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SHARP OFF–DIAGONAL WEIGHTED WEAK
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Abstract. We prove sharp weak type weighted estimates for a class of sparse operators that
includes majorants of standard singular integrals, fractional integral operators, and square func-
tions. These bounds are known to be sharp in many cases, and our main new result is the optimal
bound

[w,σ ]
1
q
Aα

p,q
[wq]

1
ν − 1

p
A∞

� [w]
1
q
Ap,q

[w]
1
ν − 1

p
Ap,q

= [w]
1
ν − α

d
Ap,q

for p > ν and Sobolev type condition 1
q + α

d = 1
p . For ν � q � ν

1− να
d

, we also obtain the

bounds [w]
1
q
Ap,q

and it has an additional logarithmic factor, taking the form (1+ log[wq]A∞ )
1
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Moreover, we study a class of sparse maximal operators and give the weak type off-diagonal
two-weight sharp bound.

1. Introduction

In this paper, we study weighted inequalities for sparse operators, which can be
defined by

A S
α ,ν( f ) :=

(
∑

Q∈S

〈 f 〉ν
α ,Q1Q

) 1
ν
, 〈 f 〉α ,Q =

1

|Q|1− α
d

∫
Q

f , (1)

where ν > 0, 0 � α < d and S is a η -sparse collection of dyadic cubes, i.e. for all
cubes Q ∈ S , there exist EQ ⊂ Q which are pairwise disjoint and |EQ| � γ|Q| with
0 < γ < 1. Note that 〈 f 〉Q denotes 〈 f 〉α ,Q with α = 0. By now it is known that such
the operator A S

α ,ν dominates large classes of classical operators T , relying upon the
sparse domination formula

|T f (x)| �
N

∑
i=1

A Si
α ,ν(| f |)(x), (2)

where the collections Si depend on the function f . For ν = 1 and ν = 2 with α =
0, T becomes the Calderón-Zygmund singular integrals [3, 22] and Littlewood-Paley
square functions [19, 20], respectively. Thus, the various norm inequalities that we
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study for A S
α ,ν immediately translate to corresponding estimates for these classses of

classical operators.
A weight w on Rd is a locally integrable function w : Rd → (0,+∞) . The class

of all A∞ weights consists of all weights w for which their A∞ characteristic

[w]A∞ := sup
Q

1
w(Q)

∫
Q

M(1Qw) < ∞,

where M is the Hardy-Littlewood maximal function and the supremum take over cubes
of sides parallel to the coordinate axes.

More precisely, we are concerned with quantifying the dependence of various
weighted operator norms on a mixture of the two weight Aα

p,q characteristic

[w,σ ]Aα
p,q

:= sup
Q∈S

|Q|q( α
d −1)w(Q)σ(Q)

q
p′ < ∞.

The study of such mixed bounds was initiated in [13]. All our estimates will be stated
in a dual-weight formulation, in which the classical off-diagonal one-weight case cor-
responds to the choice σ = w−1/(p−1) . Note that becomes the usual one-weight Ap,q

characteristic [w]Ap,q := [wq,w−p′ ]Aα
p,q

with this choice. The properties of one-weight
Ap,q are introduced in Section 5.

Since we are dealing with dyadic operators, we also consider the dyadic versions
of the weight characteristics, where the supremums above are over dyadic cubes only
and Mα denotes the dyadic fractional maximal operator. This is a standing convention
throughout this paper without further notice.

Throughout this paper, 1 < p, p′,q < ∞ , p and p′ are conjugate indices, i.e. 1/p+
1/p′ = 1. Formally, we will also define p = 1 as conjugate to p′ = ∞ and vice versa.

Now, we formulate our main results as follows.

THEOREM 1. Let 0 < ν < ∞ , 0 � α < d and 1 < p � q < ∞ . Let w,σ be a pair
of weights. Then

‖A S
α ,ν(·σ)‖Lp(σ)→Lq,∞(w) � [w,σ ]

1
q
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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[σ ]
1
q
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, p � ν � q,

[w]
( 1

ν − 1
p )+

A∞
, other case.

(3)
where x+ := max(x,0) in the exponent. Here and below, we simplify case analysis by
interpreting [w]0A∞

= 1 , whether or not [w]A∞ is finite.

Letting ν → ∞ , we write A S
α ,ν( f ) by the following form

Aα( f ) = sup
S	Q	x

1

|Q|1− α
d

∫
Q

f , 0 � α < d,

and called sparse f ractional maximal f unction . For above sparse fractional maximal
function Aα , we have the following sharp estimate.



