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Abstract. In the paper, with the help of the Faà di Bruno formula, properties of the Bell poly-
nomials of the second kind, and the inversion theorem for the Stirling numbers of the first and
second kinds, the author presents an explicit formula and an identity for higher order derivatives
of generating functions of exponential polynomials; consequently, the author recovers an ex-
plicit formula and finds an identity for exponential polynomials in terms of the Stirling numbers
of the fist and second kinds; furthermore and importantly, with the assistance of the complete
monotonicity of generating functions of exponential polynomials and other known conclusions,
the author constructs some determinantal inequalities and product inequalities and deduces the
logarithmic convexity and logarithmic concavity of two sequences related to exponential poly-
nomials; finally, the author gives an application of exponential polynomials by confirming that
exponential polynomials satisfy conditions for sequences required in white noise distribution
theory.

1. Introduction

In combinatorics, the Bell numbers, usually denoted by Bk for k ∈ {0}∪N , where
N denotes the set of all positive integers, count the number of ways a set with k ele-
ments can be partitioned into disjoint and nonempty subsets. These numbers have been
studied by mathematicians since the 19th century, and their roots go back to medieval
Japan, but they are named after Eric Temple Bell, who wrote about them in the 1930s.
The Bell numbers Bk for k � 0 can be generated by

eet−1 =
∞

∑
k=0

Bk
tk
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= 1+ t + t2 +
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5
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and the first ten Bell numbers Bk for 0 � k � 9 are

B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15,

B5 = 52, B6 = 203, B7 = 877, B8 = 4140, B9 = 21147.

For more information on the Bell numbers Bk , please refer to [1, 9, 11, 22, 25, 30] and
plenty of references therein.

The Touchard polynomials Tk(x) for k � 0 can be generated by

ex(et−1) =
∞

∑
k=0

Tk(x)
tk

k!
= 1+ xt +

1
2
x(x+1)t2 +

1
6
x
(
x2 +3x+1

)
t3

+
1
24

x
(
x3 +6x2 +7x+1

)
t4 +

1
120

x
(
x4 +10x3 +25x2 +15x+1

)
t5 + · · ·

and the first seven Touchard polynomials Tk(x) for 0 � k � 6 are

1, x, x(x+1), x
(
x2 +3x+1

)
, x

(
x3 +6x2 +7x+1

)
,

x
(
x4 +10x3 +25x2 +15x+1

)
, x

(
x5 +15x4 +65x3 +90x2 +31x+1

)
.

Since Tk(1) = Bk , the Touchard polynomials Tk(x) are generalizations of the Bell num-
bers Bk for k � 0. Occasionally the polynomials Tn(x) are also called [17] the Bell
polynomials and denoted by Bn(x) . There has been research on interesting applica-
tions of the Touchard polynomials Tn(x) in nonlinear Fredholm-Volterra integral equa-
tions [17] and soliton theory in [14, 15, 16], including connections with bilinear and tri-
linear forms of nonlinear differential equations which possess soliton solutions. There-
fore, applications of the Touchard polynomials Tn(x) to integrable nonlinear equations
are greatly expected and any amendment on multi-linear forms of soliton equations,
even on exact solutions, would be beneficial to interested audiences in the community.
For more information about the Touchard polynomials Tn(x) , please refer to [27, 28]
and closely related references therein.

On 6 September 2017, Boyadzhiev wrote an e-mail to the author and clarified the
history of the Touchard polynomials Tn(x) as follows. The polynomials Tn(x) were
used as early as 1843 in the works of Grunert (see [7]) and possibly could have been
used before him. Bell [5] called them “exponential polynomials”, so did Touchard [33],
Rota [32], and Boyadzhiev [7]. Touchard has not contributed much to the theory. Most
properties were found by Grunert, Bell, and, for example, in the papers [7, 10]. Using
the name “Touchard polynomials” could be misleading.

In this paper, continuing the paper [25], we present an explicit formula and an
identity for higher order derivatives with respect to t of generating functions exe±t

for
exponential polynomials Tk(x) with the help of the Faà di Bruno formula, properties of
the Bell polynomials of the second kind Bn,k(x1, . . . ,xn−k+1) , and the inversion theo-
rem for the Stirling numbers s(n,k) and S(n,k) , recover an explicit formula and find an
identity for exponential polynomials Tk(x) in terms of the Stirling numbers s(n,k) and
S(n,k) , construct some determinantal inequalities and product inequalities for expo-
nential polynomials Tk(x) , deduce the logarithmic convexity and logarithmic concavity
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related to exponential polynomials Tk(x) , and find an application of exponential poly-
nomials Tk(x) to white noise distribution theory by confirming that the polynomial
sequence {Tk(x),x > 0}k�0 satisfies conditions for sequences required in white noise
distribution theory.

