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(Communicated by S. Varošanec)

Abstract. In the article, we extend the identities F0(x) = (1 + r)F0(r) , 2F0(
√

1− x) = (1 +
r)F0(1− r2) , 2F0(y) =

√
1+3r F0(1− r2) and F0(1− y) =

√
1+3r F0(r2) for hypergeo-

metric functions F0(r) = 2F1(1/2,1;3/2;r) and F0(r) = 2F1(1/4,3/4;1;r) , performed by the
quadratic transformations r �→ x = 4r/(1+ r)2 , r �→ √

1− x , r �→ y = (1− r)2/(1+ 3r)2 and
r �→ 1− y , to the zero-balanced hypergeometric function 2F1(a,b;a + b;r) , by showing new
properties of 2F1(a,b;a+ b;r) and the Ramanujan type constant, and the monotonicity proper-
ties of certain combinations in terms of hypergeometric and elementary functions. These exten-
sions give complete solutions of the problem of extending the transformation identities above-
mentioned to 2F1(a,b;a+b;r) , and perfect all the known related results. By these results, sharp
transformation inequalities are obtained for the generalized Grötzsch ring function appearing in
Ramanujan’s modular equations.

1. Introduction

For real numbers a,b and c with c �= 0,−1,−2, · · · , the Gaussian hypergeometric
function F(a,b;c;x [29, 44, 45, 50, 52, 54, 55, 73] is defined by

F(a,b;c;x) = 2F1(a,b;c;x) =
∞

∑
n=0

(a,n)(b,n)
(c,n)n!

xn, |x| < 1, (1)

where (a,0)= 1 for a �= 0, and (a,n) = a(a+1)(a+2) · · ·(a+n−1) for n∈N = {n| n
is a positive integer} is the shifted factorial function. The function F(a,b;c;x) is said
to be zero-balanced [16, 49, 63, 64] if c = a + b . It is well known that F(a,b;c;x)
has wide applications in mathematics, physics, as well as in some fields of engineering
[19, 21, 28, 41, 46, 51, 56, 57, 62, 66, 67], and many other special functions in mathe-
matical physics and even some elementary functions are particular or limiting cases of
F(a,b;c;x) [1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 25, 35]. For example, Ka and K ′

a (Ea

and E ′
a ) [17, 18, 20, 23, 27, 38, 47, 53, 58, 60, 71, 72, 74], defined by

Ka(r) =
π
2

F
(
a,1−a;1;r2) , K ′

a (r) = Ka

(√
1− r2

)
, (2)
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Ea(r) =
π
2

F
(
a−1,1−a;1;r2) , E ′

a(r) = Ea

(√
1− r2

)
(3)

for a ∈ (0,1/2] and r ∈ (0,1) , are the well-known generalized elliptic integrals of the
first kind (the second kind, respectively), while K (r) = K1/2(r) and K ′(r) = K ′

1/2(r)
(E (r) = E1/2(r) and E ′(r) = E ′

1/2(r)) are the complete elliptic integrals of the first kind
(the second kind, respectively).

For x,y ∈ (0,∞) , the classical gamma, psi (digamma) and beta functions are de-
fined as

Γ(x) =
∫ ∞

0
tx−1e−tdt, ψ(x) =

d
dx

logΓ(x), B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

, (4)

respectively [1, 3, 4, 35, 36, 65, 68, 70].
Let γ = limn→∞ [∑n

k=1(1/k)− logn] = 0.577215664 · · · be the Euler-Mascheroni
constant [22]. Then it is well known that (see [1, 6.1.15, 6.3.2, 6.3.3, 6.3.5, 6.3.8,
6.3.16 & 6.4.10] and [11, p.4232])

xΓ(x) = Γ(x+1), ψ(n)(x+1) = ψ(n)(x)+ (−1)nn!x−n−1, n ∈ N0, (5)

ψ(x) = −γ − 1
x

+
∞

∑
k=1

x
k(k+ x)

, ψ(n)(x) =
∞

∑
k=1

(−1)n+1n!
(k+ x)n+1 , n ∈ N, (6)

2ψ(2x) = ψ(x)+ ψ
(

x+
1
2

)
+ log4, ψ(1) = −γ, ψ

(
1
2

)
= −γ − log4. (7)

ψ(1/4)+ ψ(3/4) = −2γ − log64. (8)

For a,b ∈ (0,∞) , we denote

R(a,b) = −2γ −ψ(a)−ψ(b), (9)

Rc(a) = R(a,c−a)≡−2γ −ψ(a)−ψ(c−a), (10)

R(a) = R(a,1−a) = −2γ −ψ(a)−ψ(1−a), (11)

B(a) = B(a,1−a) = Γ(a)Γ(1−a) =
π

sin(πa)
. (12)

R(a,b) and R(a) are called the Ramanujan type constants in literature [31]. It follows
from (4) and (7)–(12) that{

B(1/2) = π , B(1/2,1) = 2,B(1/4) =
√

2π ,

R(1/2) = log16, R(1/2,1) = log4, R(1/4) = log64,
(13)

and by the symmetry, we may assume that a∈ (0,c/2] in (10), and a ∈ (0,1/2] in (11)
and (12).

Throughout this paper, we denote N0 = N ∪ {0} , r ′ =
√

1− r2 for each r ∈
[0,1] . For a,b,a1,b1 ∈ (0,∞) with c = a + b and c1 = a1 + b1 , and for r ∈ (0,1) ,
let α = ab/c , α = ab/(c+1) , α1 = a1b1/(c1 +1) , α1 = a1b1/c1 , B = B(a,b) , B1 =



QUADRATIC TRANSFORMATION IDENTITIES FOR HYPERGEOMETRIC FUNCTIONS 1393

B(a1,b1) , B = B(a+ 1,b+ 1) , B1 = B(a1 + 1,b1 + 1) , R = R(a,b) , R1 = R(a1,b1) ,
R = R(a+1,b+1) , R1 = R(a1 +1,b1 +1) ,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F(r) = F(a,b;c;r), G(r) = F(a,b;c+1;r),
F1(r) = F(a1,b1;c1;r), G1(r) = F(a1,b1;c1 +1;r),
F0(r) = F(1/2,1;3/2;r), G0(r) = F(1/2,1;5/2;r),
F0(r) = F(1/4,3/4;1;r), G0(r) = F(1/4,3/4;2;r),
F+(r) = F(a+1,b+1;c+2;r), F1+(r) = F(a1 +1,b1 +1;c1 +2;r).

(14)

It follows from (4)–(5) and (9) that

B = αB/(c+1) = αB/c and R = R−1/α (15)

if a,b ∈ (0,∞) with c = a+b .
In addition, by the symmetry of the parameters a and b in the function F(a,b;a+

b;x) , without loss of generality, we assume that a � b . Observe that for a,b ∈ (0,∞)
with c = a+b ,

a � b ⇒ a � c/2 � b and ab = a(c−a) � c2/4. (16)

The following formulas are well-known

F(a,b;c;1) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

, c > a+b, (17)

d
dx

F(a,b;c;x) =
ab
c

F(a+1,b+1;c+1;x), (18)

F(a,b;c;x) = (1− x)c−a−bF(c−a,c−b;c;x), (19)

BF(a,b;a+b;r) = log
eR

1− r
+O((1− r) log(1− r)) (r → 1) (20)

(see [1, 15.1.20, 15.2.1,15.3.3, & 15.3.10] and [4, 5]). From [1, 15.3.10], (5) and (9),
we obtain the following refinement of (20)

BF(r) = [1+ab(1− r)] log
eR

1− r
+(2ab−a−b)(1− r)+O

(
(1− r)2 log(1− r)

)
.

(21)

It follows from [1, 15.1.4], (17)–(19) and the third equality in (12) that

F ′(r) =
αG(r)
1− r

, F0(r) =
arth(

√
r)√

r
, F ′

0(r) =
G0(r)

3(1− r)
=

√
r− (1− r)arth(

√
r)

2r3/2(1− r)
,

(22)

F
′
0(r) =

3G0(r)
16(1− r)

, G0(1) =
3
2
, G(1) =

1
αB

, G0(1) =
8
√

2
3π

. (23)
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One kind of the important properties of the zero-balanced hypergeometric func-
tions are their transformation identities. In addition to the well-known Landen transfor-
mation identities [1, 8, 11]

F

(
1
2
,
1
2
,1;

4r
(1+ r)2

)
= (1+ r)F

(
1
2
,
1
2
,1;r2

)
, (24)

F

(
1
2
,
1
2
,1;

(
1− r
1+ r

)2
)

=
1+ r

2
F

(
1
2
,
1
2
,1;r ′2

)
, (25)

many other beautiful transformation identities can be found in [1, 8, 11]. For instance,
for r ∈ (0,1) , the following quadratic transformation identities hold

F

(
1
2
,1;

3
2
;

4r
(1+ r)2

)
= (1+ r)F

(
1
2
,1;

3
2
;r

)
, (26)

F

(
1
2
,1;

3
2
;
1− r
1+ r

)
=

1+ r
2

F

(
1
2
,1;

3
2
;r ′2

)
, (27)

F

(
1
4
,
3
4
;1;

(
1− r
1+3r

)2
)

=
√

1+3r
2

F

(
1
4
,
3
4
;1;r ′2

)
, (28)

F

(
1
4
,
3
4
;1;1−

(
1− r
1+3r

)2
)

=
√

1+3rF

(
1
4
,
3
4
;1;r2

)
, (29)

where (26) and (27) are the special cases of [1, 15.3.19] (see also [8, 25]), while (28)
and (29) were proved in [11, Theorem 9.4] (see also [8, 25]). It is natural to raise the
following Problem 1.1.

PROBLEM 1.1. Can we extend the transformation identities above-mentioned such
as (26)–(29) to zero-balanced hypergeometric function F(a,b;a+b;r) for a,b∈ (0,∞)
and r ∈ (0,1)?

During the past few years, several authors studied this problem, and many results
have been obtained in the literature [32, 37, 39, 40, 42, 43, 48, 61]. For example, Simić
and Vuorinen proved several extensions of (24) and (25) to zero-balanced hypergeo-
metric functions in [37], while Wang and Chu [39] studied the problem of the general-
izations of (26)–(29) and obtained several results, some of which are the following two
theorems (with some simplifications here for their formulations).

THEOREM 1.2. ([39, Theorem 3.5]) For a,b ∈ (0,∞) with c = a + b and r ∈
(0,1) , if ab � min{1/2,c/3} , then

0 � (1+ r)F(a,b;c;r)−F

(
a,b;c;

4r
(1+ r)2

)
� R− log4

B
, (30)

and if ab � max{1/2,c/3} , then each inequality in (30) is reversed.
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THEOREM 1.3. ([39, Theorem 4.5]) For a,b ∈ (0,∞) , c = a + b and for r ∈
(0,1) , if ab � min{3/16,c/16} , then

0 �
√

1+3rF
(
a,b;c;r2)−F

(
a,b;c;1−

(
1− r
1+3r

)2
)

� R− log64
B

, (31)

and if ab � max{3/16,c/16} , then each inequality in (31) is reversed.

However, the known results concerning the extensions of (26)–(29) are neither
sharp nor complete. This may be due to the lack of the known properties of R(a,b) and
the innovation in methodology.

