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REMARKS ON A LIMITING CASE OF HARDY TYPE INEQUALITIES

MEGUMI SANO AND TAKUYA SOBUKAWA

(Communicated by J. Pečarić)

Abstract. The classical Hardy inequality holds in Sobolev spaces W 1,p
0 when 1 � p < N . In

the limiting case where p = N , it is known that by introducing a logarithmic weight function
in the Hardy potential, some inequality which is called the critical Hardy inequality holds in
W 1,N

0 . In this note, in order to give an explanation of the appearance of the logarithmic function
in the potential, we derive the logarithmic function from the classical Hardy inequality with
best constant via some limiting procedure as p ↗ N . We show that our limiting procedure
is also available for the classical Rellich inequality in second order Sobolev spaces W 2,p

0 with
p ∈ (1, N

2 ) and the Poincaré inequality.

1. Introduction

Let B1 ⊂R
N be the unit ball, 1 < p < N and N � 2. The classical Hardy inequal-

ity (
N− p

p

)p ∫
B1

|u|p
|x|p dx �

∫
B1

|∇u|pdx, (1)

holds for all u ∈ W 1,p
0 (B1) , where W 1,p

0 (B1) is a completion of C∞
c (B1) with respect

to the norm ‖∇(·)‖Lp(B1) . Note that the Hardy inequality (1) expresses the embedding

W 1,p
0 (B1) ↪→ Lp(B1; |x|−pdx) which is equivalent to W 1,p

0 (B1) ↪→ Lp∗,p(B1) thanks to
rearrangement techniques, where p∗ = Np

N−p and Lp,q are Lorentz spaces. Therefore by
a property of Lorentz spaces, we see that for any q > p

W 1,p
0 ↪→ Lp∗,p ↪→ Lp∗,q ↪→ Lp∗,∞.

For the above inclusion relations, we can observe that the Hardy inequality (1) derives
the Sobolev inequality, without best constant, which expresses the Sobolev embedding
W 1,p

0 ↪→ Lp∗ =Lp∗,p∗ . On the contrary, the Sobolev inequality with best constant derives
the Hardy inequality with best constant as an infinite-dimensional form of the Sobolev

inequality, see [32]. Besides, Hardy’s best constant
(

N−p
p

)p
plays an important role

to investigate several properties of solution to elliptic and parabolic partial differential
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equations, for example, stability of solution, instantaneous blow-up solution, global-in-
time solution, see [8, 4], to name a few.

On the other hand, in the limiting case where p = N the Hardy inequality (1) de-
generates as the best constant vanishes. However, by introducing a logarithmic weight
function in the Hardy potential, the following inequality holds, so-called the critical
Hardy inequality: (

N−1
N

)N ∫
B1

|u|N
|x|N(log a

|x| )
N dx �

∫
B1

|∇u|Ndx (2)

for all u ∈W 1,N
0 (B1) and a � 1, see [25, 24]. The inequality (2) expresses the embed-

ding W 1,N
0 (B1) ↪→ LN(B1; |x|−N(log a

|x| )
−Ndx) . Since for large a the weight functions

|x|−N(log a
|x| )

−N are radially decreasing with respect to |x| , the embedding with a > 1

is equivalent to W 1,N
0 ↪→ L∞,N(logL)−1 thanks to rearrangement techniques, see Propo-

sition 1 in §2. Here Lp,q(logL)r are Lorentz-Zygmund spaces which are given by

Lp,q(logL)r =
{

u : B1 → R measurable

∣∣∣∣ ‖u‖Lp,q(logL)r < ∞
}

‖u‖Lp,q(logL)r =

⎧⎪⎨
⎪⎩
(∫ |B1|

0 s
q
p−1
(
1+ log |B1|

s

)rq
(u∗(s))q ds

) 1
q

if 1 � q < ∞,

sup0<s<|B1| s
1
p

(
1+ log |B1|

s

)r
u∗(s) if q = ∞,

where u∗ be the decreasing rearrangement of u . Note that Lp,q(logL)0 become Lorentz
spaces Lp,q and L∞,∞(logL)r become Zygmund spaces Z−r which can be equivalent

to Orlicz space L
e |u|−1/r = ExpL− 1

r in some sense, see [6, 7, 14]. By a property of
Lorentz-Zygmund spaces, see e.g. [6] Theorem 9.5., we see that for any q > N

W 1,N
0 ↪→ L∞,N(logL)−1 ↪→ L∞,q(logL)−1+ 1

N − 1
q ↪→ L∞,∞(logL)−1+ 1

N = ExpL
N

N−1 .