2. Derivatives, an explicit formula, and an inversion formula

In this section, by the Faà di Bruno formula, properties of the Bell polynomials of
the second kind Bn,k , and the inversion theorem for the Stirling numbers s(n,k) and
S(n,k) , we present an explicit formula and an identity for higher order derivatives with
respect to t of the generating functions exe±t

. Consequently, we recover an explicit
formula and find an identity for exponential polynomials Tn(x) in terms of the Stirling
numbers s(n,k) and S(n,k) .

THEOREM 2.1. For n � 0 , the nth derivative of the generating functions exe±t

with respect to t can be computed by

∂ nexe±t

∂ tn
= (±1)nexe±t

n

∑
k=0

S(n,k)
(
xe±t)k (2.1)

and the generating functions exe±t
satisfy the identity

n

∑
k=0

(±1)ks(n,k)
∂ kexe±t

∂ tk
= exe±t(

xe±t)n, (2.2)

where x ∈ C , S(n,k) for n � k � 0 , which can be generated by

(ex −1)k

k!
=

∞

∑
n=k

S(n,k)
xn

n!
,

represent the Stirling numbers of the second kind, and s(n,k) for n � k � 0 , which can
be generated by

[ln(1+ x)]k

k!
=

∞

∑
n=k

s(n,k)
xn

n!
, |x| < 1,

stand for the Stirling numbers of the first kind. Consequently, exponential polynomials
Tn(x) for n � 0 can be computed by

Tn(x) =
n

∑
k=0

S(n,k)xk (2.3)

and satisfy
n

∑
k=0

s(n,k)Tk(x) = xn. (2.4)
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Proof. In combinatorics, the Bell polynomials of the second kind Bn,k are defined
by

Bn,k(x1,x2, . . . ,xn−k+1) = ∑
1�i�n−k+1
�i∈{0}∪N

∑n−k+1
i=1 i�i=n

∑n−k+1
i=1 �i=k

n!

∏n−k+1
i=1 �i!

n−k+1

∏
i=1

(xi

i!

)�i

for n � k � 0, see [9, p. 134, Theorem A], and satisfy identities

Bn,k
(
abx1,ab2x2, . . . ,abn−k+1xn−k+1

)
= akbnBn,k(x1,x2, . . . ,xn−k+1) (2.5)

and
Bn,k(1,1, . . . ,1) = S(n,k), (2.6)

see [9, p. 135], where a and b are any complex numbers. The Faà di Bruno formula for
computing higher order derivatives of composite functions can be described in terms of
the Bell polynomials of the second kind Bn,k by

dn

d tn
f ◦ g(x) =

n

∑
k=0

f (k)(g(x))Bn,k
(
g′(x),g′′(x), . . . ,g(n−k+1)(x)

)
, (2.7)

see [9, p. 139, Theorem C]. Applying f (u) = exu and u = g(t) = et to (2.7) and making
use of identities (2.5) and (2.6) yield

∂ nexet

∂ tn
=

n

∑
k=0

∂ kexu

∂uk Bn,k
(
et ,et , . . . ,et)

=
n

∑
k=0

xkexuektBn,k(1,1, . . . ,1) = exet
n

∑
k=0

xkektS(n,k).

The explicit formula (2.1) for the plus sign case is thus proved.
In [31, p. 171, Theorem 12.1], it is stated that, if bα and ak are a collection of

constants independent of n , then

an =
n

∑
α=0

S(n,α)bα if and only if bn =
n

∑
k=0

s(n,k)ak. (2.8)

Combining this inversion theorem for the Stirling numbers with (2.1) arrives at equa-
tions

n

∑
k=0

s(n,k)
∂ kexet

∂ tk
= exet (

xet)n
which is equivalent to that the generating function exet

satisfies the family of nonlinear
ordinary differential equations in (2.2) for the plus sign case.