The main purpose of the article is to study the problem of extending (26)–(29)
to zero-balanced hypergeometric functions, give complete solutions to Problem 1.1 in
this case, and substantially improve all the known related results such as Theorems
1.2 and 1.3. (See the results proved in Sections 4–5.) In addition, the authors will
obtain several new properties of the Ramanujan type constant R(a,b) and the hyperge-
ometric functions in Sections 2–3, including the relations between two Ramanujan con-
stants R(a,b) and R(a1,b1) and between two hypergeometric functions with distinct
parameters (a,b) and (a1,b1) , monotonicity properties and sharp functional inequal-
ities, which play a key role in the proofs of our results obtained in Sections 4–5 and
yield some properties of K (r) , E (r) , Ka(r) and Ea(r) (See Section 7). As examples
of applications of these results, several quadratic transformation properties of the gen-
eralized Grötzsch ring function, which appears in Ramanujan’s modular equations, are
obtained in Section 6.

2. Preliminaries

In this section, we shall give several lemmas showing some properties of R(a,b)
and hypergeometric functions. First, we show some properties of R(a,b) .

LEMMA 2.1. (1) For each c ∈ (0,∞) , as functions of a, g1(a) ≡ Rc(a) = −2γ −
ψ(a)−ψ(c− a) and g2(a) ≡ B(a,c− a) are both strictly decreasing and convex on
(0,c/2] .

(2) For a,b∈ (0,∞) , R(a,b) can be expressed by the following function of x = ab
and c = a+b or a function of α = ab/c and c

R(a,b) = g3(x,c) ≡ c
x
−

∞

∑
k=1

ck+2x
k(k2 + ck+ x)

(32)

= g4(α,c) ≡ 1
α
−

∞

∑
k=1

k+2α
k[(k2/c)+ k+ α]

. (33)

Moreover, g3 is strictly decreasing and convex both in x ∈ (0,c2/4] and in c ∈ (0,∞) ,
with g3(0+,c) = ∞ , g5(c) ≡ g3

(
c2/4,c

)
is strictly decreasing and convex from (0,∞)

onto (−∞,∞) with g5(1) = R(1/2) = log16 and g5(2) = R(1,1) = 0 .
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(3) For each c ∈ (0,∞) , the function g6(x) ≡ xg3(x,c) is strictly decreasing in x
from (0,∞) onto (−∞,c) .

(4) g4 is strictly decreasing and convex in α ∈ (0,∞) , and in c ∈ (0,∞) .

Proof. Parts (1)–(3) except for (33) were proved in [30, Lemma 2.1], while (33)
is clear.

Part (4) follows from the partial derivative

∂g4

∂α
= −

{
1

α2 +
∞

∑
k=1

(2k/c)+1

[(k2/c)+ k+ α]2

}
,

∂g4

∂c
= −

∞

∑
k=1

k(k+2α)

(k2 + ck+ cα)2
. �

THEOREM 2.2. Let a,b,a1,b1 ∈ (0,∞) , c = a+ b and c1 = a1 + b1 . Then the
following statements are true:

(1) If ab � a1b1 and c � c1 , then

R(a,b) � R(a1,b1), (34)

with equality if and only if (a,b) = (a1,b1) .
(2) If ab � max{a1b1,cα1} = cα1 , then the inequality (34) is reversed.
(3) In other case not stated in parts (1)–(2), that is, a1b1 < ab < cα1 , then R(a,b)

and R(a1,b1) are not directly comparable, namely neither (34) nor its reversed in-
equality holds for all a,b,a1,b1 ∈ (0,∞) .

Proof. (1) It follows from Lemma 2.1(2) that

R(a1,b1)−R(a,b) =
∞

∑
k=0

(c− c1)k2 +2(ab−a1b1)k+ c1(ab− cα1)
(k2 + ck+ab)(k2 + c1k+a1b1)

, (35)

and if ab = a1b1 , then

R(a,b) = g3(ab,c) = g3(a1b1,c)

⎧⎪⎨⎪⎩
> g3(a1b1,c1) = R1, if c < c1,

= g3(a1b1,c1) = R1, if c = c1,

< g3(a1b1,c1) = R1, if c > c1.

(36)

Clearly, the conditions ab � a1b1 and c � c1 imply that one of the following three
conditions is fulfilled:
(i) ab = a1b1 and c � c1 ,
(ii) ab � min{a1b1,cα1} = cα1 ,
(iii) cα1 < ab < a1b1 .
If ab = a1b1 and c � c1 , or if ab � min{a1b1,cα1} , then (34) follows from (35) and
(36).

Next, let g3 be given as in Lemma 2.1. Note that if cα1 < ab < a1b1 , then c < c1 ,
and hence by Lemma 2.1(2),

R(a,b) = g3(ab,c) > g3(a1b1,c1) = R(a1,b1),
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showing that (34) holds.
From the above discussion, we can easily see that the equality in (34) holds if and

only if (a,b) = (a1,b1) .
(2) Since max{a1b1,cα1} = cα1 implies that c � c1 , part (2) follows from (35)

and (36).
(3) It is easy to see that the remaining case not stated in parts (1)–(2) is that

a,b,a1,b1 satisfy the condition a1b1 < ab < cα1 , which implies that c > c1 . By (32),

lim
c→∞

lim
ab→(a1b1)+

R(a,b) = lim
c→∞

c

[
1

a1b1
−

∞

∑
k=1

k+2a1b1/c
k (k2 + ck+a1b1)

]
= ∞,

lim
c→∞

lim
ab→(cα1)−

R(a,b) = lim
c→∞

[
1

α1
−

∞

∑
k=1

c(k+2α1)
k (k2 + ck+ cα1)

]
= −∞.

This shows that R(a,b) > R(a1,b1) (R(a,b) < R(a1,b1)) when ab is close to a1b1

and c is sufficiently large (ab is close to cα1 and c is sufficiently large, respectively).
Hence part (3) follows.

Given the values of a1 and b1 in Theorem 2.2, one can obtain the corresponding
comparison of R(a,b) and the value R(a1b1) . For example, one can easily obtain the
following

COROLLARY 2.3. (1) For a,b,a1,b1 ∈ (0,∞) with c = a+b and c1 = a1 +b1 , if
4ab � 1 , then

R(a,b) � log16, (37)

with the equality if and only if a = b = 1/2 . If 4ab � c, then the inequality (37) is
reversed.

(2) For a,b,a1,b1 ∈ (0,∞) with c = a+b and c1 = a1 +b1 , if 1 < 4ab < c, then
R(a,b) and log16 are not directly comparable, that is, neither (37) nor its inverse
inequality holds for all a,b > 0 with 1 < 4ab < c.

As we know, [26, Lemma 2.1] gives an effective tool for us to show the mono-
tonicity properties of a ratio of two power series. In [61, Theorem 2.1] (see also [39,
Lemma 1.1]), Yang, Chu and Wang proved a good criterion for the monotonicity of the
quotient ϕ(x) ≡ A(x)/B(x) , where A = A(x) = ∑∞

n=0 anxn and B = B(x) = ∑∞
n=0 bnxn

have a common radius r of convergence. They use the sign of HA,B(r−) of the function
HA,B = (A′B/B ′)−A to determine the monotonicity properties of ϕ . Since HA,B(x) =
B(x)2ϕ ′(x)/B ′(x) , it is easy to see that [61, Theorem 2.1] can be changed to the fol-
lowing more natural and convenient conclusions.

LEMMA 2.4. Suppose that the real power series A(x) = ∑∞
n=0 anxn and B(x) =

∑∞
n=0 bnxn with bn > 0 are of a common radius r ∈ (0,∞) of convergence, and {an/bn}

is a non-constant sequence. Let ϕ(x) = A(x)/B(x) .
(1) If there is an n0 ∈ N such that the sequence {an/bn} is increasing (decreas-

ing) for 0 � n � n0 , and decreasing (increasing) for n � n0 , then ϕ is increasing
(decreasing) on (0,r) if and only if ϕ ′(r−) � 0 (ϕ ′(r−) � 0 , respectively).
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(2) If there is an n0 ∈N such that the sequence {an/bn} is increasing (decreasing)
for 0� n� n0 , and decreasing (increasing) for n� n0 , and if ϕ ′(r−) < 0 (ϕ ′(r−)> 0 ),
then there exists a number x0 ∈ (0,r) such that ϕ is strictly increasing (decreasing) on
(0,x0] and decreasing (increasing, respectively) on [x0,r) .

LEMMA 2.5. For a,b ∈ (0,∞) with c = a + b and d ∈ (−∞,∞) , the function
g7(r) ≡ (1− r)dF(a,b;c;r) is increasing (decreasing) on (0,1) if and only if d � 0
(d � α ).

Proof. Let dn = (a,n)(b,n)/[(c+1,n)n!] and dn = (a,n)(b,n)/[(c,n)n!] . By dif-
ferentiation and (22),

(1− r)1−d

F(r)
g′7(r) = αg8(r)−d, g8(r) =

G(r)
F(r)

= ∑∞
n=0 dnrn

∑∞
n=0 dnrn

. (38)

Clearly, g8(0) = 1 and g8(1−) = 0. Since dn/dn = c/(n+ c) is strictly decreasing in
n ∈ N0 , g8 is strictly decreasing on (0,1) by [26, Lemma 2.1]. Hence by (38),

g′7(r) > 0 ⇔ d � α inf
0<r<1

{g8(r)} = 0, g′7(r) < 0 ⇔ d � α sup
0<r<1

{g8(r)} = α.

In [39, Lemma 2.2], some monotonicity properties of f1(r) ≡ F(r)/F1(r) and
f2(r) ≡ G(r)/G1(r) , for r ∈ (0,1) , were obtained. However, the formulation of the
conditions in [39, Lemma 2.2] is not simple and clear enough, the results for f2 are not
complete, and the proof of [39, Lemma 2.2] is not natural, because of lack of the help
of Lemma 2.1 and Theorem 2.2. For this reason, we prove the following results.

THEOREM 2.6. For a,b,a1,b1 ∈ (0,∞) with c = a+b and c1 = a1 +b1 , and for
r ∈ (0,1) , let f1(r) = F(r)/F1(r) and f2(r) = G(r)/G1(r) . Then we have the following
conclusions:

(1) If ab � min{a1b1,cα1} , or if a1b1 < ab < cα1 with R � R1 , then f1 is de-
creasing from [0,1) onto (B1/B,1] . Moreover, if (a,b) �= (a1,b1) , then the monotonic-
ity of f1 is strict.

(2) If ab � max{a1b1,cα1} , then f1 is increasing from [0,1) onto [1,B1/B) .
Moreover, if (a,b) �= (a1,b1) , then the monotonicity of f1 is strict.

(3) In other cases not stated in parts (1)–(2), namely a1b1 < ab < cα1 with R <
R1 (or cα1 < ab < a1b1 ), there exists a number r1 = r1(a,b,a1,b1) ∈ (0,1) (r2 =
r2(a,b,a1,b1) ∈ (0,1)) such that f1 is decreasing (increasing) on (0,r1] ((0,r2]), and
increasing (decreasing) on [r1,1) ( [r2,1) , respectively). If c � 4α1 , then the case
“cα1 < ab < a1b1 ” does not appear, and in particular, if c � 1 and α1 � 1/4 , then
the case “cα1 < ab < a1b1 ” does not appear.