Variational problems related to best constants in embedding inequalities are intensively
studied, see [3, 10, 1, 20, 14, 22, 31].

In this note, in order to give an explanation of the appearance of the logarithmic
function in the limiting case p = N of the classical Hardy inequality, we shall derive
the logarithmic function in (2) from the classical Hardy inequality with best constant by
some limiting procedure as p ↗ N based on extrapolation. This will give a reason why
Lorentz-Zygmund spaces Lp,q(logL)r appear in embedding of critical Sobolev spaces
W 1,N

0 . Our main result is the following.

THEOREM 1. The following critical Hardy type inequality (3) can be derived by
a limiting procedure for the classical Hardy inequality (1) as p ↗ N .

C
∫

B1

|u|N

|x|N
(
log a

|x|
)β dx �

∫
B1

∣∣∣∣∇u · x
|x|
∣∣∣∣
N

dx (u ∈C1
c (B1)). (3)

Here β > 2N,a > 1 , and the constant C = C(β ,a,N) > 0 is independent of u .
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Note that in the inequality (3) the exponent β as well as the constant C are not
optimal and that the inequality itself follows from the critical Hardy inequality (2) and
the following obvious fact:∫

B1

|u|N

|x|N
(
log a

|x|
)β dx � (loga)N−β

∫
B1

|u|N

|x|N
(
log a

|x|
)N dx

However, our limiting procedure for the classical Hardy inequality is new and gives
some explanation of the appearance of the logarithmic function in the Hardy potential
in the limiting case p = N . Our limiting procedure can be regarded as an analogue of
Trudinger’s argument in [34] for the Sobolev inequality as p↗N , see also [9] Theorem
1.7. For several limiting procedures, we refer to [5] (The Sobolev inequality as N ↗∞),
[35], [36]XII 4.41. (Lp boundedness of the Hilbert transformation as p↘ 1 or p↗∞),
[29] Corollary 3.2.4 (The Sobolev inequality is derived from the Nash inequality), see
also [33] which is a survey concerning two kinds of limiting procedures for the Hardy
and the Sobolev inequalities as p ↗ N and N ↗ ∞ .

A few comments on Theorem 1 are in order. Very recently, Ioku [21] showed an
improved Hardy inequality on B1 which is equivalent to the classical Hardy inequality
on R

N via a transformation. The improved Hardy inequality yields the critical Hardy
inequality (2) with best constant as the limiting form of the improved Hardy inequality
as p ↗ N . However, in the higher order or fractional order case, these beautiful and
simple structures and transformations might be useless. Indeed, we can see a different
strucure in the second order case, see [30] §2. In this note, we also treat the second
order case. For interesting equivalence in functional inequalities underlie to function
space embeddings, see [16, 26, 13, 15].

Our limiting procedure also gives an interesting relationship between the Hardy in-
equality and the Poincaré inequality. Let Ω ⊂ R

N be a bounded domain. The Poincaré
inequality follows from the Hardy inequality since∫

Ω
|u|p dx �

(
max
x∈Ω

|x|p
)∫

Ω

|u|p
|x|p dx �

(
max
x∈Ω

|x|p
)(

N− p
p

)−p∫
Ω
|∇u|p dx.

Therefore, we can say that the Hardy inequality W 1,p
0 (Ω) ↪→ Lp(Ω; |x|−pdx) is stronger

than the Poincaré inequality W 1,p
0 (Ω) ↪→ Lp(Ω) if we ignore the optimality of Poincaré’s

best constant λ (Ω) . The converse is not straightforward, however, by using the infor-
mation of Poincaré’s best constant λ (Ω) as |Ω| ↘ 0 and our limiting procedure, we
obtain the reverse inequality though we miss the best constant. For the details, see §4.

This paper is organized as follows: In §2, necessary preliminary facts are pre-
sented. In §3, we give the limiting procedure as p ↗ N for the Hardy inequality in
Theorem 1. We also apply our limiting procedure for the Rellich inequality. In §4, we
consider a limit as |Ω| ↘ 0 for the Poincaré inequality via our limiting procedure.

