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Abstract. Linear maps Φ : Mn → Mk are called m -PPT if [Φ(Ai j)]mi, j=1 are positive partial
transpose matrices for all positive semi-definite matrices [Ai j]mi, j=1 ∈ Mm(Mn) . In this paper,
connections between m -PPT maps, m -positive maps and m -copositive maps are given. In con-
sequence, characterizations of completely PPT maps are obtained. The results are applied to
study two linear maps X �→ X + a(trX)I and X �→ a(trX)I−X for a � 0 . Moreover, singular
values inequalities of 2× 2 positive block matrices under these two linear maps are given. In
particular, we prove an open singular values inequality formulated by Lin [Linear Algebra Appl,
520 (2017)] for n � 3.

1. Introduction

Let Mn be the set of all n× n complex matrices and Mm(Mn) be the set of all
m×m block matrices with entries in Mn . For A,B ∈ Mn , we write by A � B (A > B)
if A−B is positive semi-definite (positive definite). In particular, A � 0 (A > 0) if
A is positive semi-definite (positive definite). Denote by At , A and A∗ the transpose,
conjugate and conjugate transpose of the matrix A , respectively. The trace of a matrix
A is denoted by trA . We denote by {Ei j, i, j = 1, . . . ,n} the standard basis of Mn .

The partial transpose of A = [Ai j]mi, j=1 ∈ Mm(Mn) is defined by Aτ = [Aji]mi, j=1 .
For m = 1, we set Aτ = A . A matrix A ∈ Mm(Mn) is called partial positive transpose
(PPT) if A � 0 and Aτ � 0. For example, if m = 2, A,B,C ∈ Mn and

M =
[

A B
B∗ C

]
∈ M2(Mn),

then M is called PPT if M � 0 and

Mτ =
[
A B∗
B C

]
� 0.
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It is clear that all PPT matrices are positive semi-definite, however the converse does
not hold. For example,

A =
[
1 0
0 0

]
, B =

[
0 1
0 0

]
, C =

[
0 0
0 1

]
and M =

[
A B∗
B C

]
∈ M2(M2), (1)

then M � 0 but Mτ �� 0. We refer the reader to [2, 17] for some characterizations
of positive semi-definite 2× 2 block matrices. The study of PPT matrices arises in
quantum information theory in distinguishing the separability of quantum states; see [4,
9]. In particular, it connects to the PPT criterion which gives a necessary condition for
the joint quantum state to be separable; see [10, 20]. On the other hand, PPT matrices
carry many algebraic properties which are interesting in their own right. Recently,
singular values and eigenvalues inequalities of PPT matrices have been studied by many
researchers; see [1, 12, 15, 16, 25].

A linear map Φ : Mn → Mk is positive if Φ(A) � 0 for all A � 0. A posi-
tive map Φ : Mn → Mk is called m-positive if its induced map Im ⊗Φ : Mm(Mn) →
Mm(Mk) is positive, that is, [Φ(Ai j)]mi, j=1 � 0 for all positive semi-definite matrices
[Ai j]mi, j=1 ∈ Mm(Mn) . A linear map is called completely positive if it is m-positive for
every positive integer m . The concept of completely positive maps is introduced by
Steinspring [21] in studying dilation problems of operators; see also [2, Chapter 3].
In application, the class of completely positive maps plays an important role in the
development of quantum computing; see [18].

In [11], Lin introduced the concept of completely PPT maps which are linear
maps Φ : Mn → Mk such that [Φ(Ai j)]mi, j=1 are PPT matrices for all positive semi-
definite matrices [Ai j]mi, j=1 ∈ Mm(Mn) and all positive integers m . In particular, Lin
showed that Φ(X) = X + (trX)In is a completely PPT map. Note that the same re-
sult was also observed in [5, Lemma 6]. In [25], Zhang considered the linear map
Φ(X) = min{m,n}(trX)In−X and showed that [Φ(Ai j)]mi, j=1 are PPT matrices for all
positive semi-definite matrices [Ai j]mi, j=1 ∈Mm(Mn) . Motivated by the result of Zhang,
it is natural to extend the concept of completely PPT maps and define m-PPT maps.
This is a goal in this paper. Precisely, we will introduce the concept of m-PPT maps
in Section 2. One will see that completely PPT maps are m-PPT maps for every posi-
tive integer m . Moreover, a characterization of such maps will be given by connecting
to m-positive maps and m-copositive map (see Section 2 for definition). In addition,
characterizations of completely PPT maps are obtained. As an application, general-
izations of Lin’s and Zhang’s results are given. The proofs given by Lin and Zhang
are specific to the prescribed linear maps. They both apply matrix decompositions on
positive semi-definite matrices and then simplify the problem to 2×2 block matrices.
The characterizations obtained in Section 2 provide a general way to determine m-PPT
maps and completely PPT maps. We would like to point out that Lin’s and Zhang’s re-
sults become immediate consequences as well as [5, Lemma 6]. In Section 3, we study
singular values inequalities connecting to m-PPT maps and completely PPT maps. In
particular, we provide a partial answer on an open singular values inequality of 2× 2
positive block matrices arised by Lin [14]. In addition, more singular values inequalities
are proposed.
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2. m-PPT maps and Completely PPT maps