(4) If ab � min{a1b1 + c1− c,(c+1)α1} or a1b1 + c1 − c < ab � a1b1 , then f2
is decreasing from [0,1) onto (α1B1/(αB),1] . Moreover, if (a,b) �= (a1,b1) , then the
monotonicity of f2 is strict.

(5) If ab � max{a1b1 + c1− c,(c+1)α1} or a1b1 � ab < a1b1 + c1− c , then f2
is increasing from [0,1) onto [1,α1B1/(αB)) . Moreover, if (a,b) �= (a1,b1) , then the
monotonicity of f2 is strict.
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(6) In other cases not stated in parts (4)–(5), namely a1b1 < ab < (c + 1)α1

(or (c+ 1)α1 < ab < a1b1 ), there exists a number r3 = r3(a,b,a1,b1) ∈ (0,1) (r4 =
r4(a,b,a1,b1) ∈ (0,1)) such that f2 is decreasing (increasing) on (0,r3] ((0,r4]) and
increasing (decreasing) on [r3,1) ( [r4,1) , respectively). If c2 � 4(c+ 1)α1 , then the
case “(c+1)α1 < ab < a1b1 ” does not appear. In particular, if c � 1 and α1 � 1/8 ,
then the case “(c+1)α1 < ab < a1b1 ” does not appear.

Proof. Clearly, f1(0) = f2(0) = 1. By (20) and (23), f1(1−) = B1/B and f2(1) =
α1B1/(αB) . Differentiation gives

f ′1(r) =
αG(r)F1(r)−α1F(r)G1(r)

(1− r)F1(r)2 , (39)

f ′2(r) =
αF+(r)G1(r)−α1F1+(r)G(r)

G1(r)2 . (40)

By (23), αBR1G(1)−α1B1RG1(1) = R1−R . By (15), (20) and (22), and by l’Hôpital’s
rule,

lim
r→1

αBG(r)−α1B1G1(r)
(1− r)F1(r)

= lim
r→1

α1α1B1F1+(r)−ααBF+(r)
F1(r)−α1G1(r)

= lim
r→1

[
α1α1B1

F1+(r)
F1(r)

−ααB
F+(r)
F1(r)

]
= (a1b1−ab)B1,

lim
r→1

αBR1G(r)−α1B1RG1(r)
(1− r)F1(r)2 = 0 if R = R1.

Hence by (15), (20), (22)–(23) and (39), we obtain the limiting value

f ′1(1
−) =

1
BB1

lim
r→1

αBG(r) log
(
eR1/(1− r)

)−α1B1G1(r) log
(
eR/(1− r)

)
(1− r)F1(r)2

=
1
B

lim
r→1

[
αBR1G(r)−α1B1RG1(r)

B1(1−r)F1(r)2 +
αBG(r)−α1B1G1(r)

(1−r)F1(r)
· log[1/(1−r)]
log
[
eR1
/
(1−r)

]]

=
B1

B
(a1b1−ab)+

1
BB1

lim
r→1

αBR1G(r)−α1B1RG1(r)
(1− r)F1(r)2

=

⎧⎪⎨⎪⎩
−∞, R > R1,

B1(a1b1−ab)/B, R = R1,

∞, R < R1.

(41)

Put D1 = α1B1(abR−a1b1R1 + c1− c)/(αB) . Then (23) leads to

(abR− c)G1(1)
αB

− (a1b1R1− c1)G(1)
α1B1

=
D1

(α1B1)2 ,

cB1G1(1)− c1BG(1) =
ab−a1b1

αα1
,
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and by (20) and l’Hôpital’s rule,

lim
r→1

cB1G1(r)− c1BG(r)
r ′

= 0 if ab = a1b1.

Hence by (15), (20), (22) and (40), we obtain the limiting value

f ′2(1
−) =

1
G1(1)2 lim

r→1

[
αG1(r)

B
log

eR

1− r
− α1G(r)

B1
log

eR1

1− r

]

=D1 +
α2

1B1

B
lim
r→1

[cB1G1(r)− c1BG(r)] log
1

1− r

=

⎧⎪⎨⎪⎩
−∞, ab < a1b1,

D1, ab = a1b1,

∞, ab > a1b1.

(42)

By Theorem 2.2(1)–(2), if ab = a1b1 , then

D1 =
cB1

c1B
[ab(R−R1)+ c1− c]

{
< 0, if c1 < c,

> 0, if c1 > c.
(43)

Next, for a,b,a1,b1 ∈ (0,∞) with c = a+b and c1 = a1 +b1 , and for n ∈ N0 , let

ãn =
(a,n)(b,n)

(c,n)n!
, b̃n =

(a1,n)(b1,n)
(c1,n)n!

, c̃n =
ãn

b̃n
,

an =
(a,n)(b,n)
(c+1,n)n!

, bn =
(a1,n)(b1,n)
(c1 +1,n)n!

, cn =
an

bn
,

Δ1 = Δ1(n,a,b,a1,b1) = (ab−a1b1)n+ c1(ab− cα1),
Δ2 = Δ2(n,a,b,a1,b1) = (ab+ c−a1b1− c1)n+ab(c1 +1)−a1b1(c+1)

= (ab+ c−a1b1− c1)n+(c1 +1)[ab− (c+1)α1].

Then by (1),

f1(r) =
∑∞

n=0 ãnrn

∑∞
n=0 b̃nrn

,
c̃n+1

c̃n
= 1+

Δ1(n,a,b,a1,b1)
(n+ c)(n2 + c1n+a1b1)

, (44)

f2(r) = ∑∞
n=0 anrn

∑∞
n=0 bnrn

,
cn+1

cn
= 1+

Δ2(n,a,b,a1,b1)
(n+ c+1)(n2 + c1n+a1b1)

. (45)

(1) If ab � min{a1b1,cα1} , then Δ1(n,a,b,a1,b1) � 0, so that c̃n is decreasing
in n ∈ N0 by (44). Hence f1 is decreasing on [0,1) by [26, Lemma 2.1].

If a1b1 < ab < cα1 and R � R1 , then c̃n is decreasing and then increasing in
n ∈ N0 by (44), and f ′1(1

−) < 0 by (41). Hence by Lemma 2.4(1), f1 is decreasing on
[0,1) .

(2) If ab � max{a1b1,cα1} , then Δ1(n,a,b,a1,b1) � 0, and c̃n is increasing in
n ∈ N0 by (44). Hence f1 is increasing on [0,1) by [26, Lemma 2.1].
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(3) If a1b1 < ab < cα1 and R < R1 , then c̃n is decreasing and then increasing
in n ∈ N0 by (44), and f ′1(1

−) = ∞ by (41). Hence the piecewise monotonicity of f1
follows from Lemma 2.4(2).

If cα1 < ab < a1b1 , then c < c1 , cn is increasing and then decreasing in n ∈
N0 by (44), R > R1 by Theorem 2.2(1), f ′1(1

−) = −∞ by (41), and the piecewise
monotonicity of f1 follows from Lemma 2.4(2).

If c � 4α1 , then ab � c2/4 � cα1 by (16), so that the case “cα1 < ab < a1b1 ”
does not appear. In particular, if c � 1 and α1 � 1/4, then ab � c2/4 � c2α1 � cα1

by (16), so that the case “cα1 < ab < a1b1 ” does not appear.
(4) If ab � min{a1b1 + c1 − c,(c+1)α1} , then Δ2(n,a,b,a1,b1) � 0, so that cn

is decreasing in n ∈ N0 by (45). Hence f2 is decreasing on [0,1) by [26, Lemma 2.1].
If a1b1 + c1 − c < ab � a1b1 , then c1 < c and ab(c1 + 1) < a1b1(c+ 1) , so that

cn is decreasing and then increasing in n∈ N0 by (45). By (42) and (43), f ′2(1
−) =−∞

if ab < a1b1 , and f ′2(1
−) = D1 < 0 if ab = a1b1 . Hence f2 is decreasing on [0,1) by

Lemma 2.4(1).
(5) If ab � max{a1b1 + c1− c,(c+1)α1} , then Δ2(n,a,b,a1,b1) � 0, so that cn

is increasing in n ∈ N0 by (45). Hence f2 is increasing on [0,1) by [26, Lemma 2.1].
If a1b1 � ab < a1b1 + c1 − c , then c1 > c , ab(c1 + 1) > a1b1(c+ 1) , so that cn

is increasing and then decreasing in n ∈ N0 by (45). By (42) and (43), f ′2(1
−) = ∞ if

ab > a1b1 , and f ′2(1
−) = D1 > 0 if ab = a1b1 . Hence f2 is increasing on [0,1) by

Lemma 2.4(1).
(6) If a1b1 < ab < (c+1)α1 , then c > c1 , ab+ c > a1b1 + c1 and ab(c1 +1) <

(c1 +1)(c+1)α1 = a1b1(c+1) , so that cn in decreasing and then increasing in n∈N0

by (45). By (42), f ′2(1
−) = ∞ , and hence the piecewise monotonicity of f2 follows

from Lemma 2.4(2).
If (c + 1)α1 < ab < a1b1 , then c < c1 , ab + c < a1b1 + c1 and ab(c1 + 1) >

(c1 +1)(c+1)α1 = a1b1(c+1) , so that cn in increasing and then decreasing in n∈N0

by (45), and f ′2(1
−) = −∞ by (42). Hence the assertion on the piecewise monotonicity

of f2 follows from Lemma 2.4(2).
If c2 � 4(c + 1)α1 , then by (16), ab � c2/4 � (c + 1)α1 . Hence the situation

“(c + 1)α1 < ab < a1b1 ” does not exist. In particular, if c � 1 and α1 � 1/8, then
ab � c2/4 � (c+1)/8 � (c+1)α1 by (16), so that the case “(c+1)α1 < ab < a1b1 ”
does not appear. �

LEMMA 2.7. For a,b,a1,b1 ∈ (0,∞) , c = a+b, c1 = a1 +b1 , and for r ∈ (0,1) ,
let f3(r) = [F(r)−1]/[F1(r)−1] .

(1) If ab � min{a1b1 + c1− c,(c+1)α1} or a1b1 + c1 − c < ab � a1b1 , then f3
is decreasing from (0,1) onto (B1/B,α/α1) . Moreover, if (a,b) �= (a1,b1) , then the
monotonicity of f3 is strict. In particular, for r ∈ (0,1) ,

1− B1

B
+

B1

B
F(a1,b1;c1;r) � F(a,b;c;r) � 1− α

α1
+

α
α1

F(a1,b1;c1r), (46)

with equality in each instance if and only if (a,b) = (a1,b1) .
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(2) If ab � max{a1b1 + c1− c,(c+1)α1} or a1b1 � ab < a1b1 + c1− c , then f3
is increasing from [0,1) onto (α/α1,B1/B) , and each inequality in (46) is reversed.
Moreover, the monotonicity of f3 is strict if (a,b) �= (a1,b1) .