Let us fix some notation. BR denote a N -dimensional ball centered 0 with radius
R and ωN−1 denotes an area of the unit sphere in R

N . |A| denotes the Lebesgue
measure of a set A ⊂ R

N and Xrad = {u ∈ X |u is radial}. Throughout the paper, if
a radial function u is written as u(x) = ũ(|x|) by some function ũ = ũ(r) , we write
u(x) = u(|x|) for simplicity.
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2. Preliminaries

We recall some basic facts which will be used in the sequel.

LEMMA 1. For any radial functions u ∈ C1(BR)∩C(BR) satisfying u|∂BR
= 0 ,

for any r ∈ (0,R) the following estimate holds.

|u(r)| �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω−1
N−1‖∇u‖L1(BR)r

−(N−1) if p = 1,

(
p−1

|N−p |
) p−1

p ω
− 1

p
N−1‖∇u‖Lp(BR)

∣∣∣r− N−p
p−1 −R− N−p

p−1

∣∣∣ p−1
p

if 1 < p 
= N,

ω− 1
N

N−1‖∇u‖LN(BR)
(
log R

r

) N−1
N if p = N.

The pointwise estimate in Lemma 1 is well-known and follows form the funda-
mental theorem of calculus and the Hölder inequality immediately. Here we give the
proof for reader’s convenience.

Proof. When p = 1, we have

u(r) = −
∫ R

r
u′(s)ds = −

∫ R

r
u′(s)sN−1s−(N−1) ds � ω−1

N−1‖∇u‖L1(BR)r
−(N−1).

When 1 < p � N , we have

u(r) = −
∫ R

r
u′(s)s

N−1
p s−

N−1
p ds �

(∫ R

r
|u′(s)|psN−1 ds

) 1
p
(∫ R

r
s−

N−1
p−1 ds

) p−1
p

which implies the desired estimate. �

When the potential function is not radially decreasing, it is difficult to apply re-
arrangement techniques. The next lemma will enable us to reduce the problem to the
radial setting.

LEMMA 2. Let 1 < q < ∞ , V = V (x) be a radial function on BR . If there exists
C > 0 such that for any radial functions u ∈C1

c (BR) the inequality

C
∫

BR

|u|qV (x)dx �
∫

BR

|∇u|q dx < ∞ (4)

holds, then for any functions w ∈C1
c (BR) the inequality

C
∫

BR

|w|qV (x)dx �
∫

BR

∣∣∣∣∇w · x
|x|
∣∣∣∣
q

dx < ∞ (5)

holds.
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Proof. We refer to [31]. For any w ∈ C1
c (BR) , define the radial function W as

follows.

W (r) =
(

ω−1
N−1

∫
ω∈∂B1

|w(rω)|q dSω

) 1
q

(0 � r � R).

Then we have

|W ′(r)| = ω
− 1

q
N−1

(∫
∂B1

|w(rω)|q dSω

) 1
q−1 ∫

∂B1

|w|q−1

∣∣∣∣∂w
∂ r

∣∣∣∣ dSω

� ω
− 1

q
N−1

(∫
∂B1

∣∣∣∣∂w
∂ r

(rω)
∣∣∣∣
q

dSω

) 1
q

.

Therefore, we have

∫
BR

|∇W |q dx �
∫

BR

∣∣∣∣∇w · x
|x|
∣∣∣∣
q

dx, (6)∫
BR

|W |qV (x)dx =
∫

BR

|w|qV (x)dx. (7)

From (4) for W , (6), and (7), we obtain (5) for any w . �
We next establish the pointwise estimates for radial functions and their derivatives

in W 2,p
0 (BR) proved in [11, 12]. For much higher order case, see Proposition 2 in §3.

LEMMA 3. Let N � 3 and u ∈ C2(BR)∪C(BR) be a radial function satisfying
u|∂BR

= 0 . Then the following pointwise estimates hold for any r ∈ (0,R) .

|u(r)| �

⎧⎪⎨
⎪⎩

p
|N−2p |ω

− 1
p

N−1N
1
p−1‖Δu‖Lp(BR)

∣∣∣r− N−2p
p −R− N−2p

p

∣∣∣ if 1 � p 
= N
2 ,

ω− 2
N

N−1N
2
N −1‖Δu‖LN/2(BR) log R

r if p = N
2 .