We begin with the definitions of m-PPT maps and completely PPT maps.

DEFINITION 1. A linear map Φ : Mn → Mk is said to be m-PPT if [Φ(Ai j)]mi, j=1
are PPT matrices for all positive semi-definite matrices [Ai j]mi, j=1 ∈ Mm(Mn) . It is said
to be completely PPT if it is m-PPT for all positive integers m .

In other words, a linear map Φ : Mn → Mk is m-PPT if it maps the set of all
positive semi-definite matrices in Mm(Mn) to the set of all PPT matrices in Mm(Mk) .
It is clear to see that the class of 1-PPT maps coincides with the class of positive maps.

Let T : Mn → Mn be the transposition map, that is, T (X) = Xt . A linear map
Φ : Mn → Mk is called m-copositive if Φ ◦ T , the composition of Φ and T , is m-
positive. Similarly, it is completely copositive if Φ ◦ T is completely positive. The
study of m-copositive maps arises in the study on decomposibility of positive maps;
see [19, 22]. The following result provides a connection between m-PPT maps, m-
copositive maps and m-positive maps.

LEMMA 1. Let Φ : Mn → Mk be linear. Then Φ is an m-PPT map if and only
if Φ is m-positive and m-copositive. In particular, Φ is a completely PPT map if and
only if Φ is completely positive and completely copositive.

Proof. (⇒) It is clear that every m-PPT map is m-positive. Let [Ai j]mi, j=1 ∈
Mm(Mn) be positive semi-definite and T : Mn → Mn be the transposition map. Then

[Φ◦T (Ai j)]
m
i, j=1 =

[
Φ(At

i j)
]m
i, j=1

=
[
Φ

(
Aji

)]m
i, j=1 =

([
Φ

(
Ai j

)]m
i, j=1

)τ
.

Since [Ai j]mi, j=1 � 0 and Φ is an m-PPT map, we have
[
Ai j

]m
i, j=1 � 0 and hence([

Φ
(
Ai j

)]m
i, j=1

)τ
� 0. This implies [Φ◦T (Ai j)]mi, j=1 � 0 for all [Ai j]mi, j=1 � 0. Then

Φ is m-copositive.

(⇐) As Φ is m-positive, it suffices to check that
(
[Φ(Ai j)]mi, j=1

)τ
� 0 for all

positive semi-definite matrices [Ai j]mi, j=1 ∈ Mm(Mn) . Note that

(
[Φ(Ai j)]

m
i, j=1

)τ
= [Φ(Aji)]

m
i, j=1 =

[
Φ(A∗

i j)
]m
i, j=1

=
[
Φ◦T

(
Ai j

)]m
i, j=1 .

Similarly, as [Ai j]mi, j=1 � 0 and Φ is m-copositive, we have
[
Ai j

]m
i, j=1 � 0 and[

Φ◦T
(
Ai j

)]m
i, j=1 � 0. The result follows.

The second statement is clear by the definition of completely PPT map.

We remark that in general there is no implication between
(
[Φ(Ai j)]mi, j=1

)τ
� 0

and [Φ◦T (Ai j)]
m
i, j=1 � 0. We illustrate it by the following example.
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EXAMPLE 1. Let Φ : M3 → M3 be defined by

Φ(X) =

⎡
⎣0 0 0

0 1 0
0 0 i

⎤
⎦
∗

X

⎡
⎣0 0 0

0 1 0
0 0 i

⎤
⎦+X .

Note that Φ(·) is a completely positive map. Let M =
[

A B
B∗ C

]
, where A = I3 , C = B∗B

and

B =

⎡
⎣ 0 −2−3i 4i

3+ i 1 1+4i
−2−2i 4+3i 1

⎤
⎦ .

By direct computation,

[
Φ(A) Φ(B)
Φ(B)∗ Φ(C)

]τ
�� 0, but

[
Φ(At ) Φ(Bt)
Φ(Bt)∗ Φ(Ct )

]
� 0.