Proof. Let f2 be as in Theorem 2.6, g9(r) = F(r)− 1 and g10(r) = F1(r)− 1.
Then g9(0) = g10(0) = 0 and

g′9(r)
g′10(r)

=
αG(r)

α1G1(r)
=

α
α1

f2(r). (47)

Hence the monotonicity properties of f3 follow from Theorem 2.6(4)–(5) and [3, The-
orem 1.25].

By (47), f3(0+) = α/α1 , and by (20), f3(1−) = B1/B . The remaining conclu-
sions are clear. �

3. Some properties of hypergeometric functions

In this section, we mainly show several properties of hypergeometric functions,
including their sharp bounds given in terms of elementary functions, and the relations
between F(r) and F0(r) , G(r) and G0(r) , F(r) and F0(r) , and between G(r) and
G0(r) . Some of these relations embody the stabilities of the hypergeometric functions
F0(r) , G0(r) , F0(r) and G0(r) with respect to the parameters, in some extent. These
results are needed in the proofs of our results in Sections 4 and 5.

First, taking a1 = 1/2 and b1 = 1, we can immediately obtain the following Corol-
laries 3.1–3.2 (Corollary 3.3) from Theorem 2.6 (Lemma 2.7, respectively) and (22)–
(23).

COROLLARY 3.1. For a,b∈ (0,∞) with c = a+b, and for r ∈ (0,1) , let f4(r) =
F(r)/F0(r) =

√
rF(r)/arth(

√
r) .

(1) If ab � min{1/2,c/3} , or if 1/2 < ab < c/3 with R � log4 , then f4 is de-
creasing from [0,1) onto (2/B,1] . The monotonicity of f4 is strict if (a,b) �= (1/2,1) .
In particular, for r ∈ (0,1) ,

2
arth(r)

Br
=

2
B

F

(
1
2
,1;

3
2
;r2
)

� F
(
a,b;c;r2)� F

(
1
2
,1;

3
2
;r2
)

=
arth(r)

r
, (48)

with equality in each inequality if and only if (a,b) = (1/2,1) .
(2) If ab � max{1/2,c/3} , then f4 is increasing from [0,1) onto [1,2/B) , and

each inequality in (48) is reversed. Moreover, the monotonicity of f4 is strict if (a,b) �=
(1/2,1) .

(3) In other cases not stated in parts (1)–(2), namely 1/2 < ab < c/3 with R <
log4 (or c/3 < ab < 1/2 ), there exists r5 = r5(a,b) ∈ (0,1) (r6 = r6(a,b) ∈ (0,1))
such that f4 is decreasing (increasing) on [0,r5] ( [0,r6]), and increasing (decreasing)
on [r5,1) ( [r6,1) , respectively), with f4(0) = 1 and f4(1−) = 2/B. If c � 4/3 , then
the case “c/3 < ab < 1/2” does not appear.



QUADRATIC TRANSFORMATION IDENTITIES FOR HYPERGEOMETRIC FUNCTIONS 1403

COROLLARY 3.2. For a,b∈ (0,∞) with c = a+b, and for r ∈ (0,1) , let f5(r) =
G(r)/G0(r) .

(1) If ab � min{2−c,(c+1)/5} or 2−c < ab � 1/2 , then f5 is decreasing from
[0,1) onto (2/(3αB),1] . Moreover, if (a,b) �= (1/2,1) , then the monotonicity of f5 is
strict. In particular, for r ∈ (0,1) ,

P0(r)/(αB) � F
(
a,b;c+1;r2)� 3P0(r)/2, (49)

with equality in each instance if and only if a = 1/2 and b = 1 , where P0(r) =
r−3
[
r− r ′2arth(r)

]
.

(2) If ab � max{2− c,(c + 1)/5} or 1/2 � ab < 2− c, then f5 is increasing
from [0,1) onto [1,2/(3αB)) , and each inequality in (49) is reversed. Moreover, if
(a,b) �= (1/2,1) , then the monotonicity of f5 is strict.

(3) In other cases not stated in parts (1)–(2), that is, 1/2< ab< (c+1)/5 (or (c+
1)/5 < ab < 1/2 ), there exists a number r7 = r7(a,b) ∈ (0,1) (r8 = r8(a,b) ∈ (0,1))
such that f5 is decreasing (increasing) on [0,r7] ( [0,r8]), and increasing (decreasing)
on [r7,1) ( [r8,1) , respectively), with f5(0) = 1 and f5(1−) = 2/(3αB) . If c2 � 4(c+
1)/5 , then the case “(c+1)/5 < ab < 1/2” does not appear.

COROLLARY 3.3. For a,b∈ (0,∞) with c = a+b, and for r ∈ (0,1) , let f6(r) =
[F(r)−1]/[F0(r)−1] .

(1) If ab � min{2−c,(c+1)/5} or 2−c < ab � 1/2 , then f6 is decreasing from
(0,1) onto (2/B,3α) . Moreover, if (a,b) �= (1/2,1) , then the monotonicity of f6 is
strict. In particular, for r ∈ (0,1) ,

1+
2
B

[
arth(r)

r
−1

]
� F

(
a,b;c;r2)� 1+3α

[
arth(r)

r
−1

]
, (50)

with equality in each instance if and only if a = 1/2 and b = 1 , and

π
2
−1+

arth(r)
r

< K (r) <
π
8

+3π
arth(r)

8r
. (51)

(2) If ab � max{2−c,(c+1)/5} or 1/2 � ab < 2−c , then f6 is increasing from
[0,1) onto (3α,2/B) , and each inequality in (50) is reversed. Moreover, if (a,b) �=
(1/2,1) , then the monotonicity of f6 is strict.

COROLLARY 3.4. For r∈ (0,1) , D2 =
√

2/π = 0.45015 · · · and D3 = 8
√

2/3π =
1.20042 · · ·,

D2
arth(r)

r
< F

(
1
4
,
3
4
;1;r2

)
<

arth(r)
r

, (52)

D3
r− r ′2arth(r)

r3 < F

(
1
4
,
3
4
;2;r2

)
< 3

r− r ′2arth(r)
2r3 . (53)

The coefficients of the lower and upper bounds in (52) and (53) are all best possible.
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Proof. Take a = 1/4 and b = 3/4 in Corollary 3.1(1). Then c = 1, B(1/4,3/4)=√
2π by (13), ab = α = 3/16 < 1/3, and hence (52) follows from Corollary 3.1(1).

The coefficients of the lower and upper bounds in (52) are both best possible, since
limr→0 F0(r)/F0(r) = 1 and limr→1 F0(r)/F0(r) =

√
2/π by (20).

Similarly, the remaining conclusions follow from Corollary 3.2(1). �

COROLLARY 3.5. For a,b∈ (0,∞) with c = a+b, and for r ∈ (0,1) , let f7(r) =
F(r)/F0(r) .

(1) If 16ab/3 � min{1,c} , or if 1 < 16ab/3 < c with R � log64 , then f7 is
decreasing from [0,1) onto (

√
2π/B,1] , so that for r ∈ (0,1) ,

√
2π
B

F

(
1
4
,
3
4
;1;r2

)
� F

(
a,b;c;r2)� F

(
1
4
,
3
4
;1;r2

)
, (54)

with equality in each instance if and only if a = 1/4 = b/3 . The monotonicity of f7 is
strict if (a,b) �= (1/4,3/4) .

(2) If 16ab/3 � max{1,c} , then f7 is increasing from [0,1) onto [1,
√

2π/B) ,
so that each inequality in (54) is reversed. Moreover, if (a,b) �= (1/4,3/4) , then the
monotonicity of f7 is strict.

(3) In other cases not stated in parts (1)–(2), namely 1 < 16ab/3 < c with R <
log64 (or c < 16ab/3 < 1 ), there exists r9 = r9(a,b) ∈ (0,1) (r10 = r10(a,b) ∈ (0,1))
such that f7 is decreasing (increasing) on [0,r9] ( [0,r10]), and increasing (decreasing)
on [r9,1) ( [r10,1) , respectively), with f7(0) = 1 and f7(1−) =

√
2π/B. If c � 3/4 ,

then the case “c < 16ab/3 < 1” does not appear.

Proof. The results follow from Theorem 2.6(1)–(3) with a1 = 1/4 and b1 = 3/4
and (13). �

Similarly, Theorem 2.6(4)–(6) with a1 = 1/4 and b1 = 3/4, (13) and (53) yield
the following corollary.

COROLLARY 3.6. For a,b∈ (0,∞) with c = a+b, and for r ∈ (0,1) , let f8(r) =
G(r)/G0(r) .

(1) If ab � min{(19/16)− c,3(c+1)/32} or (19/16)− c < ab � 3/16 , then f8
is decreasing from [0,1) onto (3

√
2π/(16αB),1] . The monotonicity of f8 is strict if

(a,b) �= (1/4,3/4) . In particular, for r ∈ (0,1) ,

3
√

2π
16αB

F

(
1
4
,
3
4
;2;r2

)
� F

(
a,b;c+1;r2)� F

(
1
4
,
3
4
;2;r2

)
, (55)

with equality in each instance if and only if (a,b) = (1/4,3/4) . Moreover, the coeffi-
cients 1/(αB) and 3/2 of the lower and upper bounds in (55) are both best possible.

(2) If ab � max{(19/16)− c,3(c+1)/32} or 3/16 � ab < (19/16)− c, then f8
is increasing from [0,1) onto [1,3

√
2π/(16αB)) , so that each inequality in (55) is

reversed. Moreover, the monotonicity of f8 is strict if (a,b) �= (1/4,3/4) .
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(3) In other cases not stated in parts (1)–(2), that is, 3/16 < ab < 3(c + 1)/32
(or 3(c + 1)/32 < ab < 3/16 ), there exists a number r11 = r11(a,b) ∈ (0,1) (r12 =
r12(a,b) ∈ (0,1)) such that f8 is decreasing (increasing) on [0,r11] ( [0,r12]), and in-
creasing (decreasing) on [r11,1) ( [r12,1) , respectively) with f8(0) = 1 and f8(1−) =
3
√

2π/(16αB) . If c2 � 3(c + 1)/8 , then the case “3(c + 1)/32 < ab < 3/16” does
not appear.

Taking a1 = 1/4 and b1 = 3/4 in Lemma 2.7, and applying (13), we obtain the
following corollary.

COROLLARY 3.7. For a,b∈ (0,∞) with c = a+b, and for r ∈ (0,1) , let f9(r) =
[F(r)−1]/[F0(r)−1] .

(1) If ab � min{(19/16)− c,3(c+1)/32} or (19/16)− c < ab � 3/16 , then f9
is decreasing from (0,1) onto (

√
2π/B,16α/3) . Moreover, the monotonicity of f9 is

strict if (a,b) �= (1/4,3/4) . In particular, for r ∈ (0,1) ,

1+
√

2π
B

[
F

(
1
4
,
3
4
;1;r2

)
−1

]
� F

(
a,b;c;r2)� 1+

16α
3

[
F

(
1
4
,
3
4
;1;r2

)
−1

]
,

(56)

with equality in each instance if and only if a = 1/4 and b = 3/4 .
(2) If ab � max{(19/16)− c,3(c + 1)/32} or 3/16 � ab < (19/16)− c, then

f9 is increasing from (0,1) onto (16α/3,
√

2π/B) , so that each inequality in (56) is
reversed. Moreover, the monotonicity of f9 is strict if (a,b) �= (1/4,3/4) .