(8)

|u′(r)| � ‖Δu‖Lp(BR)

ω
1
p

N−1N
1− 1

p

r−
N−p

p for any p � 1. (9)

Proof. We refer to [12]. Consider the following transformation:

w(t) = Au(r), where r = R(t +1)−
1

N−2 and Ap = ωN−1R
N−2p(N−2)2p−1 (10)

Then we have

w′′(t) =
AR2

(N−2)2 (t +1)−2 N−1
N−2

(
u′′(r)+

N−1
r

u′(r)
)

=
AR2

(N−2)2 (t +1)−2 N−1
N−2 Δu

(11)
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which yields that

∫
BR

|Δu|p dx =
∫ ∞

0
|w′′(t)|p(t +1)2 (N−1)(p−1)

N−2 dt.

Since w(0) = w′(∞) = 0, we have

w(t) = −
∫ t

0

∫ ∞

s
w′′(u)duds

�
∫ t

0

(∫ ∞

0
|w′′(u)|p(u+1)2 (N−1)(p−1)

N−2 du

) 1
p
(∫ ∞

s
(u+1)−2 N−1

N−2 du

) p−1
p

ds

=
(

N−2
N

) p−1
p

‖Δu‖Lp(BR)

∫ t

0
(s+1)−

N(p−1)
(N−2)p ds

=

⎧⎪⎨
⎪⎩
(

N−2
N

) p−1
p (N−2)p

N−2p ‖Δu‖Lp(BR)

(
(t +1)

N−2p
(N−2)p −1

)
if p 
= N

2 ,(
N−2
N

)1− 2
N ‖Δu‖LN/2(BR) log(t +1) if p = N

2 .

Therefore we obtain (8). On the other hand, since

w′(t) = −
∫ ∞

t
w′′(u)du �

(
N−2

N

) p−1
p

‖Δu‖Lp(BR)(t +1)
N(p−1)
(N−2)p

and w′(t) = −Au′(r) R
N−2 (t +1)−

N−1
N−2 , we also obtain (9). �

Finally, we show the equivalence in two embeddings of critical Sobolev spaces
W 1,N

0 (B1) . Let us recall the Schwarz symmetrization u# : R
N → [0,∞] of u which is

given by

u#(x) = u#(|x|) = inf
{

τ > 0 : |{y ∈ R
N : |u(y)| > τ}| � |B|x||

}
= u∗

(ωN−1

N
|x|N

)
.

PROPOSITION 1. Let a > 1 .

Then the embedding W 1,N
0 (B1) ↪→ LN(B1; |x|−N(log a

|x| )
−Ndx) is equivalent to the

embedding W 1,N
0 (B1) ↪→ L∞,N(logL)−1 .

Proof. Since there exists a constant C > 0 such that for any x ∈ B1

C−1 log
e
|x| � log

a
|x| � C log

e
|x| ,
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it is enough to show the equivalence when a = e . We see that

‖u‖N
L∞,N(logL)−1 =

∫ |B1|

0
s−1
(

1+ log
|B1|
s

)−N

(u∗(s))N ds

= N
∫ 1

0
r−1

(
N log

e
1
N

r

)−N

|u#(r)|N dr

� N1−Nω−1
N−1

∫
B1

|u#|N

|x|N
(
log e

|x|
)N dx

� N1−Nω−1
N−1

∫
B1

|u|N

|x|N
(
log e

|x|
)N dx,

where the last inequality comes from the Hardy-Littlewood inequality. Therefore we
can derive the embedding W 1,N

0 (B1) ↪→ LN(B1; |x|−N(log e
|x| )

−Ndx) from the embed-

ding W 1,N
0 (B1) ↪→ L∞,N(logL)−1 . On the other hand, we assume that the embed-

ding W 1,N
0 (B1) ↪→ LN(B1; |x|−N(log e

|x| )
−Ndx) holds. Since 1

N log e
|x| � log e

1
N

|x| for any
x ∈ B1 , we see that

‖u‖N
L∞,N(logL)−1 � Nω−1

N−1

∫
B1

|u#|N

|x|N
(
log e

|x|
)N dx �

∫
B1

|∇u#|N dx �
∫

B1

|∇u|N dx

where the last inequality comes from the Polyá-Szegö inequality. Therefore, we can
obtain the desired equivalence.