WEAK TYPE ESTIMATES FOR SPARSE OPERATORS 1481

THEOREM 2. Let 0 � α < d and 1 < p � q < ∞ . Let w,σ be a pair of weights.
Then

‖Aα( fσ)‖Lq,∞(w) � [w,σ ]
1
q
Aα

p,q
‖ f‖Lp(σ),

where the exponent 1
q is sharp.

REMARK 1. We also note that there is a weak-type estimate for Mα . For 1 < p �
q < ∞ and 0 � α < d , standard covering methods give

‖Mα( fσ)‖Lq,∞(w) � [w,σ ]
1
q
Aα

p,q
‖ f‖Lp(σ),

where the bound is also sharp. This result recovers the one-weight results due to Muck-
enhoupt [24], Lacey et al [15] and Pereyra [25].

Lacey and Scurry [17] provided an idea to prove Theorem 1 with q < ν , and we
merely repeat their method to two-weight off-diagonal case. For p > ν , the bound
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(4)

is new even in the one weight case for 1
q + α

d = 1
p . For ν � q � ν

1− να
d

, we also obtain

the bounds [w]
1
q
Ap,q

and it has an additional logarithmic factor, taking the form (1 +

log[wq]A∞)
1
ν . This form bounds which will be proved in Section 5.

Theorem 1 includes several known cases, the Sobolev type case 1
q + α

d = 1
p of

these results, together with strong type estimate and multilinear extensions, can also be
recovered from Fackler and Hytönen [6], Zorin-Kranich [26] the recent general frame-
work, respectively.

For ν = 1 and α = 0, (2) holds for all Calderón-Zygmund operators. Conde-
Alonso and Rey [3] first prove the result, and Lerner-Nazarov [22] give the most gen-
eral version, with a simplified proof in the paper [21]. The bound (3) in this case
was obtained in [13] for p = q = 1. In [10], Hänninen and Lorist consider the sparse
domination for the lattice Hardy-Littlewood maximal operator, and their obtained sharp
weighted weak Lp estimates.

For ν = 2 and α = 0, (2) holds for several square function operators of Littlewood-
Paley type [7, 17, 19]. For p = q , the mixed bound (3) , even for general ν > 0, is from
[12, 14]. This improves the pure Ap bound of [7, 17, 19].

For ν = 1 and 0 < α < d , (2) holds for the fractional integral operator [15]

Iα f (x) :=
∫

Rd

f (y)
|x− y|n−α dy. (5)

In the case for p < q , (3) is due to [4]. The Sobolev type case with 1
q + α

d = 1
p was

obtained by the same authors in [5]. Additional complications with p = q , which lead
to the weaker version of our bound (3) , have been observed and addressed in different
ways in [4, 5].
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For ν > 0 and α = 0, in the case for the bound (3) was obtained by Hytönen and
Li [12] for p = q ∈ (1,∞) .

Theorem 1 with ν = 2 completes the picture of sharp weighted inequalities for
fractional square functions, aside from the remaining case of 2 � q � 2

1− 2α
d

. Namely,

[w]
max( 1

q , 1
2− α

d )
Ap,q

is the optimal bound among all possible bounds of form Φ([w]Ap,q) with
an increasing function Φ . This was shown by Hytönen and Li [12], Lacey and Scurry
[17] in the category of power type function Φ(t) = tβ ; a variant of their argument
proves the general claim, as we show in the last section.

To prove the above results, we need the following characterization, which is es-
sentially due to Lai [18]; we supply the necessary details to cover the cases that were
not explicitly treated in [18].

THEOREM 3. Let 1 < p � q < ∞ , ν > 0 , p > ν and 0 � α < d . Let w, σ be a
pair of weights. Then

‖A S
α ,ν(·σ)‖ν

Lp(σ)→Lq,∞(w) 
 T ∗,

where the testing constant is defined by

T ∗ := sup
R∈S

w(R)
− 1

( q
ν )′ ∥∥ ∑

Q∈S
Q⊂R

〈σ〉ν−1
α ,Q 〈w〉α ,Q1Q

∥∥
L( p

ν )′ (σ)
.

For the testing constant T ∗ , Fackler and Hytönen [6] give the following result.

PROPOSITION 1. Let ν > 0 , 0 � α < d , p > ν and 1 < p � q < ∞ . For T ∗ as
in Theorem 3 , we have

T ∗ � [w,σ ]
ν
q
Aα

p,q

⎧⎨
⎩ [w]

1−( ν
p )2

A∞
[σ ]

( ν
p )2

A∞
, p = q and α > 0,

[w]
1− ν

p
A∞

, other case.