Next, we present some more properties of zero-balanced hypergeometric func-
tions. The following theorem and its corollaries 3.9–3.10 play a key role in the proofs
of our results obtained in Section 4.

THEOREM 3.8. For a,b,a1,b1 ∈ (0,∞) with c = a+ b and c1 = a1 + b1 , let r3

and r4 be as in Theorem 2.6, ξ = 1−α/α1 , δ = (R−R1)/B, and for r ∈ (0,1) , let
f10(r) = F(r)−F1(r)F ′(r)/F ′

1(r) .
(1) If ab� min{a1b1+c1−c,(c+1)α1} or a1b1+c1−c < ab � a1b1 , then f10 is

increasing from (0,1) onto (ξ ,δ ) . Moreover, if (a,b) �= (a1,b1) , then the monotonicity
of f10 is strict. In particular, for r ∈ (0,1) ,

ξ +
B1

B
F(a1,b1;c1;r) � F(a,b;c;r) � δ +

α
α1

F(a1,b1;c1;r), (57)

with equality in each instance if and only if a = a1 and b = b1 .
(2) If ab � max{a1b1 + c1− c,(c+1)α1} or a1b1 � ab < a1b1 + c1− c, then f10

is decreasing from (0,1) onto (δ ,ξ ) , and each inequality in (57) is reversed. Moreover,
if (a,b) �= (a1,b1) , then the monotonicity of f10 is strict.

(3) In other cases not stated in parts (1)–(2), that is, a1b1 < ab < (c+ 1)α1 (or
(c + 1)α1 < ab < a1b1 ), f10 is increasing (decreasing) on [0,r3] ( [0,r4]), and de-
creasing (increasing) on [r3,1) ( [r4,1) , respectively). If c2 � 4(c + 1)α1 , then the
case “(c+1)α1 < ab < a1b1 ” does not appear.
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Proof. Let f2 be as in Theorem 2.6. Then by (22), F ′(r)/F ′
1(r)= αG(r)/[α1G1(r)]

= α f2(r)/α1 , so that

f10(r) = F(r)−F1(r)
αG(r)

α1G1(r)
= F(r)− α

α1
F1(r) f2(r), (58)

f ′10(r) = −F1(r)
d
dr

[
F ′(r)
F ′

1(r)

]
= − α

α1
F1(r) f ′2(r). (59)

Hence the monotonicity properties of f10 , given in parts (1)–(3), follow from (59) and
Theorem 2.6(4)–(6).

By (58), we see that f10(0)= 1−α/α1 . Since limr→1[α1B1G1(r)−αBG(r)]/r ′ =
0 by l’Hôpital’s rule and (20), it follows from (58), (20) and (23) that

f10(1−) = B1 lim
r→1

[
α1G1(r)

B
log

eR

1− r
− αG(r)

B1
log

eR1

1− r

]
= δ + lim

r→1

α1B1G1(r)−αBG(r)
Br ′

·
(

r ′ log
1

1− r

)
= δ .

It follows from (58) and the monotonicity of f10 given in part (1) that

ξ +
α
α1

F1(r) f2(r) � F(a,b;c;r) � δ +
α
α1

F1(r) f2(r),

and hence (57) follows from Theorem 2.6(4). The remaining conclusions are clear. �

Taking a1 = 1/2 and b1 = 1 (a1 = 1/4 and b1 = 3/4) in Theorem 3.8, we im-
mediately obtain the following Corollary 3.9 (Corollary 3.10, respectively).

COROLLARY 3.9. For a,b ∈ (0,∞) with c = a+b, let r7 and r8 be as in Corol-
lary 3.2, δ1 = (R− log4)/B, and for r ∈ (0,1) , let f11(r) = F(r)−F0(r)F ′(r)/F ′

0(r)
and Q0(r) = [arth(r)]/r .

(1) If ab � min{2−c,(c+1)/5} or 2−c < ab < 1/2 , then f11 is increasing from
(0,1) onto (1−3α,δ1) . Moreover, if (a,b) �= (1/2,1) , then the monotonicity of f11 is
strict. In particular, for r ∈ (0,1) ,

1−3α +2Q0(r)/B � F
(
a,b;c;r2)� δ1 +3αQ0(r), (60)

with equality in each instance if and only if a = 1/2 and b = 1 .
(2) If ab � max{2− c,(c + 1)/5} or 1/2 < ab < 2− c, then f11 is decreasing

from (0,1) onto (δ1,1−3α) , and each inequality in (60) is reversed. Furthermore, if
(a,b) �= (1/2,1) , then the monotonicity of f11 is strict.

(3) In other cases not stated in parts (1)–(2), that is, 1/2< ab< (c+1)/5 (or (c+
1)/5 < ab < 1/2 ), f11 is increasing (decreasing) on [0,r7] ( [0,r8]), and decreasing
(increasing) on [r7,1) ( [r8,1) , respectively). If c2 � 4(c+ 1)/5 , then the case “(c+
1)/5 < ab < 1/2” does not appear.
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COROLLARY 3.10. For a,b ∈ (0,∞) with c = a + b, and for r ∈ (0,1) , let r11

and r12 be as in Corollary 3.6, δ2 = (R− log64)/B, β1 = 1− 16α/3 , and f12(r) =
F(r)−F0(r)F ′(r)/F

′
0(r) .

(1) If ab � min{(19/16)− c,3(c + 1)/32} or (19/16)− c < ab < 3/16 , then
f12 is increasing from (0,1) onto (η ,δ2) . Moreover, if (a,b) �= (1/4,3/4) , then the
monotonicity of f12 is strict. In particular, for r ∈ (0,1) ,

1− 16α
3

+
√

2π
B

F

(
1
4
,
3
4
;1;r2

)
� F

(
a,b;c;r2)� δ2 +

16α
3

F

(
1
4
,
3
4
;1;r2

)
, (61)

with equality in each instance if and only if a = 1/4 and b = 3/4 .
(2) If ab � max{(19/16)−c,3(c+1)/32} or 3/16 < ab < (19/16)−c, then f12

is decreasing from (0,1) onto (δ2,η) , and for r ∈ (0,1) , each inequality in (61) is
reversed. Furthermore, if (a,b) �= (1/4,3/4) , then the monotonicity of f12 is strict.

(3) In other cases not stated in parts (1)–(2), that is, 3/16 < ab < 3(c + 1)/32
(or 3(c+1)/32 < ab < 3/16 ), f12 is increasing (decreasing) on [0,r11] ( [0,r12]), and
decreasing (increasing) on [r11,1) ( [r12,1) , respectively). If c2 � 3(c+1)/8 , then the
case “3(c+1)/32 < ab < 3/16” does not appear.

COROLLARY 3.11. (1) For a,b,a1,b1 ∈ (0,∞) with c = a+b and c1 = a1 +b1 ,
let f1 be as in Theorem 2.6. If α1 � 1/2 and ab � min{a1b1 + c1 − c,(c+1)α1} , or
if α1 � 1/2 and a1b1 + c1− c < ab � a1b1 , then f1 is concave on (0,1) .

(2) If ab�min{2−c,(c+1)/5} or 2−c< ab� 1/2 , then f4 defined in Corollary
3.1 is concave on (0,1) .

(3) If ab � min{(19/16)− c,3(c+1)/32} or (19/16)− c < ab � 3/16 , then f7
defined in Corollary 3.5 is concave on (0,1) .

Proof. (1) Let f10 be as in Theorem 3.8. By differentiation,

− f ′1(r) =
F ′

1(r)
F1(r)2

[
F(r)− F ′(r)

F ′
1(r)

F1(r)
]

=
F ′

1(r)
F1(r)2 f10(r)

=
α1G1(r)

(1− r)F1(r)2 · f10(r),

which is product of two positive and increasing functions on (0,1) by Theorem 3.8(1)
and Lemma 2.5. This yields part (1).

(2) If a1 = 1/2 and b1 = 1 in part (1), then α1 = 1/3 < 1/2, a1b1 + c1 = 2,
a1b1/(c1 +1) = 1/5, and hence the concavity of f4 follows from part (1).

(3) Similarly, part (3) follows from part (1) with a1 = 1/4 and b1 = 3/4. �
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4. Extensions of transformation identities (26) and (27)

In this section, we extend the identities (26) and (27) to zero-balanced hyperge-
ometric functions by proving the following Theorems 4.1 and 4.2. These results sub-
stantially improve all the known related results such as Theorem 1.2.

THEOREM 4.1. For a,b ∈ (0,∞) with c = a+b, let β = 1−3α and δ1 = (R−
log4)/B, and define the function f on (0,1) by

f (r) = (1+ r)F(a,b;c;r)−F

(
a,b;c;

4r
(1+ r)2

)
−β r.

(1) If ab � min{2− c,(c+1)/5} or 2− c < ab < 1/2 , then f is increasing from
[0,1) onto [0,δ1 − β ) . Moreover, if (a,b) �= (1/2,1) , then the monotonicity of f is
strict. In particular, for r ∈ (0,1) ,

β r � (1+ r)F(a,b;c;r)−F

(
a,b;c;

4r
(1+ r)2

)
� β r+ δ1−β , (62)

with equality in each instance if and only if a = 1/2 and b = 1 .
(2) If ab � max{2−c,(c+1)/5} or 1/2 < ab < 2−c, then f is decreasing from

[0,1) onto (δ1 − β ,0] . Moreover, if (a,b) �= (1/2,1) , then the monotonicity of f is
strict. In particular, for r ∈ (0,1) ,

β r+ δ1−β � (1+ r)F(a,b;c;r)−F

(
a,b;c;

4r
(1+ r)2

)
� β r, (63)

with equality in each instance if and only if a = 1/2 and b = 1 .
(3) In other cases not stated in parts (1)–(2), that is, 1/2 < ab < (c + 1)/5 or

(c+1)/5 < ab < 1/2 , f is not monotone on (0,1) , and neither the double inequality
(62) nor (63) holds for all r ∈ (0,1) and for all a,b∈ (0,∞) with 1/2 < ab < (c+1)/5
or (c+ 1)/5 < ab < 1/2 . If c2 � 4(c+ 1)/5 , then the case “(c+ 1)/5 < ab < 1/2”
does not appear.