3. A limiting procedure for the Hardy type inequalities

3.1. Proof of Theorem 1: The Hardy inequality

First, we prepare for making the optimal constant (N−p
p )p which goes to zero as

p ↗ N compete with
∫
B1

|u|p
|x|p dx which goes to infinity, in general, as p ↗ N .

Let pk = N − 1
k for k ∈ N , f ∈ C1(−∞,∞) be a monotone-decreasing function

which satisfies limt→+∞ f (t) = 0, and {φk}k∈Z ⊂ C∞
c (RN \ {0}) be radial functions

which satisfy

(i)
+∞

∑
k=−∞

φk(x)N = 1, 0 � φk(x) � 1
(∀x ∈ R

N \ {0}) ,
(ii) suppφk ⊂ Bf (k) \Bf (k+2).

For any radial functions u ∈C1
c (B1) , set uk = uφk and

Ak = suppuk ⊂ B1∩
(
Bf (k) \Bf (k+2)

)
.
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In order to obtain a limit for the classical Hardy inequality (1) as p ↗ N , the left-hand
side of (1) for uk and pk must not be vanishing as k → ∞ . We shall determine such f .
Note that if x ∈ Ak , then f (k +2) � |x| � f (k) and k � f−1(|x|) � k +2. By Lemma
1 we have(

N− pk

pk

)pk ∫
Ak

|uk|pk

|x|pk
dx = p−pk

k

∫
Ak

( |uk(x)|
|x|k

)N− 1
k

dx

� C
∫

Ak

|uk(x)|N
|x|N ( f−1(|x|))N

( |x|k
|uk(x)|

) 1
k

dx

� C‖∇uk‖−
1
k

LN(Ak)

∫
Ak

|uk(x)|N
|x|N ( f−1(|x|))N

(
f (k+2)

(
log

f (k)
f (k+2)

)− N−1
N
) 1

k

dx. (12)

On the other hand, by the classical Hardy inequality (1) we have(
N− pk

pk

)pk ∫
Ak

|uk|pk

|x|pk
dx �

∫
Ak

|∇uk|pkdx � C‖∇uk‖−
1
k

LN(Ak)

∫
Ak

|∇uk|Ndx.

Therefore, if for any k ∈ N the function f satisfies

(
f (k+2)

(
log

f (k)
f (k+2)

)− N−1
N
) 1

k

� C > 0, (13)

then the information of the classical Hardy inequality (1) for uk and pk will be re-
maining even if we sum up (1) for uk and pk with respect to k ∈ Z . From (13) and
l’Hôpital’s rule, we have an ordinary differential inequality for f as follows:

d
dt

f (t) � −C f (t)

whose solution satisfies f (t) � e−Ct . Thus f−1(t) � 1
C log 1

t . We believe that the
above calculation and consideration give some explanation of the appearance of the
logarithmic function in the Hardy potential in the limiting case p = N .

Hereinafter we set f (t) = e−t .

Proof of Theorem 1. From Lemma 2, it is enough to show the inequality (3) for
any radial functions u ∈ C1

c (B1) . Applying the classical Hardy inequality (1) for uk

and pk for k � 1, we have(
N− pk

pk

)pk ∫
Ak

|uk|pk

|x|pk
dx �

∫
Ak

|∇uk|pkdx � |Ak|1−
pk
N ‖∇uk‖N− 1

k
N .

By (12) and (13), for k � 1

C
∫

Ak

|uk|N

|x|N
(
log 1

|x|
)N dx �

∫
Ak

|∇uk|Ndx.
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Since k � log 1
|x| for x ∈ Ak ,

C
∫

Ak

|uk|N

|x|N
(
log a

|x|
)β dx � bk

∫
Ak

|∇uk|Ndx (14)

for k � 1,a > 1, and β > 2N , where bk is given by

bk =

⎧⎪⎨
⎪⎩

kN−β if k � 1,

1 if k = 0,−1,

0 if k � −2.

