly
by making minor modifications. We consider the following two cases:

(i) The sequence (13) does not exist any string of local minima. Let us consider
the following subcases:

(a) The sequence (13) does not exist any string of local maxima. In this case
we have that Mα ,β f is monotonically non-increasing or non-decreasing on (−∞,∞) .
Without loss of generality we may assume that Mα ,β f is monotonically non-increasing
on (−∞,∞) . Fix n ∈ Z , we get by (iv) of Lemma 1 that

Var(Mα ,β f ;(−∞,n]) � Var(Mα ,γ f ;(−∞,n]) � Var(Mα ,γ f ),

which yields (12) in this case.
(b) The sequence (13) exists an unique string of local maxima. Without loss of

generality we may assume that the string of local maxima is [a−0 ,a+
0 ] . Then Mα ,β f

is monotonically non-decreasing on (−∞,a−0 ) and is monotonically non-increasing on
[a+

0 ,∞) . There are two integers c1 ∈ (−∞,a−0 ) and c2 ∈ (a−0 ,∞) such that

Mα ,β f (a−0 ) > max{Mα ,β f (c1),Mα ,β f (c2)}.
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Then we get (12) by using (iii) of Lemma 1 in this case.
(ii) The sequence (13) exists string of local minima. In this case without loss of

generality we may assume that the first string of local minima is [b−0 ,b+
0 ] and the last

one is [b−l ,b+
l ] for some l � 0. We consider the following subcases:

(c) The sequence (13) does not have the strings of local maxima [a−0 ,a+
0 ] and

[a−l+1,a
+
l+1] . Then Mα ,β f is monotonically non-increasing on (−∞,b−0 ] and is mono-

tonically non-decreasing on [b+
l ,∞) . By (iv) and (v) of Lemma 1, we obtain

Var(Mα ,β f ;(−∞,b−0 ]) � Var(Mα ,γ f ;(−∞,b−0 ]), (16)

Var(Mα ,β f ; [b+
l ,∞)) � Var(Mα ,γ f ; [b+

l ,∞)). (17)

Next we shall prove

Var(Mα ,β f ; [b−0 ,b+
l ]) � Var(Mα ,γ f ; [b−0 ,b+

l ]). (18)

If l = 0, then (18) is obvious. If l � 1, then we get from (15) that

Var(Mα ,β f ; [b−0 ,b+
l ]) =

l

∑
j=1

Var(Mα ,β f ; [b+
j−1,b

+
j ])

�
l

∑
j=1

Var(Mα ,γ f ; [b+
j−1,b

+
j ]) � Var(Mα ,γ f ; [b−0 ,b+

l ]).

This proves (18). (18) together with (16)-(17) yields (12) in this case.
(d) The sequence (13) exists the strings of local maxima [a−0 ,a+

0 ] and [a−l+1,a
+
l+1] .

Then Mα ,β f is monotonically non-decreasing on (−∞,a−0 ] and is monotonically non-
increasing on [a−0 ,b−0 ] . Moreover, Mα ,β f (a−0 ) > max{Mα ,β f (a−0 − 1),Mα ,β f (b−0 )} .
Applying (iii) of Lemma 1, we get

Var(Mα ,β f ;(−∞,b−0 ]) � Var(Mα ,γ f ;(−∞,b−0 ]). (19)

Similarly, we can get

Var(Mα ,β f ; [b+
l ,∞)) � Var(Mα ,γ f ; [b+

l ,∞)). (20)

Then (12) follows immediately from (18)-(20) in this case.
(e) The sequence (13) exists the string of local maxima [a−0 ,a+

0 ] , but the string of
local maxima [a−l+1,a

+
l+1] does not exist. Then by (17)-(19) we can get (12) in this case.

(g) The sequence (13) exists the string of local maxima [a−l+1,a
+
l+1] , but the string

of local maxima [a−0 ,a+
0 ] does not exist. Then (12) follows from (16), (18) and (20) in

this case.
This completes the proof of Proposition 1.

We also need the following lemma, which will play a key role in the proof of the
continuity part in Theorem 1.
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LEMMA 2. Let 0 � α < 1 and 0 � γ < β . Let { f j} j�1 ⊂BV(Z) and f ∈BV(Z)
be such that ‖ f j − f‖BV(Z) → 0 as j → ∞ . Suppose that the following conditions hold:

(i) Given ε > 0 , there exist Λ = Λ(ε) > 0 and N = N(ε) > 0 such that

max{Var(Mα ,γ f j;(−∞,−Λ]),Var(Mα ,γ f j; [Λ,∞))} � Cε

for any j � N . Here C > 0 is independent of ε .
(ii) Var(Mα ,β f ) < ∞.
(iii) Mα ,β f j → Mα ,β f in �∞(Z) as j → ∞ .