The plan of the paper is as follows: In Section 2, Theorem 1 with p > ν will be
proved. The remaining case of Theorem 1 is handled in Section 3. In Section 4, we
give the proof of Theorem 2. In the final section, we discuss the sharpness of our weak
type estimates by modifying the example given by Lacey and Scurry [17].

2. Proof of Theorem 3

As mentioned, Theorem 3 is essentially due to Hytönen and Li [12].
To prove our results, we first give the following lemma.

LEMMA 1. Let w,σ be a pair of weights and p > ν > 0 , then

‖A S
α ,ν(·σ)‖ν

Lp(σ)→Lq,∞(w) 
 sup
‖ f‖Lp(σ)=1

∥∥ ∑
Q∈S

〈σ〉ν
α ,Q〈 f ν 〉σ

Q1Q
∥∥

L
q
ν ,∞(w)

.
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Proof. By the definition of A S
α ,ν , we have

‖A S
α ,ν(·σ)‖ν

Lp(σ)→Lq,∞(w) = sup
‖ f‖Lp(σ)=1

∥∥ ∑
Q∈S

〈 fσ〉ν
α ,Q1Q

∥∥
L

q
ν ,∞(w)

= sup
‖ f‖Lp(σ)=1

∥∥ ∑
Q∈S

〈σ〉ν
α ,Q(〈 f 〉σ

Q)ν1Q
∥∥

L
q
ν ,∞(w)

� sup
‖ f‖Lp(σ)=1

∥∥ ∑
Q∈S

〈σ〉ν
α ,Q〈(Mσ ( f ))ν 〉σ

Q1Q
∥∥

L
q
ν ,∞(w)

= sup
‖ f‖Lp(σ)=1

∥∥ ∑
Q∈S

〈σ〉ν
α ,Q

〈(
Mσ ( f )

‖Mσ ( f )‖Lp(σ)

)ν〉σ

Q

1Q
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L
q
ν ,∞(w)

‖Mσ ( f )‖ν
Lp(σ)

� sup
‖g‖Lp(σ)=1
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Q∈S

〈σ〉ν
α ,Q〈gν〉σ

Q1Q
∥∥

L
q
ν ,∞(w)

,

where in the last step, we used the boundedness of Mσ on Lp(σ) , and the bound is
independent of σ .

On the other hand, notice that

〈 f ν 〉σ
Q � inf

x∈Q
Mσ ( f ν )(x) = ( inf

x∈Q
Mσ ,ν( f )(x))ν � (〈Mσ ,ν( f )〉σ

Q)ν ,

where Mσ ,ν( f ) := (Mσ ( f ν ))1/ν , with this observation, we have

sup
‖ f‖Lp(σ)=1
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Q∈S

〈σ〉ν
α ,Q〈 f ν 〉σ

Q1Q
∥∥

L
q
ν ,∞(w)

� sup
‖ f‖Lp(σ)=1
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Q∈S

〈σ〉ν
α ,Q(〈Mσ ,ν( f )〉σ

Q)ν1Q
∥∥

L
q
ν ,∞(w)

� sup
‖ f‖Lp(σ)=1

∥∥A ν
α ,S (·σ)

∥∥ν
Lp(σ)→Lq,∞(w)‖Mσ ,ν( f )‖ν

Lp(σ)

�
∥∥A S

α ,ν(·σ)
∥∥ν

Lp(σ)→Lq,∞(w),

where in the last step, we used the boundedness of Mσ ,ν on Lp(σ) with p > ν , and
the bound is independent of σ . This completes the proof of Lemma 1. �

Now suppose that B is the sharp constant such that∥∥ ∑
Q∈S

〈σ〉ν
α ,Q〈 f ν 〉σ

Q1Q
∥∥

L
q
ν ,∞(w)

� B‖ f‖ν
Lp(σ),

that is, ∥∥ ∑
Q∈S

〈σ〉ν
α ,Q〈 f 〉σ

Q1Q
∥∥

X
q
ν (w)

� B‖ f‖
L

p
ν (σ)

. (6)

Then
‖Aα ,S (·σ)‖Lp(σ)→Xq(w) 
 B

1
ν .

Hence, we have reduced the problem to study (6) .
The following proposition was given by Lacey, Sawyer and Uriarte-Tuero [16].
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PROPOSITION 2. Let τ = {τ : Q∈Q} be nonnegative constants, w,σ be weights
and define linear operators by

Tτ := ∑
Q∈Q

τQ〈 f 〉Q1Q.

Then for 1 < p � q < ∞ , there holds

‖Tτ(·σ)‖Lp(σ)→Lq,∞(w) 
 sup
R∈Q

w(R)−
1
q′
∥∥ ∑

Q∈Q
Q⊂R

τQ〈w〉Q1Q
∥∥

Lp′ (σ).