Here, note that the inequalities (14) with k = 0,−1 come form the Poincaré inequality
and the boundedness of the function |x|−N(log a

|x| )
−β on A0 ∪A−1 ⊂ B1 \Be−2 . Sum-

ming both sides on (14), we have

C ∑
k∈Z

∫
B1

|uφk|N

|x|N
(
log a

|x|
)β dx � ∑

k∈Z

bk

∫
Ak

|∇(uφk)|Ndx

which yields that

C
∫

B1

|u|N

|x|N
(
log a

|x|
)β dx � 2N−1 ∑

k∈Z

bk

∫
Ak

φN
k |∇u|N + |u|N |∇φk|Ndx

� 2N−1
∫

B1

|∇u|Ndx+C
+∞

∑
k=1

bke
kN
∫

Ak

|u|N dx. (15)

By Lemma 1 we have

bke
kN
∫

Ak

|u|N dx � Cbke
kN‖∇u‖N

N

∫
Ak

(
log

1
|x|
)N−1

dx

� Cbke
kN‖∇u‖N

N

∫ k+2

k
sN−1e−sN ds � Cbkk

N−1‖∇u‖N
N .

From (15) we have

C
∫

B1

|u|N

|x|N
(
log a

|x|
)β dx � C

∫
B1

|∇u|Ndx+C

(
+∞

∑
k=1

k−1−(β−2N)

)∫
B1

|∇u|N dx

� C
∫

B1

|∇u|N dx. �
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3.2. The Rellich inequality

Let 1 < p < N
2 . The classical Rellich inequality

(
N(p−1)(N−2p)

p

)p ∫
B1

|u|p
|x|2p dx �

∫
B1

|Δu|pdx (16)

holds for all u ∈ W 2,p
0 (B1) , where W 2,p

0 (B1) is a completion of C∞
c (B1) with respect

to the norm ‖Δ(·)‖Lp(B1) , see [28], [17], [27]. In this subsection, we apply our limiting
procedure in §3.1 to the Rellich inequality (16) as p ↗ N

2 .

THEOREM 2. The following critical Rellich type inequality (17) can be derived
by a limiting procedure for the classical Rellich inequality (16) as p ↗ N

2 .

C
∫

B1

|u|N
2

|x|N
(
log a

|x|
)β dx �

∫
B1

|Δu|N
2 dx (u ∈C2

c,rad(B1)). (17)

Here β > N +2,a > 1 , and the constant C = C(β ,a,N) > 0 is independent of u .

REMARK 1. Like Theorem 1, in the inequality (17) the exponent β as well as
the constant C are not optimal. For the optimal exponent and the best constant of the
critical Rellich inequality, see e.g. [18], [2].

Proof. We shall show (17) for any u ∈C2
c, rad(B1) . The strategy of the proof is the

same as it in §3.1.
Let pk = N

2 − 1
2k for k � 2 and only condition (i) of φk in §3.1 is changed to

∑+∞
k=−∞ φk(x)

N
2 = 1 for any x∈ R

N \{0} . Applying the classical Rellich inequality (16)
for uk = uφk for u ∈C2

c, rad(B1) and pk for k � 2, we have

(
(N−2pk)(pk −1)N

pk

)pk ∫
Ak

|uk|pk

|x|2pk
dx �

∫
Ak

|Δuk|pkdx. (18)

On the left-hand side of (18), by (8) in Lemma 3 we have

(
(N−2pk)(pk −1)N

pk

)pk ∫
Ak

|uk|pk

|x|2pk
dx � C

∫
Ak

( |uk(x)|
|x|2k

)N
2 − 1

2k

dx

� C
∫

Ak

|uk(x)|N
2

|x|N ( f−1(|x|)) N
2

( |x|2k
|uk(x)|

) 1
2k

dx

= C‖Δuk‖−
1
2k

L
N
2 (Ak)

∫
Ak

|uk(x)|N
2

|x|N ( f−1(|x|)) N
2

(
f (k+2)2

(
log

f (k)
f (k+2)

)−1
) 1

2k

dx.



REMARKS ON A LIMITING CASE OF HARDY TYPE INEQUALITIES 1435

If we choose f (t) = e−t , then the left-hand side of (18) is not vanishing as k → ∞ .
Thus we set f (t) = e−t hereinafter. In the similar way to it in §3.1, for a > 1, k ∈ Z ,
and β > N +2 we have

C
∫

Ak

|uk|N
2

|x|N
(
log a

|x|
)β dx � bk

∫
Ak

|Δuk|N
2 dx, (19)

where bk is given by

bk =

⎧⎪⎨
⎪⎩

k
N
2 −β if k � 2,

1 if k = 1,0,−1,

0 if k � −2.