In [8], Choi gave the following characterization of completely positive map. It
gives a direct way to determine the complete positivity of a given linear map.

PROPOSITION 1. Let Φ : Mn → Mk be linear. Then Φ is completely positive if
and only if [Φ(Ei j)]ni, j=1 � 0 , where {Ei j, i, j = 1, . . . ,n} is the standard basis of Mn .

The matrix [Φ(Ei j)]ni, j=1 is called the Choi matrix in literature. From Propo-
sition 1, it is clear that Φ : Mn → Mk is completely copositive if and only if [Φ ◦
T (Ei j)]ni, j=1 = [Φ(Eji)]ni, j=1 � 0. Therefore, by Lemma 1, we have the following char-
acterization of completely PPT maps.

THEOREM 1. Let Φ : Mn → Mk be linear. Then Φ is a completely PPT map if
and only if [Φ(Ei j)]ni, j=1 � 0 and [Φ(Eji)]ni, j=1 � 0 .

Theorem 1 asserts that one can check the positivity of two Choi matrices to deter-
mine the completely PPT property of a linear map. In the following, we will consider
some linear maps and study their m-PPT or completely PPT properties. In particular,
we will generalize the results of Lin [11] and Zhang [25].

THEOREM 2. Let Φ : Mn → Mk be the linear map Φ(X) = (trX)Ik . Then Φ(·)
is a completely PPT map.

Proof. It is not hard to see that

[Φ(Ei j)]ni, j=1 = [Φ(Eji)]ni, j=1 = Ink � 0.

Hence by Theorem 1, Φ is a completely PPT map.
Let A = [Ai j]mi, j=1 ∈Mm(Mn) . A partial trace of A is defined by tr 2A = [trAi j]mi, j=1 .

Setting k = 1 in Theorem 2, we have the following result which was first given by
Choi [6, Theorem 2].
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COROLLARY 1. Let A = [Ai j]mi, j=1 ∈ Mm(Mn) be positive semi-definite. Then

tr 2(Aτ ) = [trAji]mi, j=1 � 0.

For every a � 0, we consider the linear map Φa : Mn → Mn defined by Φa(X) =
X +a(trX)In . It is known that Φa(·) is completely positive for all a � 0. As a conse-
quence of Theorem 1, we have the following result.

THEOREM 3. Let Φa : Mn → Mn be defined by Φa(X) = X +a(trX)In . If n = 1 ,
then Φa(X) is completely PPT map if and only if a � 0 . If n � 2 , then Φa(X) is
completely PPT map if and only if a � 1 .

Proof. The case n = 1 is trivial and we omit it here. Now consider n � 2. Note
that Φa(·) is completely positive for a � 0. Therefore, by Theorem 1, it remains
to show that [Φa(Eji)]ni, j=1 � 0 if and only if a � 1. Observe that [Φa(Eji)]ni, j=1 =
[Eji]ni, j=1 + aIn and [Eji]ni, j=1 is a symmetric permutation matrix. It has eigenvalues 1
with multiplicity n(n+1)/2 and −1 with multiplicity n(n−1)/2. As n � 2, we have
[Eji]ni, j=1 +aIn � 0 if and only if a � 1.

By putting a = 1, we have the following result of Lin [11].

COROLLARY 2. Let Φ : Mn →Mn be defined by Φ(X) = X +(trX)In . Then Φ(·)
is a completely PPT map.

In the following, we consider another linear map Φ̃a : Mn → Mn defined by
Φ̃a(X) = a(trX)In−X . We have the following result.

THEOREM 4. Let Φ̃a : Mn → Mn be defined by Φa(X) = a(trX)In − X . Then
Φa(·) is an m-PPT map if and only if a � m. In particular, it is completely PPT if and
only if a � n.

Proof. Let T : Mn → Mn be the transpose map. Since
[
Φ̃a(Eji)

]n
i, j=1 = aIn −

[Eji]ni, j=1 and [Eji]ni, j=1 has eigenvalues ±1, then Φ̃a is completely copositive if and

only if a � 1. Therefore , it remains to show that Φ̃a(·) is m-positive if and only if
a � m . This is given by [23, Theorem 2(i)].

It is known that a linear map Φ : Mn → Mn is completely positive if and only if it
is n -positive; see [2, Theorem 3.1.6]. Therefore, the second statement follows.

The linear map Φ̃n−1(X) = (n−1)(trX)In−X from Mn to Mn is the first example
of an (n− 1)-positive map which fails to be n -positive. It was given by Choi in [7].
An interesting consequence from Theorem 4 is that Φ̃n−1(·) is an (n−1)-PPT map but
fails to be an n -PPT map. The following result is given by Zhang [25] which follows
immediately from Theorem 4.