Then we have
‖Mα ,β f j −Mα ,β f‖BV(Z) → 0 as j → ∞. (21)

Proof. By assumption (iii), to prove (21), it suffices to show that

Var(Mα ,β f j −Mα ,β f ) → 0 as j → ∞. (22)

Given ε > 0. By our assumption (i), there exist Λ1 = Λ1(ε) > 0 and N1 =N1(ε) >
0 such that

max{Var(Mα ,γ f j;(−∞,−Λ1]),Var(Mα ,γ f j; [Λ1,∞))} � Cε (23)

for all j � N1 . Here C > 0 is independent of ε . By assumption (ii), there exists
Λ2 = Λ2(ε) > 0 such that

max{Var(Mα ,β f ;(−∞,−Λ2]),Var(Mα ,β f ; [Λ2,∞))} � ε. (24)

By assumption (iii), there exists N2 = N2(ε) > 0 such that

|Mα ,β f j(n)−Mα ,β f (n)| � ‖Mα ,β f j −Mα ,β f‖�∞(Z) � ε (25)

for any n ∈ Z and j � N2 . Let Λ = max{Λ1,Λ2} and fix j � max{N1,N2} . We shall
prove that there exists a constant C > 0 independent of j and ε such that

Var(Mα ,β f j; [Λ,∞)) � Cε, (26)

Var(Mα ,β f j;(−∞,−Λ]) � Cε. (27)

We only prove (26) since (27) can be obtained similarly. The arguments are similar
to the proof of Proposition 1. Let {[a−i ,a+

i ]}i∈Z and {[b−i ,b+
i ]}i∈Z be the sequences of

all strings of local maxima and local minima of Mα ,β f j ordered as follows:

· · ·< a−−1 � a+
−1 < b−1

−1 � b+
−1 < a−0 � a+

0 < b−0 � b+
0 < a−1 � a+

1 < b−1 � b+
1 < · · · (28)

We allow the possibilities of a−i or b−i = −∞ and a+
i or b+

i = ∞ . By the argument
similar to those used to derive (15), we have that if [b+

i ,b+
i+1] exists for some i ∈ Z ,

then
Var(Mα ,β f j; [b+

i ,b+
i+1]) � Var(Mα ,γ f j; [b+

i ,b+
i+1]). (29)
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Before proving (26), let us point out the following simple observations: Let j �
max{N1,N2} and a, b be two integers with b > a � Λ . If Mα ,β f j is monotonically
non-increasing or non-decreasing on [a,b] , then

Var(Mα ,β f j; [a,b]) � 3ε. (30)

Without loss of generality we may assume that Mα ,β f j is monotonically non-increasing
on [a,b] , then by (24) and (25) we get

Var(Mα ,β f j; [a,b]) = Mα ,β f j(a)−Mα ,β f j(b) � (Mα ,β f (a)+ ε)− (Mα ,β f (b)− ε)
� Var(Mα ,β f ; [a,b])+2ε � 3ε,

which proves (30).
We now prove (26) by considering the following two cases:
Case 1. The sequence (28) does not end on both sides.
In this case there exists i0 � 1 such that b+

i0−1 � Λ � b+
i0

. We first prove that there
exists a constant C > 0 independent of ε such that

Var(Mα ,β f j; [Λ,b+
i0
]) � Cε. (31)

If Λ ∈ [b+
i0−1,a

+
i0
] , then Mα ,β f j is monotonically non-decreasing on [Λ,a+

i0
] and is

monotonically non-increasing on [a+
i0
,b+

i0
] . In this case (31) follows easily from (30).

If Λ ∈ (a+
i0
,b+

i0
] , then Mα ,β f j is monotonically non-increasing on [Λ,b+

i0
] . Then we get

from (30) that (31) holds. Hence, we get from (23), (29) and (31) that

Var(Mα ,β f j; [Λ,∞)) = Var(Mα ,β f j; [Λ,b+
i0
])+

∞

∑
i=i0

Var(Mα ,β f j; [b+
i ,b+

i+1])

� Cε +
∞

∑
i=i0

Var(Mα ,γ f j; [b+
i ,b+

i+1])

� Cε +Var(Mα ,γ f j; [Λ,∞)) � Cε,

(32)

where the constant C > 0 is independent of ε . This proves (26) in this case.
Case 2. The sequence (28) terminates on one (or both) side(s).
In this case we only consider the case that the sequence terminates on both sides,

since the other cases can be obtained similarly by making minor modifications. We
consider the following two cases:

(i) There doesn’t exist any string of local minima in [Λ,∞) . Let us consider the
following subcases:

(a) There doesn’t exist any string of local maxima in [Λ,∞) . In this case we have
that Mα ,β f j is monotonically non-increasing or non-decreasing on [Λ,∞) . Then (26)
follows easily from (30).