Proof. Put x = 4r/(1+ r)2 . Then x > r and

1− x =
(

1− r
1+ r

)2

,
dx
dr

=
4(1− r)
(1+ r)3 ,

1
1− x

dx
dr

=
4
r ′2

. (64)

Clearly, f (0) = 0. By (20) and (64), we obtain

f (1−) =
1
B

lim
r→1

[
(1+ r) log

eR

1− r
− log

eR

1− x

]
−β

=
1
B

lim
r→1

[
rR+(1+ r) log

1
1− r

−2log
1+ r
1− r

]
−β = δ1−β . (65)
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Let f13(r)= f14(r)/ f15(r) , f14(r)= r ′2F(r)+α(1+r)2G(r)−4αG(x) and f15(r)
= r ′2 . Then by (22) and (64), and by differentiation, we have

f ′(r) =F(r)+ α
1+ r
1− r

G(r)− 4α
1− r2 G(x)−β = f13(r)−β , (66)

f ′14(r) =3α(1+ r)G(r)−2rF(r)+ αα(1+ r)2F+(r)− 16αα(1− r)
(1+ r)3 F+(x). (67)

Clearly,

f14(0)−β = f14(1−) = 0, f ′14(0) =
15α
c+1

(
c+1

5
−ab

)
. (68)

Next, by (26), F0(x) = (1+r)F0(r) . Differentiating both sides of this identity with
respect to r , and using (18), (22) and (64), we obtain the following relation

G0(x) =
3r ′2

4

[
F0(r)+

1+ r
3(1− r)

G0(r)
]
. (69)

(1) If ab � min{2− c,(c+1)/5} or 2− c < ab < 1/2, then by Corollary 3.2(1),

G(x) � G(r)G0(x)/G0(r). (70)

Let f11 be as in Corollary 3.9. Then it follows from (66), (69), (70) and Corollary
3.9(1) that

f ′(r) � F(r)+ α
1+ r
1− r

G(r)− 4αG(r)
r ′2G0(r)

G0(x)−β

= F(r)−3αF0(r)
G(r)
G0(r)

−β = f11(r)−β � 0. (71)

This yields the monotonicity of f . The remaining conclusions in part (1) are clear.
(2) If ab � max{2−c,(c+1)/5} or 1/2 < ab < 2−c , then by Corollaries 3.2(2)

and 3.9(2), each inequality in (70) –(71) is reversed, and hence part (2) follows.
(3) By (66), we see that f ′(0) = 0. By l’Hôpital’s rule and (67)–(68), we obtain

lim
r→0

r ′2

r
f ′(r) = lim

r→0

[
f14(r)−β

r
+ β r

]
= f ′14(0

+) =
15α
c+1

(
c+1

5
−ab

)
. (72)

By (15), (20), (22)–(23) and (66)–(67), and by l’Hôpital’s rule, we obtain

f ′(1−) = f13(1−)−β = lim
r→1

f ′14(r)
f ′15(r)

−β = −1
2

f ′14(1
−)−β

=
1
2

lim
r→1

[
2rF(r)+

16αα(1−r)
(1+r)3 F+(x)−3α(1+r)G(r)−αα(1+r)2F+(r)

]
−β

=− 3
B

+ lim
r→1

[
rF(r)− αα

2
(1+ r)2F+(r)

]
−β
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=− 3
B

+ lim
r→1

[
r
B

log
eR

1− r
− αα(1+ r)2

2B
log

eR

1− r

]
−β

=
2c+(1−2ab)R−3

B
+

1
B

lim
r→1

[
r− ab

2
(1+ r)2

]
log

1
1− r

−β

=

{
∞, if ab < 1/2,

−∞, if ab > 1/2.
(73)

If 1/2< ab < (c+1)/5, then by (72) and (73), there exist numbers r13,r14 ∈ (0,1)
with r13 < r14 such that f ′(r) > 0 for r ∈ (0,r13) , and f ′(r) < 0 for r ∈ (r14,1) . Hence
f is not monotone on (0,1) , and the second inequality in (62) (the second inequality in
(63)) is reversed for r ∈ (r14,1) (r ∈ (0,r13] , respectively).

Similarly, if (c+1)/5 < ab < 1/2, then f is not monotone on (0,1) , and neither
the double inequality (62) nor (63) holds for all r ∈ (0,1) . The remaining conclusion
is clear. �

COROLLARY 4.2. For a,b ∈ (0,∞) with c = a + b, let β = 1− 3α and δ1 =
(R− log4)/B, and define the function g on (0,1) by

g(r) =
2

1+ r
F

(
a,b;c;

1− r
1+ r

)
−F

(
a,b;c;r ′2

)−β
1− r
1+ r

.

(1) If ab � min{2− c,(c+1)/5} or 2− c < ab < 1/2 , then g is decreasing from
(0,1] onto [0,δ1 − β ) . Moreover, if (a,b) �= (1/2,1) , then the monotonicity of g is
strict. In particular, for r ∈ (0,1) ,

β (1− r) � 2F

(
a,b;c;

1− r
1+ r

)
− (1+ r)F

(
a,b;c;r ′2

)
� β (1− r)+ (δ1−β )(1+ r),

(74)

with equality in each instance if and only if a = 1/2 and b = 1 .
(2) If ab � max{2− c,(c+1)/5} or 1/2 < ab < 2− c, then g is increasing from

(0,1] onto (δ1 − β ,0] . Moreover, if (a,b) �= (1/2,1) , then the monotonicity of g is
strict. In particular, for r ∈ (0,1) ,

β (1− r)+ (δ1−β )(1+ r) � 2F

(
a,b;c;

1− r
1+ r

)
− (1+ r)F

(
a,b;c;r ′2

)
� β (1− r),

(75)

with equality in each instance if and only if a = 1/2 and b = 1 .
(3) In other cases not stated in parts (1)–(2), that is, 1/2 < ab < (c + 1)/5 or

(c+1)/5 < ab < 1/2 , g is not monotone on (0,1) , and neither (74) nor (75) holds for
all r ∈ (0,1) and for all a,b ∈ (0,∞) with 1/2 < ab < (c+1)/5 or (c+1)/5 < ab <
1/2 . If c2 � 4(c+1)/5 , then the case “(c+1)/5 < ab < 1/2” does not appear.

Proof. Let f be as in Theorem 4.1, and t = (1− r)/(1 + r) . Then 2/(1 + r) =
1+ t , r = (1− t)/(1+ t) , r ′2 = 4t/(1+ t)2 , and g(r) = (1+ t)F(t)−F

(
4t/(1+ t)2

)−
β t = f (t) . Hence the results in Corollary 4.2 follow from Theorem 4.1. �
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5. Extensions of identities (28) and (29)

In this section, we apply the results proved in Section 3 to extend the transforma-
tion identities (28) and (29) to zero-balanced hypergeometric functions by proving the
following theorem and its corollary.

THEOREM 5.1. For a,b ∈ (0,∞) with c = a + b, and for r ∈ (0,1) , let η =
1−16α/3 , δ2 = (R− log64)/B,

P1(r) = η
(√

1+3r−1
)

=
3η

1+
√

1+3r
,

h(r) =
√

1+3rF
(
a,b;c;r2)−F

(
a,b;c;1−

(
1− r
1+3r

)2
)
−P1(r).

(1) If ab � min{(19/16)− c,3(c+ 1)/32} or (19/16)− c < ab < 3/16 , then h
is increasing from [0,1) onto [0,δ2 −η) . Moreover, if (a,b) �= (1/4,3/4) , then the
monotonicity of h is strict. In particular, for r ∈ (0,1) ,

P1(r) �
√

1+3rF
(
a,b;c;r2)−F

(
a,b;c;1−

(
1− r
1+3r

)2
)

� P1(r)+ δ2−η , (76)

with equality in each instance if and only if a = 1/4 and b = 3/4 .
(2) If ab � max{(19/16)− c,3(c+ 1)/32} or 3/16 < ab < (19/16)− c, then h

is decreasing from [0,1) onto (δ2 −η ,0] . Moreover, if (a,b) �= (1/4,3/4) , then the
monotonicity of h is strict. In particular, for r ∈ (0,1) ,

P1(r)+ δ2−η �
√

1+3rF
(
a,b;c;r2)−F

(
a,b;c;1−

(
1− r
1+3r

)2
)

� P1(r), (77)

with equality in each instance if and only if a = 1/4 and b = 3/4 .
(3) In other cases not stated in parts (1)–(2), that is, 3/16 < ab < 3(c + 1)/32

or 3(c + 1)/32 < ab < 3/16 , h is not monotone on (0,1) , and neither the double
inequality (76) nor (77) holds for all r ∈ (0,1) and all a,b ∈ (0,∞) with 3/16 <
ab < 3(c + 1)/32 or 3(c + 1)/32 < ab < 3/16 . If c2 � 3(c + 1)/8 , then the case
“3(c+1)/32 < ab < 3/16” does not appear.

Proof. Set y = 1− [(1− r)/(1+3r)]2 = 8r(1+ r)
/
(1+3r)2 . Then y > r > r2 for

r ∈ (0,1) , and

dy
dr

=
8(1− r)
(1+3r)3 ,

1
1− y

dy
dr

=
8

(1− r)(1+3r)
. (78)
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Clearly, h(0) = 0. By (20) and (78), we obtain

h(1−) =
1
B

lim
r→1

[√
1+3r log

eR

1− r2 − log
eR

1− y

]
−η

=
1
B

lim
r→1

[(√
1+3r−1

)
R+

√
1+3r log

1
1− r2 −2log

1+3r
1− r

]
−η

= (R− log64)/B−η = δ2−η . (79)

For a,b∈ (0,∞) with c = a+b , and for r ∈ (0,1) , let h1(r) = h2(r)/h3(r) , where

h2(r) = 3r ′2
√

1+3rF
(
r2)+4αr(1+3r)3/2G

(
r2)−16α(1+ r)G(y),

h3(r) = r ′2
√

1+3r.

Then by (22) and (78), and by differentiation, we obtain

2
√

1+3r h ′(r) =3F
(
r2)+ 4αr(1+3r)

1− r2 G
(
r2)− 16αG(y)

(1− r)
√

1+3r
−3η

=h1(r)−3η , (80)

h′2(r) =
3
(
3−4r−15r2

)
2
√

1+3r
F
(
r2)+4α(1+9r)

√
1+3rG

(
r2)

+8ααr2(1+3r)3/2F+
(
r2)−16αG(y)− 128ααr ′2

(1+3r)3 F+(y). (81)

Set D4 = 64[1− c+(ab−3/16)R]/B . Since

lim
r→1

[
16abr2(1+3r)2−3

(
15r2 +4r−3

)]
= 256(ab−3/16),

it follows from (81), (15), (20) and (22)–(23) that

h2(0) =3η , h2(1−) = 0, h′2(0) =
9
2
−4α

(
3+

32ab
c+1

)
, (82)

h′2(1
−) =

64
B

+ lim
r→1

[
8ααr2(1+3r)3/2F+

(
r2)− 3

(
15r2 +4r−3

)
2
√

1+3r
F
(
r2)]

=
64
B

+
1
4B

lim
r→1

[
16abr2(1+3r)2 log

eR

1− r2 −3
(
15r2 +4r−3

)
log

eR

1− r2

]

=D4 + lim
r→1

16abr2(1+3r)2−3
(
15r2 +4r−3

)
4B

log
1

1− r2

=

{
−∞, if ab < 3/16,

∞, if ab > 3/16.
(83)

Next, by (29), F0(y) =
√

1+3r F0
(
r2
)
. Differentiating both sides of this identity

with respect to r , and applying (23), we obtain

G0(y) = (1− r)
√

1+3r

[
F0
(
r2)+ r(1+3r)

4(1− r2)
G0
(
r2)] . (84)
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(1) If ab � min{(19/16)− c,3(c+1)/32} or (19/16)− c < ab < 3/16, then by
Corollary 3.6(1), we obtain

G(y) � G
(
r2)G0(y)

/
G0
(
r2) , (85)

with equality if and only if a = 1/4 and b = 3/4.
Let f12 be as in Corollary 3.10. Then it follows from (22)–(23), (80) and (84)–(85)

that

h1(r) � 3F
(
r2)+ 4αr(1+3r)

1− r2 G
(
r2)− 16α

(1− r)
√

1+3r

G
(
r2
)

G0 (r2)
G0(y)

= 3

[
F
(
r2)− 16αG

(
r2
)

3G0 (r2)
F0
(
r2)]= 3 f12

(
r2) . (86)

The first equality in (86) holds if and only if a = 1/4 and b = 3/4. Hence by Corollary
3.10(1) and (80),

2h′(r)
√

1+3r = h1(r)−3η � 3
[
f12
(
r2)−η

]
� 0, r ∈ (0,1), (87)

with equality in each instance if and only if a = 1/4 and b = 3/4. This yields the
monotonicity of h .