Note that we used the second order Poincaré inequality C‖u‖q � ‖Δu‖q to show (19)
in the case where k � 1, see e.g. [19]. Then we have

C ∑
k∈Z

∫
B1

|uφk|N
2

|x|N
(
log a

|x|
)β dx � ∑

k∈Z

bk

∫
Ak

|Δ(uφk)|
N
2 dx

which yields that

C
∫

B1

|u|N
2

|x|N
(
log a

|x|
)β dx � C

∞

∑
k=2

bk

∫
Ak

|Δφk|N
2 |u|N

2 + φ
N
2

k |Δu|N
2 + |∇u|N

2 |∇φk|N
2 dx

=: C
∞

∑
k=2

(I1 + I2 + I3). (20)

Since |Δφk(x)| � Ce2(k+1) for x ∈ Ak , by (8) in Lemma 3 we have

I1 � Ck
N
2 −β eN(k+1)

∫
Ak

|u|N
2 dx

� Ck
N
2 −β eN(k+1)‖Δu‖

N
2
N
2

∫
Ak

(
log

1
|x|
)N

2

dx

� Ck
N
2 −β eN(k+1)‖Δu‖

N
2
N
2

∫ k+2

k
t

N
2 e−Nt dt

� CkN+1−β‖Δu‖
N
2
N
2
.

In the similar way, we obtain the following estimates of I2 and I3 .

I2 + I3 � Ck
N
2 −β‖Δu‖

N
2
N
2
.
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Here we used (9) in Lemma 3 to show the estimate of I3 . From (20) and the estimates
of Ii for i = 1,2,3 we have

C
∫

B1

|u|N
2

|x|N
(
log a

|x|
)β dx � C

(
∞

∑
k=2

kN+1−β

)∫
B1

|Δu|N
2 dx � C

∫
B1

|Δu|N
2 dx. �

Let 1 < p < N
m and m � 2. The higher order Rellich inequality

Cp
m,p

∫
BR

|u|p
|x|mp dx � |u|pm,p

holds for all u ∈Wm,p
0 (BR) , see [28], [17], [27]. Here we set

|u|pm,p =

⎧⎨
⎩
∫
BR

|Δ�u|p dx if m = 2�,∫
BR

|∇(Δ�u)|p dx if m = 2�+1,

Cm,p =

⎧⎨
⎩

p−2� ∏�
j=1{N−2p j}{N(p−1)+2p( j−1)} ifm = 2�,

(N−p)
p2(�+1) ∏�

j=1 (N− (2 j +1)p){N(p−1)+ (2 j−1)p} ifm = 2�+1,

for m, � ∈ N, � � 1.
In the higer order case where m � 3, it is difficult to show the pointwise estimate

corresponding to Lemma 3 by the same method in Lemma 3. Due to the lack of good
pointwise estimate for radial functions, our limiting procedure as p↗ N

m does not work
well in the higher order case. However, we can show at least the following pointwise
estimates for radial functions in Wm,p

0 (BR) for m � 2 via iteration method. The follow-
ing pointwise estimates might be not optimal. We expect that the pointwise estimates
in Proposition 2 will be applicable somewhere.

PROPOSITION 2. Let N,m � 3, p∈ [1, N
2 ) if m is even, and p∈ [1,N) if m is odd.

Then the following pointwise estimates hold for any radial functions u∈Cm
c,rad(BR) and

any r ∈ (0,R) .

|u(r)| � C|u|m,pr
2−N (21)

Here, C > 0 is a constant which is independent of u

Proof. We shall show (21) for p ∈ [1,N) and odd number m inductively. First,
we show the case where m = 3. By the transformation (10) for radial functions u and
the pointwise estimate for radial function v := Δu ∈W 1,p

0 , we obtain

|v(r)| � C‖∇v‖pr
− N−p

p = C‖∇Δu‖p(t +1)
N−p

(N−2)p .
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By (11) we have

|w′′(t)| � C‖∇Δu‖p(t +1)a,

where a = N−(2N−1)p
(N−2)p < −1. Therefore we have

|w(t)| �
∫ t

0

∫ s

0
|w′′(u)|duds

� C‖∇Δu‖p

∫ t

0

∫ s

0
(u+1)a duds

� C‖∇Δu‖pmax{(t +1)a+2, t +1}� C‖∇Δu‖p(t +1).