(b) There exists an unique string of local maxima in [Λ,∞) . Without loss of gener-
ality we may assume that the string of local maxima is [a−0 ,a+

0 ] . It is clear that Mα ,β f j

is monotonically non-decreasing on [Λ,a−0 ) and is monotonically non-increasing on
[a+

0 ,∞) . Then by (30) we have

Var(Mα ,β f j; [Λ,∞)) = Var(Mα ,β f j; [Λ,a−0 ])+Var(Mα ,β f j; [a+
0 ,∞)) � 6ε,
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which gives (26).
(ii) There exists string of local minima in [Λ,∞) . In this case without loss of

generality we may assume that the first string of local minima is [b−0 ,b+
0 ] and the last

one is [b−l ,b+
l ] for some l � 0. We consider the following subcases:

(c) There do not exist the strings of local maxima [a−0 ,a+
0 ] and [a−l+1,a

+
l+1] in

[Λ,∞) . Then Mα ,β f j is monotonically non-increasing on [Λ,b−0 ] and is monotonically
non-decreasing on [b+

l ,∞) . By (30), we obtain

max{Var(Mα ,β f j; [Λ,b−0 ]),Var(Mα ,β f j; [b+
l ,∞))} � 3ε, (33)

By (23) and the arguments similar to those used in (18),

Var(Mα ,β f j; [b−0 ,b+
l ]) � Var(Mα ,γ f j; [b−0 ,b+

l ]) � Var(Mα ,γ f j; [Λ,∞)) � Cε. (34)

(34) together with (33) implies (26) in this case.
(d) There exist the strings of local maxima [a−0 ,a+

0 ] and [a−l+1,a
+
l+1] in [Λ,∞) .

Then Mα ,β f j is monotonically non-decreasing on [Λ,a−0 ] and [b+
l ,a+

l+1] and is mono-
tonically non-increasing on [a+

0 ,b−0 ] and [a+
l+1,∞) . In this case we get by (30) and (34)

that

Var(Mα ,β f j; [Λ,∞))
= Var(Mα ,β f j; [Λ,a−0 ])+Var(Mα ,β f j; [a+

0 ,b−0 ])+Var(Mα ,β f j; [b−0 ,b+
l ])

+Var(Mα ,β f j; [b+
l ,a+

l+1])+Var(Mα ,β f j; [a+
l+1,∞)) � Cε,

which proves (26) in this case.
(e) There exists the string of local maxima [a−0 ,a+

0 ] in [Λ,∞) , but the string of lo-
cal maxima [a−l+1,a

+
l+1] does not exist. Then Mα ,β f j is monotonically non-decreasing

on [Λ,a−0 ] and is monotonically non-increasing on [a+
0 ,b−0 ] . By (30) and (34), we have

Var(Mα ,β f j; [Λ,∞))
= Var(Mα ,β f j; [Λ,a−0 ])+Var(Mα ,β f j; [a+

0 ,b−0 ])+Var(Mα ,β f j; [b−0 ,b+
l ])

+Var(Mα ,β f j; [b+
l ,∞)) � Cε,

which gives (26) in this case.
(g) The sequence (13) exists the string of local maxima [a−l+1,a

+
l+1] in [Λ,∞) , but

the string of local maxima [a−0 ,a+
0 ] does not exist. Then Mα ,β f j is monotonically non-

increasing on [Λ,b−0 ] and [a+
l+1,∞) and is monotonically non-decreasing on [b+

l ,a+
l+1] .

By (30) and (34) again, we get

Var(Mα ,β f j; [Λ,∞))
= Var(Mα ,β f j; [Λ,b−0 ])+Var(Mα ,β f j; [b−0 ,b+

l ])+Var(Mα ,β f j; [b+
l ,a+

l+1])
+Var(Mα ,β f j; [a+

l+1,∞)) � Cε,

which gives (26) in this case.
We now proceed with the rest of the proof. By assumption (iii) we have that

(Mα ,β f j)′(n) → (Mα ,β f )′(n) uniformly for n ∈ Z . There exists N3 = N3(Λ,ε) > 0
such that

|(Mα ,β f j −Mα ,β f )′(n)| < ε
2Λ+1

(35)
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for any |n| � Λ and j � N3 . It follows from (35) that

Var(Mα ,β f j −Mα ,β f ; [−Λ,Λ]) � ‖(Mα ,β f j −Mα ,β f )′χ{|n|�Λ}‖�1(Z) < ε (36)

for any j � N3 . (36) together with (24), (26) and (27) yields that

Var(Mα ,β f j −Mα ,β f )
= Var(Mα ,β f j −Mα ,β f ; [−Λ,Λ])+Var(Mα ,β f j −Mα ,β f ;(−∞,−Λ])

+Var(Mα ,β f j −Mα ,β f ; [Λ,∞))
� ε +Var(Mα ,β f ;(−∞,−Λ])+Var(Mα ,β f ; [Λ,∞))

+Var(Mα ,β f j;(−∞,−Λ])+Var(Mα ,β f j; [Λ,∞)) � Cε

(37)

for all j � max{N1,N2,N3} . Then (22) follows from (37). This proves Lemma 2.