Observing that for (6) , we have∥∥ ∑
Q∈S

〈σ〉ν
α ,Q〈 f 〉σ

Q1Q
∥∥

L
q
ν ,∞(w)

= ‖Tτ( fσ)‖
L

q
ν ,∞(w)

with τQ = 〈σ〉ν−1
α ,Q |Q| α

d . Theorem 3 follows immediately from Proposition 2. Thus,
using Theorem 3 and Proposition 1, the case p > ν of Theorem 1 is proved.

The following proposition is weighted weak estimate for fractional maximal oper-
ator, which can be found in the paper[9].

PROPOSITION 3. Given 1 < p � q < ∞ , 0 � α < d and a pair of wights (w,σ) .
Then for all measurable functions f ,

‖Mα( fσ)‖Lq,∞(w) � [w,σ ]
1
q
Aα

p,q
‖ f‖Lp(σ).

3. Proof of the weak type bound for 1 < p � ν

We are left to prove Theorem 1 in the case that 1 < p � ν . Actually, the method
stem from Hytönen and Li [12], they have investigated the two-weight case. Follow-
ing their method, it is easy to give the off-diagonal two-weight estimate as well. For
completeness, we give the deails.

3.1. The case for 1 < p � q < ν

We want to bound the following inequality,

sup
λ>0

λw({x ∈ Rn : A S
α ,ν( fσ) > λ}) 1

q � [w,σ ]
1
q
Aα

p.q
‖ f‖Lp(σ).

By scaling it suffices to give an uniform estimate for

λ0w({x ∈ Rn : A S
α ,ν( fσ) > λ0})

1
q ,

where λ0 is some constant to be determined later. It is also free to further sparsify S
such that

∑
Q′�Q

Q′,Q∈S

|Q′|1− α
d � 1

4
|Q|1− α

d .
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Now set

Sm := {Q ∈ S : 2−m−1 < 〈 fσ〉α ,Q � 2−m} with m � 0, (7)

and
S ′ := {Q ∈ S : 〈 fσ〉α ,Q > 1}. (8)

Then for Q ∈ Sm with m � 0, denote by chSm(Q) the maximal subcubes of Q in Sm

and define
EQ := Q\

⋃
Q′∈chSm (Q)

Q′. (9)

Then

〈 fσ1EQ〉α ,Q =
1

|Q|1− α
d

∫
Q

fσ − 1

|Q|1− α
d

∑
Q′∈chSm (Q)

∫
Q′

fσ

=
1

|Q|1− α
d

∫
Q

fσ − ∑
Q′∈chSm (Q)

( |Q′|
|Q|
)1− α

d 1

|Q′|1− α
d

∫
Q′

fσ

� 1

|Q|1− α
d

∫
Q

fσ − 1
4
2−m � 1

2
〈 fσ〉α ,Q. (10)

Also, we set A Sm
α ,ν and A S ′

α ,ν to be the sparse operators associated with Sm and S ′ ,
respectively

(A Sm
α ,ν ( f ))ν := ∑

Q∈Sm

〈 f 〉ν
α ,Q1Q and (A S ′

α ,ν ( f ))ν := ∑
Q∈S ′

〈 f 〉ν
α ,Q1Q. (11)

Thus, it is easy to know that

A S
α ,ν := ∑

Q∈S

〈 f 〉ν
α ,Q1Q = ∑

m∈N

(A Sm
α ,ν ( f ))ν +(A S ′

α ,ν ( f ))ν . (12)

By (11) and (12) , we conclude that

w({x ∈ Rn : A S
α ,ν( fσ) > λ0})

� w
({

x ∈ Rn : ∑
m�0

(A Sm
α ,ν ( f ))ν >

λ ν
0

2

})
+w

({
x ∈ Rn : (A S ′

α ,ν ( f ))ν >
λ ν

0

2

})

= w
({

x ∈ Rn : ∑
m�0

∑
Q∈Sm

〈 fσ〉ν
α ,Q1Q >

λ ν
0

2

})
+w

({
x ∈ Rn : ∑

Q∈S ′
〈 fσ〉ν

α ,Q1Q >
λ ν

0

2

})
=: II1 + II2.