The equation (2.12) in the second proof of [25, Theorem 2.2] reads that

Bn,n(α) = αn and Bn+k+1,k(α,0, . . . ,0) = 0, (2.9)
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where α ∈ C and k,n ∈ {0}∪N . Applying f (u) = exeu
and u = g(t) = −t in (2.7),

taking α = −1 in (2.9), and utilizing (2.1) lead to

∂ nexe−t

∂ tn
=

n

∑
k=0

∂ kexeu

∂uk Bn,k(−1,0, . . . ,0) =
∂ nexeu

∂un Bn,n(−1)

= (−1)nexeu
n

∑
k=0

S(n,k)
(
xeu)k = (−1)nexe−t

n

∑
k=0

S(n,k)
(
xe−t)k.

The formula (2.1) for the minus sign case follows immediately.
Employing the inversion theorem (2.8) for Stirling numbers to consider the for-

mula (2.1) reveals the identity (2.2).
In light of the theory of series, it is easy to see that

Tn(x) = (±1)n lim
t→0

∂ nex(e±t−1)

∂ tn
= (±1)ne−x lim

t→0

∂ nexe±t

∂ tn
.

Combining this with (2.1) gives

Tn(x) = (±1)ne−x lim
t→0

(±1)nexe±t
n

∑
k=0

S(n,k)
(
xe±t)k =

n

∑
k=0

S(n,k)xk.

The formula (2.3) follows.
Substituting f (t) = exe±t

into (2.2) and taking t → 0 result in

n

∑
k=0

(±1)ks(n,k)(±1)kexTk(x) = exxn

which can be simplified as (2.4). The proof of Theorem 2.1 is thus complete.

3. Inequalities for exponential polynomials

In light of complete monotonicity of generating functions exe−t
and with the as-

sistance of properties of completely monotonic functions, we can construct some de-
terminantal inequalities and product inequalities for exponential polynomials Tn(x) .
From these inequalities and other conclusions in [1, 6], we can derive the logarithmic
convexity and logarithmic concavity of the sequences {Tn(x)}n�0 and

{ Tn(x)
n!

}
n�0 re-

spectively. These inequalities are our main results in this paper.

THEOREM 3.1. Let m � 1 be a positive integer, let |ei j|m denote a determinant
of order m with elements ei j , and let x > 0 .

1. If ai for 1 � i � m are non-negative integers, then∣∣Tai+a j(x)
∣∣
m � 0 and

∣∣(−1)ai+a jTai+a j(x)
∣∣
m � 0. (3.1)
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2. If a = (a1,a2, . . . ,an) and b = (b1,b2, . . . ,bn) are non-increasing n-tuples of
non-negative integers such that ∑k

i=1 ai � ∑k
i=1 bi for 1 � k � n−1 and ∑n

i=1 ai =
∑n

i=1 bi , then
n

∏
i=1

Tai(x) �
n

∏
i=1

Tbi(x). (3.2)

Proof. Recall from [20, Chapter XIII] that a function f is said to be absolutely
monotonic on an interval I if it has derivatives of all orders and f (k−1)(t) � 0 for t ∈ I
and k ∈ N . Recall from [20, Chapter XIII] that an infinitely differentiable function f
is said to be completely monotonic on an interval I if it satisfies (−1)k f (k)(x) � 0 on I
for all k � 0. It is clear that, if f1(x) is absolutely monotonic and f2(x) is completely
monotonic on their defined intervals, then their composite function f1( f2(x)) is com-
pletely monotonic on its defined interval. Consequently, the function exe−t

for x > 0 is
completely monotonic with respect to t ∈ [0,∞) .

In [19] and [20, p. 367], it was obtained that if f is completely monotonic on
[0,∞) , then ∣∣ f (ai+a j)(t)

∣∣
m � 0 and

∣∣(−1)ai+a j f (ai+a j)(t)
∣∣
m � 0. (3.3)

Applying f (t) to the function exe−t
in (3.3) and taking the limit t → 0+ give

lim
t→0+

∣∣∣(exe−t)(ai+a j)
∣∣∣
m

=
∣∣(−1)ai+a j exTai+a j(x)

∣∣
m � 0

and

lim
t→0+

∣∣∣(−1)ai+a j
(
exe−t )(ai+a j)

∣∣∣
m

=
∣∣(−1)ai+a j(−1)ai+a j exTai+a j(x)

∣∣
m � 0.