REMARK 2. It should be pointed out that the condition (i) of Lemma 2 is the crux
of the BV-continuity. In order to illustrate this point, two examples will be listed as
follows:

(i) Let { f j} j�1 ⊂ BV(Z) and f ∈ BV(Z) be such that ‖ f j − f‖BV(Z) → 0 as

j → ∞ . In order to establish the continuity of M̃ : BV(Z) →BV(Z) . Carneiro et al. [6]
proved that for fixed ε > 0, there exist N1 = N1(ε) > 0 and Λ1 = Λ1(ε) > 0 such that

max{Var(M̃ f j;(−∞,−Λ1]),Var(M̃ f j; [Λ1,∞))} � Cε, ∀ j � N1,

where C > 0 is independent of ε (see (2.14) and (2.15) in [6]).
(ii) Let { f j} j�1 ⊂ BV(Z) and f ∈ BV(Z) be such that ‖ f j − f‖BV(Z) → 0 as

j → ∞ . In order to establish the continuity for M0,0 : BV(Z) → BV(Z) . Madrid [29]
proved that for fixed ε > 0, there exist N2 = N2(ε) > 0 and Λ2 = Λ2(ε) > 0 such that

max{Var(M0,0 f j;(−∞,−Λ2]),Var(M0,0 f j; [Λ2,∞))} � Cε, ∀ j � N2,

where C > 0 is independent of ε (see (4.24) and (4.25) in [29]).

3. Proof of Theorem 1

Let us first prove (i) of Theorem 1. Let f ∈ BV(Z) . By (8), we have M0,β f �≡ ∞ .
It was shown in [32, Theorem 1] that

Var(M0,0 f ) � CVar( f ).

This together with (7) and Proposition 1 yields that

Var(M0,β f ) � CVar( f ), ∀β � 0; (38)

Var(M0,β f ) � Var( f ), ∀β � 1. (39)

(38), (39) and (8) imply the boundedness of M0,β : BV(Z) → BV(Z) . Let f j → f in
BV(Z) as j → ∞ . By the sublinearity of M0,β and (8), it holds that

‖M0,β f j −M0,β f‖�∞(Z) � ‖M0,β ( f j − f )‖�∞(Z) � ‖ f j − f‖�∞(Z) � ‖ f j − f‖BV(Z),
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which yields that M0,β f j → M0,β f in �∞(Z) as j → ∞ . This together with (38), (39),
(ii) of Remark 2 and Lemma 2 yields the continuity of M0,β : BV(Z) → BV(Z) .

We now prove (ii). Let 0 � α < 1, β � 0 and f ∈ �1(Z) . It is easy to see that

‖Mα ,β f‖�∞(Z) � ‖ f‖�1(Z). (40)

It was shown in [15, Theorem 1.2] that

Var(Mα ,0 f ) � 2‖ f‖�1(Z). (41)

(41) together with (40) and Proposition 1 yields the boundedness for Mα ,β : �1(Z) →
BV(Z) and

Var(Mα ,β f ) � 2‖ f‖�1(Z), ∀β � 0.

Let f j → f in �1(Z) as j → ∞ . It follows from (4) that f j → f in BV(Z) as j → ∞ .
By the sublinearity of Mα ,β and (40), we have

‖Mα ,β f j −Mα ,β f‖�∞(Z) � ‖Mα ,β ( f j − f )‖�∞(Z) � ‖ f j − f‖�1(Z),

which yields that Mα ,β f j → Mα ,β f in �∞(Z) as j → ∞ . On the other hand, we get
from the proof of [15, Theorem 1.4] (see [15, p.116] by taking Φ(t) = tα−1 ) that for
fixed ε > 0, there exist N = N(ε) > 0 and Λ = Λ(ε) > 0 such that

max{Var(Mα ,0 f j;(−∞,−Λ]),Var(Mα ,0 f j; [Λ,∞))} � Cε, ∀ j > N,

where C > 0 is independent of ε . The above facts together with Lemma 2 yield the
continuity of Mα ,β : �1(Z) → BV(Z) . Hence Theorem 1 is proved. �
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