The second term is trival. In fact, it follows immediately from Proposition 3,

II2 � w
( ⋃

Q∈S ′
Q
)

� w({x ∈ Rn : Mα( fσ) > 1}) � [w,σ ]Aα
p,q
‖ f‖q

Lp(σ).
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Now let
λ ν

0
2 = ∑

m�0

2−εm , where ε := (ν − q)/2. By (10) , we obtain the following

estimate

II1 � ∑
m�0

w({x ∈ Rn : ∑
Q∈Sm

〈 fσ〉ν
α ,Q1Q > 2−εm})

� ∑
m�0

w({x ∈ Rn : ∑
Q∈Sm

〈 fσ1Q〉qα ,Q1Q > 2(ν−q)m2−εm})

� ∑
m�0

w({x ∈ Rn : ∑
Q∈Sm

〈 fσ1EQ〉qα ,Q1Q > 2−q2(ν−q)m2−εm})

� ∑
m�0

2(q−ν+ε)m+q
∫

Rn
∑

Q∈Sm

〈 fσ1EQ〉qα ,Q1Qdw � [w,σ ]Aα
p,q
‖ f‖q

Lp(σ),

where in the last inequality, we used the following the fact∫
Rn

∑
Q∈Sm

〈 fσ1EQ〉qα ,Q1Qdw

= ∑
Q∈Sm

〈 fσ1EQ〉qα ,Qw(Q)

� ∑
Q∈Sm

(
1

σ(EQ)1− 1
p+ 1

q

∫
EQ

fσ

)q

|Q|q( α
d −1)w(Q)σ(Q)

q
p′ σ(EQ)

� [w,σ ]Aα
p,q
‖ f‖Lp(σ).

Combining the above II1 and II2 , we get

‖A S
α ,ν( fσ)‖Lq,∞(w) � [w,σ ]

1
q
Aα

p,q
‖ f‖Lp(σ).

3.2. The cases for p � q = ν or p � ν < q

In this case, it can be strainghtforward obtained by [6, Theorem 1.1]

‖A S
α ,ν( fσ)‖Lq,∞(w) � ‖A S

α ,ν( fσ)‖Lq(w) � [w,σ ]
1
q
Aα

p,q
[σ ]

1
q
A∞
‖ f‖Lp(σ).

This completes the proof of Theorem 1. �

4. Proof of Theorem 2

In this section, we key to prove the bound [w,σ ]
1
q
Aα

p,q
is sharp. As mentioned,

Theorem 2 is essentially due to Muckenhoupt [24]. Here we extend Muckenhoupt
one-weight to off-diagonal two-weight setting.

First, we need to prove

‖Aα( fσ)‖Lq,∞(w) � [w,σ ]
1
q
Ap,q

‖ f‖Lp(σ). (13)
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This weak type estimate is trivial. Indeed, using the fact |Aα( f )|� |Mα( f )| and Propo-
sition 3, we can straightforward obtain the desired inequality (13) .

Next, we give the proof of the exponent 1
q in (13) is sharp. Consider f = | f |χQ ,

then we obtain for Q ∈ S
Aα(| f |σ) � 〈| f |σ〉α ,Q.

Taking N0 := ‖Aα(| f |σ)‖Lp(σ)→Lq,∞(w) . Using the weak type norm inequality of Aα(| f |σ) ,
we have

Nq
0

(∫
Q
| f |pσ

) q
p

= Nq
0‖ f‖q

Lp(σ) � ‖〈| f |σ〉α ,Q‖q
Lq,∞(w) = |Q|q( α

d −1)w(Q)
∫

Q
| f |σ . (14)

Consider the specific function f = 1Q supported on Q and chosen so that both inte-
grands coincide, namely | f |σ = | f |pσ . Substitute this specific function f into (14) to
obtain the following inequality only pertaining the weight σ and the cube Q ,

Nq
0 � |Q|q( α

d −1)w(Q)σ(Q)
q
p′ .

Distribute |Q| and take the supremum over all cubes Q to conclude that N0 � [w,σ ]
1
q
Aα

p,q
.

There is one technicality, the chosen function may not be integrable, choose instead
fK = K

K+σ 1Q , run the argument for each K > 0 then let K go to infinity. Thus, we
finish the proof of Theorem 2. �

5. Sharpness of the weak type bounds for fractional square function

In this section, we will show that the case for ν = 2, which called fractional square
function, i.e.

A S
α ,2( f ) =

(
∑

Q∈S

〈 f 〉2α ,Q1Q
) 1

2 , (15)

and p,q,α satisfy condition 1
q + α

d = 1
p . We only consider one weight theory estimate

for Lp(wp) → Lq,∞(wq) in here. The governing weight class is a generalization of
Muckenhoupt Ap weights, and was introduced by Muckenhoupt and Wheeden [23].

[w]Ap,q := sup
Q

(
1
|Q|

∫
Q

wq
)(

1
|Q|

∫
Q

w−p′
) q

p′
< ∞.

Its relation to two weight characteristic is [wq,w−p′ ]Aα
p,q

= [w]Ap,q with 1
q + α

d = 1
p .