Thus, we obtain (21) for m = 3. Next, we assume that (21) holds for m = 2�+1. And
we shall show that (21) also holds for m = 2(�+1)+1. For radial functions u∈C2�+3

c ,
set v := Δu ∈C2�+1

c . Applying (21) for v , we have

|v(r)| � C‖∇Δ�v‖Lp(BR)r
2−N .

By (10) and (11), we have

|w′′(t)| � C‖∇Δ�+1u‖Lp(BR)(t +1)b,

where b = − 2N
N−2 < −1. Therefore we have

|w(t)| �
∫ t

0

∫ s

0
|w′′(u)|duds

� C‖∇Δ�+1u‖p

∫ t

0

∫ s

0
(u+1)b duds

� C‖∇Δ�+1u‖pmax{(t +1)b+2, t +1}� C‖∇Δ�+1u‖p(t +1).

Therefore, we observe that (21) holds for m = 2(�+1)+1.
In the even case, the strategy of the proof is the same as the odd case. In order to

obtain (21) for m = 4, we use the pointwise estimate in Lemma 3 for radial functions
v := Δu ∈C2

c . We omit the proof. �

4. A limiting procedure for the Poincaré inequality

In this section, we apply our limiting procedure to the Poincaré inequality

λ (Ω)
∫

Ω
|u|p dx �

∫
Ω
|∇u|p dx (u ∈C1

c (Ω),1 � p < ∞). (22)

The Poincaré inequality (22) does not have a critical exponent with respect to p like
the Hardy type inequalities. However the optimal constant λ (Ω) goes to infinity and∫

Ω |u|pdx goes to zero as |Ω| ↘ 0. This can be regarded as a kind of limiting situation.
Recall that

λ (Ω) �
(

N
p
|B1|

)p

|Ω|− p
N (23)
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see e.g. [23]. By using this growth order of λ (Ω) as |Ω| ↘ 0 and our limiting proce-
dure, we shall consider a limit for the Poincaré inequality as |Ω| ↘ 0.

THEOREM 3. Let 1 � p < N2

N−1 . The following Hardy type inequality (24) can be
derived by a limiting procedure for the Poincaré inequality (22) as |Ω| ↘ 0 .

C
∫

B1

|u|p
|x|β dx �

∫
B1

|∇u|p dx (u ∈C1
c (B1)). (24)

Here the constant C = C(β , p,N) > 0 is independent of u and β > 0 satisfies{
β < p

N if 1 � p � N,

β < p
N +N− p if N < p < N2

N−1 .

REMARK 2. If p � N2

N−1 , then it is difficult to obtain any information which is
better than the Poincaré inequality (22) by out limiting procedure as |Ω| ↘ 0, since
β = 0 in that case.

Proof. From Lemma 2, it is enough to show the inequality (24) for any radial
functions u∈C1

c (B1) . Let 1 � p < N and {φk}k∈Z ⊂C∞
c (RN \{0}) be radial functions

which satisfy

(i)
+∞

∑
k=−∞

φk(x)p = 1, 0 � φk(x) � 1
(∀x ∈ R

N \ {0}) ,
(ii) suppφk ⊂ B1/k \B1/k+2.

Set uk = uφk and Ak = supp uk ⊂ B1 ∩
(
B1/k \B1/k+2

)
. Applying the Poincaré in-

equality (22) for uk and (23), we have

Ckp(k+2)
p
N

∫
Ak

|uk|p dx �
∫

Ak

|∇uk|p dx.

Since k � 1
|x| � k+2 for x ∈ Ak ,

C
∫

Ak

|uk|p
|x|β dx � bk

∫
Ak

|∇uk|pdx (25)

for k ∈ Z , and β > 2N , where bk is given by

bk =

⎧⎪⎨
⎪⎩

k−p(k+2)β− p
N if k � 1,

1 if k = 0,−1,

0 if k � −2.

Summing both sides on (25), we have

C ∑
k∈Z

∫
B1

|uφk|p
|x|β dx � ∑

k∈Z

bk

∫
Ak

|∇(uφk)|Ndx.
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By applying Lemma 1 and calculating in the similar way to it in §3.1, we see that for
β < p

N the desired inequality (24) can be obtained. In the case where N � p < N2

N−1 ,
the proof is similar. Therefore, we omit the proof in that case. �
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