COROLLARY 3. Let Φ : Mn → Mn be defined by Φ(X) = min{m,n}(trX)In−X .
Then Φ(·) is an m-PPT map.
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3. Singular values inequalities

For any matrix A∈Mn , we denote by s1(A)� s2(A) � · · ·� sn(A) � 0 the singular
values of A . In this section, we focus on 2× 2 block positive semi-definite matrices.
We study singular value inequalities of the block matrices under the maps Φa(·) and
Φ̃a(·) defined in Section 2. The following is our main result in this section.

THEOREM 5. Let Φa : Mn →Mn be defined by Φa(X)= X +a(trX)In and

[
A B
B∗ C

]

with A,B,C ∈ Mn be positive semi-definite. If a � 1/2, then

2s j(Φa(B)) � 2(s j(B)+a|trB|) � s j (Φa(A)+ Φa(C)) , j = 1, . . . ,n.

We need the following lemma to prove the result.

LEMMA 2. [3, p. 262] Let X ,Y be any n×m matrices. Then

2s j(XY ∗) � s j(X∗X +Y ∗Y ), j = 1, . . . ,n. (2)

Now we are ready to prove Theorem 5.

Proof of Theorem 5. The first inequality follows by the classical result of singular
value, that is,

s j(X +Y ) � s j(X)+ s1(Y ), j = 1, . . . ,n,

for any X ,Y ∈ Mn ; see [24, Theorem 8.13].

Now, we consider the second inequality. Applying the positivity of

[
trA trB
trB∗ trC

]

and using the AM-GM inequality we get

|trB| � (trAtrC)1/2 � trA+ trC
2

.

If the second inequality holds for the case a = 1/2, then the general case will follow as

2(s j(B)+a|trB|) = 2

(
s j(B)+

1
2
|trB|

)
+(2a−1)|trB|

� s j
(
Φ1/2(A)+ Φ1/2(C)

)
+(2a−1)

trA+ trC
2

= s j(Φa(A)+ Φa(C)).

Therefore, we may set a = 1/2 in the following. Moreover, one may replace B by eiθ B
for some real numbers θ and assume without loss of generality that trB � 0. We write

[
A B
B∗ C

]
=

[
X
Y

][
X
Y

]∗
=

[
XX∗ XY ∗
YX∗ YY ∗

]
,

for some n×2n matrices X ,Y . Then for j = 1, . . . ,n , we have
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s j(XX∗ +YY ∗) � 1
2
s j((X +Y)(X +Y)∗)

=
1
2
s j((X +Y)∗(X +Y ))

=
1
2
s j(2(X∗X +Y ∗Y )− (X −Y)∗(X −Y ))

� s j(X∗X +Y ∗Y )− 1
2
tr [(X −Y)∗(X −Y)]

� 2s j(XY ∗)− 1
2
tr [(X −Y)(X −Y)∗]

= 2s j(XY ∗)− 1
2
tr(XX∗ +YY ∗)+

1
2
(tr (XY ∗)+ tr(YX∗)),

where the first and second inequalities follow by (X −Y )∗(X −Y ) � 0, and the third
inequality follows by Lemma 2. Note that tr(XY ∗) = tr(YX∗) = trB � 0, hence for
j = 1, ...,n ,

s j

(
A+

1
2
trA+C+

1
2
trC

)
� 2s j(B)+ trB = 2

(
s j(B)+

1
2
|trB|

)
.

Then the results follows.

The following example shows that the condition a � 1
2

in Theorem 5 is necessary.

EXAMPLE 2. Let

[
A B
B∗ C

]
∈ M2(M2) with

A =
[
1 1
1 1

]
, B =

[
1 −1
1 −1

]
, C =

[
1 −1
−1 1

]
.

For any a � 0 and Φ(X) = X +a(trX)In,[
Φ(A) Φ(B)
Φ(B∗) Φ(C)

]
=

[
A+2aI B

B∗ C+2aI

]
.

By direct computation, s1(Φ(B)) = 2 and s1(Φ(A +C)) = 2 + 2a . If a < 1/2, then

s1(Φ(B)) >
2+2a

2
=

Φ(A+C)
2

. Therefore, a � 1/2 in Theorem 4 is necessary.

By putting a = 1 in Theorem 5, we have the following result of Lin [13].

COROLLARY 4. Let Φ : Mn → Mn be defined by Φa(X) = X + (trX)In and[
A B
B∗ C

]
with A,B,C ∈ Mn be positive semi-definite. Then

2s j(Φ(B)) � s j(Φ(A)+ Φ(C)), j = 1, . . . ,n.
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In [14], Lin suspected that analogous result as Theorem 5 holds for the linear map
Φ̃(X) = 2(trX)−X . Though we have not been able to prove the general case, we show
it is true for n � 3.