Moreover, it is straightforward to show that the following are equivalent:

(a) w ∈ Ap,q; (b) wq ∈ A1+ q
p′

and w−p′ ∈ A
1+ p′

q
. (16)

We will show that the norm bound

‖A S
α ,2‖Lp(wp)→Lq,∞(wq) � [w]

max( 1
q , 1

2− α
d )

Ap,q
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is unimprovable. Actually, a lower bound with the exponent 1
q holds uniformly over

all weights, which is the content of the next Theorem. The optimality of the exponent
1
2 − α

d is slightly more tricky, and is based on a example of a specific weight Ap,q .
Hence, Theorem 1 for σ = w−1/(p−1) gives the following mixed Ap,q−A∞ estimate.

COROLLARY 1. Let 0 < α < d and 1 < p � q < ∞ with 1
q + α

d = 1
p . Then

‖A S
α ,2‖Lp(wp)→Lq,∞(wq) � [w,σ ]

1
q
Aα

p,q

⎧⎪⎪⎨
⎪⎪⎩

[w−p′ ]
1
q
A∞

, 2 � q � 2

1− 2α
d

,

[wq]
( 1

2− 1
p )+

A∞
, other case.

Notice that (16) , it is easy to know that

[wq]A1+ q
p′

= [w]Ap,q and [w−p′ ]A
1+ p′

q

= [w]
p′
q

Ap,q
. (17)

Since Lerner [20] show that [w]A∞ � [w]Ap . Using this relation to Corollary 1, we
obtain the following pure Ap,q estimate.

COROLLARY 2. Let 0 < α < d and 1 < p � q < ∞ with 1
q + α

d = 1
p . Then

‖A S
α ,2‖Lp(wp)→Lq,∞(wq) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[w]
p′
q (1− α

d )
Ap,q

, 2 � q � 2

1− 2α
d

,

[w]
( 1

2− α
d )

Ap,q
,

2

1− 2α
d

< q < ∞,

[w]
1
q
Ap,q

, 1 � q < 2.

However, the exponent p′
q (1− α

d ) of the case 2 � q � 2
1− 2α

d
is not optimal. We will

give the best exponent max( 1
q , 1

ν − α
d ) appear in the following estimate. For general

case ν � 1, we are concerned with the weak-type bounds which have an additional
logarithmic factor (log1[w

q]A∞)
1
ν appears in the followig sharp estimate.

THEOREM 4. Let ν � 1 , 0 � α < d and 1 � p � q < ∞ with 1
p + α

d = 1
q , there

holds for any weight w ∈ Ap,q

‖A S
α ,ν( f )‖Lq,∞(wq) � [w]

max( 1
q , 1

ν − α
d )

Ap,q
φ([wq]A∞)‖wf‖Lp ,

where

φ([wq]A∞) =

⎧⎨
⎩

(log1[w
q]A∞)

1
ν , ν � q � ν

1− να
d

;

1, other case.

and log1(x) = 1+ log+(x) .
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As a corollary of Theorem 4, the weak type bounds of fractional square function
is sharp.

COROLLARY 3. Let 0 � α < d and 1 � p � q < ∞ with 1
p + α

d = 1
q , there holds

for any weight w ∈ Ap,q

‖A S
α ,2( f )‖Lq,∞(wq) � [w]

max( 1
q , 1

2− α
d )

Ap,q
φ1([wq]A∞)‖wf‖Lp ,

where

φ1([wq]A∞) =

⎧⎪⎨
⎪⎩

(log1[w
q]A∞)

1
2 , 2 � q � 2

1− 2α
d

;

1, other case.

A basic tool for us is the following classical reverse Hölder’s inequality with opti-
mal bound, which can be found in [13].

PROPOSITION 4. There is a dimensional constant c > 0 such that for w ∈ A∞ ,
and r(w) = 1+ c[w]A∞ , there holds

〈wr(w)〉
1

r(w)
Q � 2〈w〉Q, Q a cube. (18)

We also need the following off-diagonal extrapolation given by Duoandikoetxra
[8].

PROPOSITION 5. Let 1 � p0 < ∞ and 0 < q0 < ∞ . Assume that that for some
family of nonnegative couples ( f ,g) and for all w ∈ Ap0,q0 we have

‖wg‖Lq0 � CN([w]Ap0,q0
)‖wf‖Lp0 ,

where N is an increasing function and the constant C does not depend on w. Set
γ = 1

q0
+ 1

p′0
. Then for 1 < p < ∞ and 0 < q < ∞ , such that

1
q
− 1

p
=

1
q0

− 1
q0

,

and all w ∈ Ap,q we have

‖wg‖Lp � CK(w)‖wf‖Lp ,

where

K(w) =

⎧⎨
⎩

N([w]Ap,q(2‖M‖Lγq(wq))
γ(q−q0)), q < q0;

N([w]
γq0−1
γq−1

Ap,q
(2‖M‖Lγ p′ (w−p′ ))

γ(q−q0)
γq−1 ), q > q0.