The determinantal inequalities in (3.1) follow.
In [20, p. 367, Theorem 2], it was stated that if f is a completely monotonic

function on [0,∞) , then

n

∏
i=1

[
(−1)ai f (ai)(t)

]
�

n

∏
i=1

[
(−1)bi f (bi)(t)

]
. (3.4)

Applying f (t) to the function exe−t
in (3.4) and taking the limit t → 0+ give

lim
t→0+

n

∏
i=1

[
(−1)ai

(
exe−t)(ai)

]
=

n

∏
i=1

[exTai(x)]

� lim
t→0+

n

∏
i=1

[
(−1)bi

(
exe−t )(bi)

]
=

n

∏
i=1

[exTbi(x)].

The product inequality (3.2) follows. The proof of Theorem 3.1 is complete.

COROLLARY 3.1. For x > 0 , if � � 0 and n � k � 0 , then

[Tn+�(x)]k[T�(x)]n−k � [Tk+�(x)]n.
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Proof. This follows from taking

a = (

k︷ ︸︸ ︷
n+ �, . . . ,n+ �,

n−k︷ ︸︸ ︷
�, . . . , �) and b = (k+ �,k+ �, . . .,k+ �)

in the inequality (3.2). The proof of Corollary 3.1 is complete.

THEOREM 3.2. For x > 0 , the sequence {Tn(x)}n�0 is logarithmically convex

and the sequence
{Tn(x)

n!

}
n�0 is logarithmically concave. Consequently, for x > 0 and

m,n � 0 ,

Tm(x)Tn(x) � Tm+n(x) �
(

m+n
m

)
Tm(x)Tn(x). (3.5)

Proof. In [20, p. 369] and [21, p. 429, Remark], it was stated that if f (t) is a
completely monotonic function such that f (k)(t) �= 0 for k � 0, then the sequence

ln
[
(−1)k−1 f (k−1)(t)

]
, k � 1 (3.6)

is convex. Applying this result to the function exe−t
for x > 0 implies that the sequence

ln
[
(−1)k−1(exe−t )(k−1)

]
→ x+ lnTk−1(x), t → 0+

is convex for k � 1. Hence, the sequence {Tn(x)}n�0 is logarithmically convex.
Alternatively, letting

� � 1, n = 2, a1 = �+2, a2 = �, and b1 = b2 = �+1

in the inequality (3.2) leads to T�(x)T�+2(x) � T 2
�+1(x) which means that the sequence

{Tk(x)}k∈N is logarithmically convex.
If {1,X1,X2, . . .} is a logarithmically concave sequence of nonnegative real num-

bers and the sequences {An}n�0 and {Pn}n�0 are defined by

∞

∑
n=0

Anu
n =

∞

∑
n=0

Pn

n!
un = exp

(
∞

∑
i=1

Xi
ui

i

)
,

then it was proved in [6, p. 58, Theorem 1] that the sequence {An}n�0 is logarithmically
concave and the sequence {Pn}n�0 is logarithmically convex. By the definition of
exponential polynomials Tn(x) , we see that

∞

∑
n=0

Tn(x)
n!

tn = ex(et−1) = exp

[
x

(
∞

∑
n=1

1
(n−1)!

tn

n

)]
.

Moreover, once can easily verify that the sequence
{
1, 1

(n−1)!

}
n�1 is logarithmically

concave. Therefore, when x > 0, the sequence {Tn(x)}n�0 is logarithmically convex

and the sequence
{Tn(x)

n!

}
n�0 is logarithmically concave.

Theorem 2 in [1] states that
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1. if {αn}n�0 is logarithmically convex with α0 = 1, then αmαn � αm+n for m,n �
0;

2. if
{αn

n!

}
n�0 is logarithmically concave with α0 = 1, then αm+n �

(m+n
m

)
αmαn

for m,n � 0.

Combining this theorem with the logarithmic convexity and logarithmic concavity of
the sequences {Tn(x)}n�0 and

{Tn(x)
n!

}
n�0 respectively leads to the double inequal-

ity (3.5). The proof of Theorem 3.2 is complete.