PROPOSITION 2. Let n � 3 , Φ̃ : Mn → Mn be defined by Φ̃(X) = 2(trX)In−X

and

[
A B
B∗ C

]
with A,B,C ∈ Mn be positive semi-definite. Then

2s j(Φ̃(B)) � s j
(
Φ̃(A)+ Φ̃(C)

)
, j = 1, . . . ,n. (3)

Proof. It suffices to prove the case n = 3. Note that the map X �→ (trX)I3 −
Xt is completely positive. Therefore

[
(trA)I3−At (trB)I3−Bt

(trB∗)I3−B (trC)I3−Ct

]
� 0. Observe that

tr
(
(trX)I3−X

)
= 2trX for any X ∈ M3 . Hence by Theorem 5, we have for j = 1,2,3,

2s j(2(trB)I3−B) = 2s j

(
(trB)I3−Bt +

1
2

(
tr

(
(trB)I3−Bt))I3

)

� s j
(
(trA)I3−At +(trA)I3 +(trC)I3 −Ct +(trC)I3

)
= s j (2(trA)I3−A+2(trC)I3−C) .

Then the result follows.

REMARK 1. Applying similar argument in the proof of Theorem 5, one can see
that (3) holds for the linear map Φ̃a(X) = a(trX)−X with a � 2. When n � 4, using
the method in the proof of Proposition 2, one can show that (3) holds for Φ̃a(·) with
a � n+1

2 .

The geometric mean of two positive definite matrices A,B ∈ Mn is defined by

A�B = A
1
2 (A

−1
2 BA

−1
2 )

1
2 A

1
2 .

It is known that A�B � A+B
2 . Therefore, one may ask if one can improve Theorem 5

by using geometric mean. The following result is given along this direction for large
a . We denote by λ1(A) � λ2(A) � · · · � λn(A) � 0 the eigenvalues of positive semi-
definite matrices A ∈ Mn .

PROPOSITION 3. Let

[
A B
B∗ C

]
∈ M2(Mn) be positive semi-definite. For the linear

map Φa : Mn → Mn defined by Φa(X) = X +a(trX)In , if a � n+3
2 , then

s j(Φa(B)) � λ j(Φa(A)�Φa(C)), for j = 1, ...,n.

For the linear map Φ̃a : Mn → Mn defined by Φ̃a(X) = a(trX)In −X , if a � n + 5
2 ,

then
s j(Φ̃a(B)) � λ j(Φ̃a(A)�Φ̃a(C)), for j = 1, ...,n.
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Proof. We first show that for every PPT matrix

[
A B
B∗ C

]
∈ M2(Mn) and a � 1/2,

we have
s j(Φa(B)) � λ j(Φa(A)�Φa(C)), for j = 1, ...,n.

As

[
A B
B∗ C

]
and

[
C B
B∗ A

]
are positive semi-definite, then a result of Ando [1, Lemma 3.1]

asserts that

[
A�C B
B∗ C�A

]
is positive semi-definite. Hence for a � 1/2,

s j(Φa(B)) � λ j(Φa(A�C)) � λ j(Φa(A)�Φa(C)), for j = 1, ...,n,

the first inequality follows from Theorem 5 and the second inequality follows from [2,

Theorem 4.1.5]. Now assume

[
A B
B∗ C

]
∈ M2(Mn) is positive semi-definite. Then by

Theorem 3 and Theorem 4,

[
Φ1(A) Φ1(B∗)
Φ1(B) Φ1(C)

]
and

[
Φ̃2(A) Φ̃2(B∗)
Φ̃2(B) Φ̃2(C)

]
are PPT matrices.

Therefore for a � 1/2 and j = 1, ...,n ,

s j(Φa(Φ1(B))) � λ j(Φa(Φ1(A))�Φa(Φ1(C))), for j = 1, ...,n,

and
s j(Φa(Φ̃2(B))) � λ j(Φa(Φ̃2(A))�Φa(Φ̃2(C))), for j = 1, ...,n.

The results follow by Φa(Φ1(·)) = Φa(n+1)+1(·) and Φa(Φ̃1(·)) = Φ̃a(2n+1)+2(·) .
Some numerical experiments suggest that in Proposition 3 the singular values in-

equalities of Φa and Φ̃a hold for all a � 1 and a � 2, respectively. However we have
not been able to prove it yet. Therefore we leave it as an open problem for further
research.
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