In particular, K(w) � C1N(C2[w]
max(1,

q0p′
qp′0

)

Ap,q
) for w ∈ Ap,q .
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The following estimate is based on the work of Domingo-Salazar, Lacey, and Rey
[7].

THEOREM 5. Let ν � 1 , 0 � α < d and 1 � p � q < ∞ with 1
q + α

d = 1
p , there

holds for any weight w ∈ Ap,q

‖A S
α ,ν( f )‖Lq,∞(wq) � [w]

max( 1
q , 1

ν − α
d )

Ap,q
φ2([wq]A∞)‖wf‖Lp , (19)

where

φ2([wq]A∞) =

{
1, 1 � q < ν;

(log1[w
q]A∞)

1
ν , ν � q < ∞.

Theorem 4 follows immediately from Theorems 1 and 5.
To prove Theorem 5, we need the following estimate.

LEMMA 2. Let ν � 1 , q � ν , 0 � α < d and 1 � p � q < ∞ with 1
q + α

d = 1
p ,

then

‖A Sm
α ,ν ‖Lq,∞(wq) � [w]

1
ν − α

d
Ap,q

‖wf‖Lp ,

where 0 < m < log1[w
q]A∞ .

Proof. Using the off-diagonal extrapolation in Proposition 5, we only need to
prove the case q = ν

1− να
d

. By Minkowski’s inequality and (10) , we obtain the following

inequalities

(∫
Rn

(
∑

Q∈Sm

〈 f 〉ν
α ,Q1Q

) q
ν υ

) 1
q

�
(

∑
Q∈Sm

(∫
Rn
〈 f 〉qα ,Q1Qυ

) ν
q
) 1

ν

=

(
∑

Q∈Sm

〈 f 〉ν
α ,Qυ

ν
q (Q)

) 1
ν

�
(

∑
Q∈Sm

〈 f1Em(Q)〉ν
α ,Qυ

ν
q (Q)

) 1
ν

�
(

∑
Q∈Sm

〈 f p1Em(Q)w
p〉α ,Q〈σ p′ 〉

p
p′
α ,Qυ

p
q (Q)

) 1
p

� [w]
1
q
Aq,ν

(
∑

Q∈Sm

∫
Em(Q)

f p1Em(Q)w
p

) 1
p

� [w]
1
ν − α

d
Aq,ν

‖wf‖Lp ,

where we used the equation p = ν in the above inequalities. �

The good property of Lebesgue measure appear in the paper [7].
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PROPOSITION 6. Let any λ > 0 , Sm defined as (7) and b = ∑Q′∈Sm 1Q′ , then
we have that for any dyadic cube Q ∈ Sm

|{x ∈ Q : b(x) > λ}| � exp(−cλ )|Q|.
For log1[w

q]A∞ � m < ∞ , we also have following estimate.

LEMMA 3. Let υ denote the weight wq , for all integers m0 > 0 , then

υ
( ∞

∑
m=m0

(A Sm
α ,ν ( f ))ν > 1

)
� [w]Ap,q

(
[υ ]A∞

2m0

)q

‖wf‖q
Lp . (20)

Proof. Define

S ∗
m := {Q maximal s.t. Q ∈ Sm} and Bm :=

⋃
{Q : Q ∈ S ∗

m}.

By the definitions of Sm and (A Sm
α ,ν ( f ))ν , we can write (A Sm

α ,ν ( f ))ν as 2−νmbm ,
where

bm � ∑
Q∈Sm

1Q and supp(bm) ⊂ Bm.

For any dyadic cube Q∈Sm , by Proposition 6, we know that the function bm is locally
exponentially integrable. By the sharp weak-type estimate for the fractional maximal
function [15], we know that

υ(Bm) � 2qm[w]Ap,q‖wf‖q
Lp .

The left hand side of (20) can be estimated as

υ
( ∞

∑
m=m0

(A Sm
α ,ν ( f ))ν > 1

)
= υ

( ∞

∑
m=m0

2−νmbm >
∞

∑
m=m0

2m0−m−1)

�
∞

∑
m=m0

υ(bm > 2m0+(ν−1)m−1).