Since
√

1+3r−1 = 3r
/(

1+
√

1+3r
)
, (76) follows from the monotonicity of h .

The remaining conclusions in part (1) are clear.
(2) With the conditions in part (2), each inequality in (85)–(87) is reversed by

Corollaries 3.6(2) and 3.10(2). Hence part (2) follows.
(3) It follows from (80) that

2

√
1+3r
r

h′(r) =
h2(r)−3η +3η

[(
1−√

1+3r
)
+ r2

√
1+3r

]
rr ′2

√
1+3r

=
h2(r)−3η
rr ′2

√
1+3r

− 9η
r ′2
(
1+

√
1+3r

)√
1+3r

+3η
r

r ′2
.

Hence by (82) and l’Hôpital’s rule,

2 lim
r→0

h′(r)
r

= 2 lim
r→0

√
1+3r
r

h′(r) = lim
r→0

h2(r)−3η
r

− 9η
2

= h′2(0
+)− 9η

2
=

128α
c+1

[
3(c+1)

32
−ab

]
. (88)

On the other hand, by (80) and (82)–(83), and by l’Hôpital’s rule, we obtain

4h′(1−) = h1(1−)−3η =
1
4

lim
r→1

h2(r)
1− r

−3η

= −1
4
h′2(1

−)−3η =

{
∞, if ab < 3/16,

−∞, if ab > 3/16.
(89)
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If 3/16< ab < 3(c+1)/32, then by (88) and (89), there exist r15,r16 ∈ (0,1) with
r15 < r16 such that h′(r) > 0 for r ∈ (0,r15) , and h′(r) < 0 for r ∈ (r16,1) . Hence h
is not monotone on (0,1) , and the second inequality in (76) (the second inequality in
(77)) is reversed for r ∈ [r16,1) (r ∈ (0,r15] , respectively).

Similarly, if 3(c + 1)/32 < ab < 3/16, then h is not monotone on (0,1) , and
neither the double inequality (76) nor (77) holds for all r ∈ (0,1) . The remaining
conclusion is clear. �

COROLLARY 5.2. For a,b ∈ (0,∞) with c = a + b, let η = 1− 16α/3 , δ2 =
(R− log64)/B and

P(r) =
3η(1− r)

2+
√

1+3r
, Q(r) = P(r)+ (δ2−η)

√
1+3r,

and define the function H on (0,1) by

H(r) =
2√

1+3r
F

(
a,b;c;

(
1− r
1+3r

)2
)
−F

(
a,b;c;1− r2)−η

(
2√

1+3r
−1

)
.

(1) If ab � min{(19/16)− c,3(c+1)/32} or (19/16)− c < ab < 3/16 , then H
is decreasing from (0,1] onto [0,δ2 −η) . Moreover, if (a,b) �= (1/4,3/4) , then the
monotonicity of H is strict. In particular, for r ∈ (0,1) ,

P(r) � 2F

(
a,b;c;

(
1− r
1+3r

)2
)
−√

1+3rF
(
a,b;c;1− r2)� Q(r), (90)

with equality in each instance if and only if a = 1/4 and b = 3/4 .
(2) If ab � max{(19/16)− c,3(c+1)/32} or 3/16 < ab < (19/16)− c, then H

is increasing from (0,1] onto (δ2 −η ,0] . Moreover, if (a,b) �= (1/4,3/4) , then the
monotonicity of H is strict.

Q(r) � 2F

(
a,b;c;

(
1− r
1+3r

)2
)
−√

1+3rF
(
a,b;c;1− r2)� P(r), (91)

with equality in each instance if and only if a = 1/4 and b = 3/4 .
(3) In other cases not stated in parts (1)–(2), that is, 3/16 < ab < 3(c + 1)/32

or 3(c + 1)/32 < ab < 3/16 , H is not monotone on (0,1) , and neither the double
inequality (90) nor (91) holds for all r ∈ (0,1) and a,b ∈ (0,∞) with 3/16 < ab <
3(c + 1)/32 or 3(c + 1)/32 < ab < 3/16 . If c2 � 3(c + 1)/8 , then the case “3(c +
1)/32 < ab < 3/16” does not appear.

Proof. Put t = (1− r)/(1+3r) . Then r = (1− t)/(1+3t) , 1+3r = 4/(1+3t)
and

H(r) =
√

1+3tF
(
a,b;c;t2

)−F

(
a,b;c;1−

(
1− t
1+3t

)2
)
−η

(√
1+3t−1

)
= h(t),

where h is as in Theorem 5.1. Hence the results in Corollary 5.2 follow from Theorem
5.1. �
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6. Transformation inequalities for the generalized Grötzsch ring function

For a,b ∈ (0,∞) with c = a + b and r ∈ (0,1) , the generalized Grötzsch ring
function is defined by

μa,b(r) =
B(a,b)

2

F
(
a,b;c;1− r2

)
F (a,b;c;r2)

. (92)

For 0 < a � 1/2, the function μa ≡ μa,1−a is also said to be the generalized Grötzsch
ring function, while μ ≡ μ1/2 is exactly the well-known Grötzsch ring function in qua-
siconformal theory. The function μa,b has applications in several fields of mathematics
such as the theories of quasiconformal mappings and Ramanujan’s modular equations.
(Cf. [2, 3, 12, 24, 33, 34, 40, 59, 69]). Many properties of the functions μ and μa have
been revealed. However, only a few results have been obtained for the function μa,b .
In this section, we apply the results proved in Sections 2–3 to show several properties
of μa,b .

It is well known that the function μ satisfies the following Landen transformation
identity (cf. [3, 24])

μ(r) = 2μ
(

2
√

r
1+ r

)
, μ(r)μ

(
1− r
1+ r

)
≡ π2

2
, r ∈ (0,1), (93)

and it is clear that for r ∈ (0,1) ,

μa,b(r)μa,b(r ′) = B2/4. (94)

Let t = [(1−r)/(1+3r)]2 . Since
√

1− t = 2
√

2r(1+ r)/(1+3r) , it follows from
(13), (28)–(29), (92) and (94) that

μ1/4(r) =
√

2π
2

F0(r ′2)
F0(r2)

=
√

2πF0(t)
F0(1− t)

= 2μ1/4

(
2
√

2r(1+ r)
1+3r

)
=

π2

μ1/4(
√

t)
,

which yields

μ1/4(r) = 2μ1/4

(
2
√

2r(1+ r)
1+3r

)
, μ1/4(r)μ1/4

(
1− r
1+3r

)
≡ π2. (95)

Now we show several properties of μa,b , and extend (93) and (95) to μa,b(r) .
First, we prove the following theorem, which gives the relations between μa,b(r) and
μa1,b1(r) .

THEOREM 6.1. For a,b,a1,b1 ∈ (0,∞) with c = a+b and c1 = a1 +b1 , and for
r ∈ (0,1) , let f16(r) = μa,b(r)/μa1,b1(r) .

(1) If ab � min{a1b1,cα1} (ab � max{a1b1,cα1} ), or if a1b1 < ab < cα1 with
R � R1 , then f16 is increasing (decreasing) from (0,1) onto (1,B2/B2

1) ((B2/B2
1,1) ,

respectively). Moreover, if (a,b) �= (a1,b1) , then the monotonicity properties of f16 are
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strict. In particular, if ab � min{a1b1,cα1} , or if a1b1 < ab < cα1 with R � R1 , then
for r ∈ (0,1) ,

B2
1μa1,b1(r) � B2

1μa,b(r) � B2μa1,b1(r), (96)

with equality in each instance if and only if (a,b) = (a1,b1) . If ab � max{a1b1,cα1} ,
then each inequality in (96) is reversed.

(2) For a1 ∈ (0,1/2] , let b1 = 1−a1 . If ab � a1(1−a1)min{1,c} , or if a1(1−
a1) < ab < ca1(1−a1) with R � R(a1) , then for r ∈ (0,1) ,

μa1(r) � μa,b(r) � B2[π sin(a1π)]−2μa1(r), (97)

with equality in each instance if and only if (a,b) = (a1,1− a1) . If ab � a1(1 −
a1)max{1,c} , then each inequality in (97) is reversed.

Proof. (1) Let f1 be as in Theorem 2.6. Then by (92), f16(r) can be written as
f16(r) = B f1(r ′2)/[B1 f1(r2)] . Hence the monotonicity properties of f16 follow from
Theorem 2.6(1)–(2).

The double inequality (96) and its equality case, and the remaining conclusion are
clear.

(2) Part (2) follows from part (1). �

COROLLARY 6.2. (1) For a,b ∈ (0,∞) , if 4ab � min{1,c} , or if 1 < 4ab < c
with R � log16 , then for r ∈ (0,1) ,

π2μ(r) � π2μa,b(r) � B2μ(r), (98)

with equality in each instance if and only if a = b = 1/2 . Each inequality in (98) is
reversed if 4ab � max{1,c} .

(2) For all a ∈ (0,1/2] and r ∈ (0,1) ,

μ(r) � μa(r) � μ(r)sin−2(aπ), (99)

with equality in each instance if and only if a = 1/2 .

Proof. Taking a1 = b1 = 1/2, we obtain part (1) from Theorem 6.1 and (13). Part
(2) is the special case of part (1) when a ∈ (0,1/2] and b = 1−a , in which case c = 1
and 4ab = 4a(1−a) � 1 = min{1,c} . �

COROLLARY 6.3. For a,b ∈ (0,∞) , if 4ab � min{1,c} , or if 1 < 4ab < c with
R � log16 , then for r ∈ (0,1) ,

μa,b(r) � 2μa,b

(
2
√

r
1+ r

)
�
(

B
π

)2

μa,b(r), (100)

π2

2
� μa,b(r)μa,b

(
1− r
1+ r

)
� B2

2
, (101)

with equality in each instance if and only if a = b = 1/2 . If 4ab � max{1,c} , then
each inequality in (100) and (101) is reversed.
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Proof. Let f1 be as in Theorem 2.6, f17(r) = f1(r)|a1=b1=1/2 , t = 2
√

r/(1+ r) ,
F1/2(r) = F(1/2,1/2;1;r) , f18(r) = f17(r ′2)/ f17(r2) , f19(r) = 2μa,b(t)/μa,b(r) and
f20(r) = μa,b(r)μa,b((1− r)/(1+ r)) . Then by (92)–(94),

f19(r) =
F(t ′2)

F1/2(t ′2)
· F1/2(t2)

F(t2)
· F(r2)
F1/2(r2)

· F1/2(r ′2)
F(r ′2)

· 2μ(t)
μ(r)

=
f17(1− t2)

f17(t2)
· f17(r2)

f17(1− r2)
=

f18(t)
f18(r)

, (102)

f20(r) =
B2μa,b(r)
4μa,b(t)

=
B2

2 f19(r)
. (103)

If 4ab � min{1,c} , or if 1 < 4ab < c with R � log16, then by Theorem 2.6(1)
and (13), f18 is increasing from (0,1) onto (π/B,B/π) . If (a,b) �= (1/2,1/2) , then
the monotonicity of f18 is strict. Hence it follows from (102)–(103) that

1 =
f18(r)
f18(r)

� f18(t)
f18(r)

= f19(r) � f18(1)
f18(0)

=
(

B
π

)2

, (104)

π2/2 � f20(r) � B2/2, (105)

with equality in each inequality if and only if a = b = 1/2. This yields (100)–(101)
and their equality case.