THEOREM 3.3. For x > 0 , k � 0 , and n ∈ N , we have[
n

∏
�=0

Tk+2�(x)

]1/(n+1)

�
[

n−1

∏
�=0

Tk+2�+1(x)

]1/n

. (3.7)

Proof. If f (t) is a completely monotonic function on (0,∞) , then, by the convex-
ity of the sequence (3.6) and Nanson’s inequality listed in [18, p. 205, 3.2.27],

[
n

∏
�=0

(−1)k+2�+1 f (k+2�+1)(t)

]1/(n+1)

�
[

n

∏
�=1

(−1)k+2� f (k+2�)(t)

]1/n

for k � 0. Replacing f (t) by exe−t
in the above inequality results in

[
n

∏
�=0

(−1)k+2�+1(exe−t)(k+2�+1)

]1/(n+1)

�
[

n

∏
�=1

(−1)k+2�
(
exe−t)(k+2�)

]1/n

for k � 0. Letting t → 0+ in the above inequality leads to (3.7). The proof of Theo-
rem 3.3 is complete.

THEOREM 3.4. For x > 0 , if � � 0 , n � k � m, 2k � n, and 2m � n, then

Tk+�(x)Tn−k+�(x) � Tm+�(x)Tn−m+�(x). (3.8)

Proof. In [34, p. 397, Theorem D], it was recovered that if f (t) is a completely
monotonic function on (0,∞) and if n � k � m , k � n− k , and m � n−m , then

(−1)n f (k)(t) f (n−k)(t) � (−1)n f (m)(t) f (n−m)(t).

Replacing f (t) by the function (−1)�
(
exe−t )(�)

in the above inequality leads to

(−1)n(exe−t )(k+�)(
exe−t )(n−k+�) � (−1)n(exe−t )(m+�)(

exe−t)(n−m+�)
.

Further taking t → 0+ finds the inequality (3.8). The proof of Theorem 3.4 is complete.
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THEOREM 3.5. For x > 0 , � � 0 , and m,n ∈ N , let

G�,m,n(x) = T�+2m+n(x)[T�(x)]2 −T�+m+n(x)T�+m(x)T�(x)

−T�+n(x)T�+2m(x)T�(x)+T�+n(x)[T�+m(x)]2,

H�,m,n(x) = T�+2m+n(x)[T�(x)]2 −2T�+m+n(x)T�+m(x)T�(x)+T�+n(x)[T�+m(x)]2,

I�,m,n(x) = T�+2m+n(x)[T�(x)]2 −2T�+n(x)T�+2m(x)T�(x)+T�+n(x)[T�+m(x)]2.

Then
G�,m,n(x) � 0, H�,m,n(x) � 0,

H�,m,n(x) � G�,m,n(x) when m ≶ n,

I�,m,n(x) � G�,m,n(x) � 0 when n � m.

(3.9)

Proof. In [35, Theorem 1 and Remark 2], it was obtained that if f (t) is completely
monotonic on (0,∞) and

Gm,n(t) = (−1)n{ f (n+2m)(t) f 2(t)− f (n+m)(t) f (m)(t) f (t)

− f (n)(t) f (2m)(t) f (t)+ f (n)(t)
[
f (m)(t)

]2}
,

Hm,n(t) = (−1)n{ f (n+2m)(t) f 2(t)−2 f (n+m)(t) f (m)(t) f (t)+ f (n)(t)
[
f (m)(t)

]2}
,

Im,n(t) = (−1)n{ f (n+2m)(t) f 2(t)−2 f (n)(t) f (2m)(t) f (t)+ f (n)(t)
[
f (m)(t)

]2}
for n,m ∈ N , then

Gm,n(t) � 0, Hm,n(t) � 0;

Hm,n(t) � Gm,n(t) when m ≶ n;

Im,n(t) � Gm,n(t) � 0 when n � m.

(3.10)

Replacing f (t) by (−1)�
(
exe−t )(�)

in Gm,n(t) , Hm,n(t) , and Im,n(t) and simplifying
produce

Gm,n(t) = (−1)�+n
{(

exe−t )(�+2m+n)
[(

exe−t)(�)]2− (exe−t )(�+m+n)(
exe−t )(�+m)(

exe−t )(�)
− (exe−t)(�+n)(

exe−t )(�+2m)(
exe−t )(�) + (exe−t)(�+n)

[(
exe−t )(�+m)

]2}
,

Hm,n(t) = (−1)�+n
{(

exe−t )(�+2m+n)
[(

exe−t)(�)]2
−2
(
exe−t )(�+m+n)(

exe−t)(�+m)(
exe−t)(�) + (exe−t )(�+n)

[(
exe−t )(�+m)

]2}
,

Im,n(t) = (−1)�+n
{(

exe−t )(�+2m+n)
[(

exe−t)(�)]2
−2
(
exe−t )(�+n)(

exe−t)(�+2m)(
exe−t )(�) + (exe−t )(�+n)

[(
exe−t)(�+m)

]2}
.