If 4ab � max{1,c} , then f18 is decreasing from (0,1) onto (B/π ,π/B) , and the
monotonicity of f18 is strict if (a,b) �= (1/2,1/2) . Hence each inequality in (100)–
(101) is reversed. �

COROLLARY 6.4. For a,b∈ (0,∞) , if 16ab/3� min{1,c} , or if 1 < 16ab/3< c
with R � log64 , then

μa,b(r) � 2μa,b

(
2
√

2r(1+ r)
1+3r

)
� 1

2

(
B
π

)2

μa,b(r), (106)

π2 � μa,b(r)μa,b

(
1− r
1+3r

)
� B2

2
(107)

for r ∈ (0,1) , with equality in each instance if and only if (a,b) = (1/4,3/4) . If
16ab/3 � max{1,c} , then each inequality in (106)–(107) is reversed.

Proof. For a,b∈ (0,∞) and r ∈ (0,1) , let f7 be as in Corollary 3.5, y = 1− [(1−
r)/(1+3r)]2 = 8r(1+ r)/(1+3r)2 ,

H1(r) =
μa,b(r)

μa,b(
√

y)
, H2(r) = μa,b(r)μa,b

(
1− r
1+3r

)
, H3(r) =

f7(1− r)
f7(r)

.
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Then
√

y = 2
√

2r(1+ r)/(1+3r) , and by (92) and (28)–(29),

H1(r) =
F(r ′2)
F(r2)

F(y)
F(1− y)

=
F(y)
F0(y)

F0(1− y)
F(1− y)

F(r ′2)
F0(r ′2)

F0(r2)
F(r2)

F0(y)F0(r ′2)
F0(1− y)F0(r2)

=2
f7(y)

f7(1− y)
f7(1− r2)

f7(r2)
= 2

H3(r2)
H3(y)

, (108)

H2(r) =
μa,b(r)

μa,b(
√

y)
μa,b(

√
y)μa,b(

√
1− y) =

B2

4
H1(r). (109)

If 16ab/3 � min{1,c} , or if 1 < 16ab/3 < c with R � log64, then by Corollary
3.5(1), H3 is increasing from (0,1) onto (

√
2π/B,B/(

√
2π)) , and the monotonicity of

H3 is strict if (a,b) �= (1/4,3/4) . Since y > r > r2 for r ∈ (0,1) , it follows from (108)
that

4π2/B2 = 2H3(0)/H3(1) � H1(r) � 2H3(y)/H3(y) = 2, (110)

with equality in each inequality in (110) if and only if (a,b) = (1/4,3/4) . This, to-
gether with (109), yields (106) –(107) and their equality case.

The remaining conclusion follows from Corollary 3.5(2) and (108)–(109). �

REMARK 6.5. The double inequalities (100) and (101) extend the identities in
(93) to μa,b(r) , and Corollary 6.4 extends (95) to μa,b(r) . By Theorem 6.1, one can
apply the known identities and bounds of μ(r) and μ1/4(r) to obtain inequalities for
μa,b(r) , although such kind of inequalities may be not sharp enough. For example,

2
(π

B

)2
μa,b(r) � μ1/4(r) = 2μ1/4

(
2
√

2(1+ r)
1+3r

)
� 2μa,b

(
2
√

2(1+ r)
1+3r

)
(111)

for 16ab/3 � min{1,c} , by (95) and (96). However, by Corollary 3.5(1), B �
√

2π
in this case, and hence the lower bound in (111) is less than that in (106) if (a,b) �=
(1/4,3/4) .

7. Concluding remarks

(i) We can derive some properties of K (r) , E (r) , Ka(r) and Ea(r) from the
results obtained in Section 3, which are even probably new. We only give several ex-
amples below.

Letting f1 be as in Theorem 2.6 with a1 = b1 = 1/2, we obtain the following
conclusions: For a,b ∈ (0,∞) with c = a+b , if 4ab � min{1,c} (4ab � max{1,c} ),
or if 1 < 4ab< c with R � log16, then the function f21(r)≡F(r2)/K (r) = 2 f1(r2)/π
is decreasing (increasing) from [0,1) onto (2/B,2/π ] ( [2/π ,2/B) , respectively). In
particular, for r ∈ (0,1) , if 4ab � min{1,c} , or if 1 < 4ab < c with R � log16, then

π
B

K (r) � π
2

F
(
a,b;a+b;r2)� K (r), r ∈ (0,1), (112)
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with equality in each instance if and only if a = b = 1/2. Each inequality in (112) is
reversed if 4ab � max{1,c} .

Taking a1 = b1 = 1/2 in Lemma 2.7, we obtain the following conclusions: For
a,b ∈ (0,∞) with c = a+ b , and for r ∈ (0,1) , if ab � min{(5/4)− c,(c+ 1)/8} or
(5/4)− c < ab < 1/4, then for r ∈ (0,1) ,

1− π
B

+
2
B

K (r) � F
(
a,b;a+b;r2)� 1−4α +

8α
π

K (r), (113)

with equality in each instance if and only if a = b = 1/2. If ab � max{(5/4)− c,(c+
1)/8} or 1/4 < ab < (5/4)− c , then each inequality in (113) is reversed.

Taking c = 1 in (50), we obtain

π
2

+
[
arth(r)

r
−1

]
sin(πa) < Ka(r) <

π
2

+
3πa(1−a)

2

[
arth(r)

r
−1

]
, r ∈ (0,1).

(114)

As we know, many good results for K (r) have been obtained, including sharp
lower and upper bounds expressed in terms of elementary functions. Applying (112)–
(113) (or their reversed double inequalities) and the known functional inequalities sat-
isfied by K (r) , one can obtain lower and upper bounds given in terms of elementary
functions for the function F(a,b;a+b;r) .

Let c = a+ b for a,b ∈ (0,∞) . Then it follows from (2), (18) and [2, Theorem
4.1] that

dKa

dr
= πa(1−a)

r
1− r2F

(
a,1−a;2;r2)= 2(1−a)

Ea(r)− r ′2Ka(r)
rr ′2

,

which yields

Ea(r)− r ′2Ka(r) =
πa
2

r2F
(
a,1−a;2;r2) .

Hence it follows from (49) that for r ∈ (0,1) ,

sin(πa)
2(1−a)

r− r ′2arth(r)
r

< Ea(r)− r ′2Ka(r) <
3πa
4

r− r ′2arth(r)
r

, (115)

r− r ′2arth(r)
r

< E (r)− r ′2K (r) < 3π
r− r ′2arth(r)

8r
. (116)

(ii) Applying the related results in Sections 2–5, one can obtain the bounds for the
quotients

(1+ r)F(r)

F
(

4r
(1+r)2

) ,
(1+ r)F

(
r ′2
)

F
(

1−r
1+r

) ,

√
1+3rF

(
r2
)

F
(
1− ( 1−r

1+3r

)2) and

√
1+3rF

(
r ′2
)

F
(( 1−r

1+3r

)2) .

As an example, we only give the following inequalities: For a,b∈ (0,∞) with c = a+b
and for r ∈ (0,1) ,

1 � (1+ r)F(r)
F
(
4r
/
(1+ r)2

) � B
2

if ab � min

{
1
2
,
c
3

}
, (117)
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B
2

� (1+ r)F(r)
F
(
4r
/
(1+ r)2

) � 1 if ab � max

{
1
2
,
c
3

}
, (118)

with equality in each instance if and only if a = 1/2 and b = 1. As a matter of fact, if
ab � min{1/2,c/3} and x = 4r

/
(1+ r)2 , then it follows from Corollary 3.1 and (26)

that

1 =
f4(r)
f4(r)

� (1+ r)F(r)
F(x)

=
F0(x)
F(x)

· F(r)
F0(r)

=
f4(r)
f4(x)

� f4(0)
f4(1)

=
B
2

,

where f4 is as in Corollary 3.1. The second and fifth equalities hold if and only if
a = 1/2 and b = 1. This yields the double inequality (117) and its equality case.
Similarly, we can prove (118) and its equality case.

(iii) By applying the results in Section 6, one can obtain some properties of the
so-called generalized Hersch-Pluger distortion function ϕK(a,b,r)≡ μ−1

a,b(μa,b(r)/K) ,
which can express the solutions of Ramanujan’s modular equations (cf. [2, 3, 10]).
These results will be presented in a separate paper.

(iv) Conjecture. Let f and h be as in Theorem 4.1 and in Theorem 5.1, respec-
tively. Our computation seems to show that the following conjecture is true.

CONJECTURE 7.1. If ab � min{2− c,(c + 1)/5} or 2− c < ab < 1/2 (ab �
max{2− c,(c + 1)/5} or 1/2 < ab < 2 − c), then f is convex (concave, respec-
tively) on (0,1) . If ab � min{(19/16)− c,3(c+1)/32} or (19/16)− c < ab < 3/16
(ab � max{(19/16)− c,3(c+1)/32} or 3/16 < ab < (19/16)− c), then h is convex
(concave, respectively) on (0,1) . If this conjecture is true, then the double inequalities
in Theorems 4.1 and 5.1 can be improved.
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[37] S. SIMIĆ, M. VUORINEN, Landen inequalities for zero-balanced hypergeometric functions, Abstr.
Appl. Anal. 2012 (2012), Article ID 932061, 11 pages.



1422 S.-L. QIU, X.-Y. MA AND Y.-M. CHU

[38] M.-B. SUN, Y.-M. CHU, Inequalities for the generalized weighted mean values of g -convex functions
with applications, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat. RACSAM 114, 4 (2020), Article
ID 172, 12 pages. https://doi.org/10.1007/s13398-020-00908-1

[39] M.-K. WANG, Y.-M. CHU, Refinements of transformation inequalities for zero-balanced hypergeo-
metric functions, Acta Math. Sci. 37B, 3 (2017), 607–622.

[40] M.-K. WANG, Y.-M. CHU, Landen inequalities for a class of hypergeometric functions with applica-
tions, Math. Inequal. Appl. 21, 2 (2018), 521–537.

[41] M.-K. WANG, H.-H. CHU, Y.-M. CHU, Precise bounds for the weighted Hölder mean of the
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