Further taking t → 0+ reveals

lim
t→0+

Gm,n(t) = e3xG�,m,n(x), lim
t→0+

Hm,n(t) = e3xH�,m,n(x),
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and limt→0+ Im,n(t) = e3xI�,m,n(x) . Substituting these quantities into (3.10) and sim-
plifying bring about inequalities in (3.9). The proof of Theorem 3.5 is complete.

4. An application to white noise distribution theory

In this section, we finally find an application of exponential polynomials Tk(x)
by confirming that the polynomial sequence {Tk(x),x > 0}k�0 satisfies conditions for
sequences required in white noise distribution theory.

Let {αn}n�0 be a sequence of positive numbers. In [1, 3, 4, 8, 12] and closely
related references therein, for studying the spaces of test and generalized functions and
their characterization theorems in white noise distribution theory [13], the following
conditions for the sequence {αn}n�0 are required:

α0 = 1, inf
n�0

(αnσn) > 0, lim
n→∞

(
αn

n!

)1/n

= 0, lim
n→∞

(
1

n!αn

)1/n

= 0, (4.1)

limsup
n→∞

[
n!
αn

inf
x>0

Gα(x)
xn

]1/n

< ∞, limsup
n→∞

[
n!αn inf

x>0

G1/α(x)
xn

]1/n

< ∞, (4.2)

the sequence
{αn

n!

}
n�0 is logarithmically concave, (4.3)

the sequence
{

1
n!αn

}
n�0 is logarithmically concave, (4.4)

the sequence {αn}n�0 is logarithmically convex, (4.5)

there exists a constant c1 such that αn � cm
1 αm for all n � m, (4.6)

there exists a constant c2 such that αm+n � cm+n
2 αmαn for all m,n � 0, (4.7)

there exists a constant c3 such that αmαn � cm+n
3 αm+n for all m,n � 0, (4.8)

where σ � 1 is a constant,

Gα(x) =
∞

∑
n=0

αn

n!
xn, G1/α(x) =

∞

∑
n=0

xn

n!αn
.

For details, please read [4, Appendix A] and closely related references therein.
Theorem 4.3 in [8] proved that the condition (4.3) implies the first one in (4.2).

It is easy to check that the first two conditions in (4.1) implies the fourth one in (4.1).
In [2], it was showed that the condition (4.4) implies the second one in (4.2), while (4.5)
implies (4.4). In [12], it was pointed out that the condition (4.8) implies (4.6). In [4,
p. 83], it was concluded that the essential conditions for distribution theory on a CKS-
space are the first three in (4.1) and the conditions (4.3), (4.4), (4.7), and (4.8).

It is clear that the sequence {Tk(x),x > 0}k�0 satisfies the first two conditions
in (4.1). Theorem 3.2 in this paper shows that the sequence {Tk(x),x > 0}k�0 satisfies
the conditions (4.3) and (4.5). The left inequality in (3.5) means that taking c3 = 1
in (4.8) is sound. Since

(m+n
m

)
� 2m+n for m,n � 0, the right inequality in (3.5) implies

that the condition (4.7) applied to the sequence {Tk(x),x > 0}k�0 is valid for c2 = 2.
Since the generating function ex(et−1) of exponential polynomials Tk(x) is an entire
function of t ∈ C , by the root test, the sequence {Tk(x),x > 0}k�0 satisfies the third
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condition in (4.1). In conclusion, the polynomial sequence {Tk(x),x > 0}k�0 satisfies
all the essential conditions for sequences required in distribution theory on a CKS-
space.

REMARK 4.1. When taking x = 1, all results for exponential polynomials Tn(x)
in this paper become those for the Bell numbers Bn , especially including those in [25].

REMARK 4.2. By the way, exponential numbers Bn(x) and exponential polyno-
mials Tn(x) have been generalized in the papers [23, 24, 29] and closely related refer-
ences therein.

REMARK 4.3. This paper is a revised version of the preprint [26] and closely-
related preprints therein.

Acknowledgements. The author thanks anonymous referees for their careful cor-
rections to and valuable comments on the original version of this paper.
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