Taking
β (Q) := {x ∈ Q : bm(x) > 2m0+(ν−1)m−1}

for any dyadic cube Q ∈S ∗
m , by the definition of S ∗

m and Proposition 6, we show that

|β (Q)| � exp(−c2m0+(ν−1)m)|Q|.
Using the A∞ property for A1+ q

p′
weights with υ -measure and Proposition 18, there

holds

υ(β (Q)) = 〈υ1β (Q)〉Q|Q| � 〈1β (Q)〉
( 1

r(υ) )′

Q 〈υ r(υ)〉
1

r(υ)
Q |Q|

�
[ |β (Q)|

|Q|
](c[υ]A∞ )−1

υ(Q) � υ(Q)exp

(
−c

2m0+(ν−1)m

[υ ]A∞

)
,
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where r(υ) as in (18) .
Summing over the disjoint cubes in S ∗

m , we obtain

υ
( ∞

∑
m=m0

(A Sm
α ,ν ( f ))ν > 1

)
� [w]Ap,q‖wf‖q

Lp

∞

∑
m=m0

2mq exp

(
−c

2m0+(ν−1)m

[υ ]A∞

)
. (21)

The sum in the right hand side of (21) , we can be controlled by

∞

∑
m=m0

2mq exp

(
−c

2m0+(ν−1)m

[υ ]A∞

)
�
∫ ∞

m0

2qx exp

(
−c

2m0+(ν−1)x

[υ ]A∞

)
dx

≈
∫ ∞

2(ν−1)m0
yq exp

(
−c

2m0

[υ ]∞
y

)
dy
y

=
(

[υ ]∞
2m0

)q ∫ ∞

2νm0
[υ ]∞

yqe−cy dy
y

�
(

[υ ]∞
2m0

)q

. (22)

Combining (21) and (22) , we obtain the desired result. This completes the proof
Lemma 3. �

Proof. o f Theorem 5. Since the case 1 � q < ν is contained in Theorem 1, we
key to study the case q � ν . By scaling, the left hand side of (19) suffices to estimate

λ qυ({x ∈ Rn : A S
α ,ν > λ}). (23)

Assume that λ = 3
1
ν and ‖ f‖Lp(wp) = 1. Thus, by (12) , we obtain

υ((A S
α ,ν( f ))ν > 3)

� υ((A S ′
α ,ν ( f ))ν > 1)+ υ

(m0−1

∑
m=0

(A Sm
α ,ν ( f ))ν > 1

)
+ υ

( ∞

∑
m=m0

(A Sm
α ,ν ( f ))ν > 1

)
.

By the sharp weak-type estimate for the fractional maximal function [15], the first term
is controlled as

υ((A S ′
α ,ν ( f ))ν > 1) � [w]

1
q
Ap,q

. (24)

By Chebysheff’s inequality and Minkowski’s inequality for q � ν , the second term
from Lemma 2

υ
(m0−1

∑
m=0

(A Sm
α ,ν ( f ))ν > 1

)
�
∥∥∥∥m0−1

∑
m=0

(A Sm
α ,ν ( f ))ν

∥∥∥∥
q
ν

L
q
ν (υ)

�
(m0−1

∑
m=0

‖(A Sm
α ,ν ( f ))ν‖

L
q
ν (υ)

) q
ν

=
(m0−1

∑
m=0

‖A Sm
α ,ν ( f )‖ν

Lq(wq)

) q
ν

� (m0[w]
1
ν − α

d
Ap,q

)
q
ν . (25)



WEAK TYPE ESTIMATES FOR SPARSE OPERATORS 1493

By Lemma 3, the third term can be estimated as

υ
( ∞

∑
m=m0

(A Sm
α ,ν ( f ))ν > 1

)
� [w]Ap,q

(
[wq]∞
2m0

)q

. (26)

Combining (24) , (25) and (26) , we get

‖A S
α ,ν‖Lq,∞(wq) � [w]

1
q
Ap,q

+m
1
ν
0 [w]

1
ν − α

d
Ap,q

+[w]
1
q
Ap,q

[wq]A∞2−m0

≈ [w]
max( 1

q , 1
ν − α

d )
Ap,q

(log1[w
q]A∞)

1
ν ,

due to m0 ≈ log1[w
q]A∞ . This finishs the proof Theorem 5. �

However, this is not the end of the story; we can prove even more. Here we present
our full statement of the main theorem. This estimate is sharp in the following sense.

THEOREM 6. For any weight w, we have

‖A S
α ,ν‖Lp(wp)→Lq,∞(wq) � [w]

1
q
Ap,q

.

Proof. Let υ denote the weight wq and consider f = | f |χQ , then we obtain for
Q ∈ S

A S
α ,ν( f ) � 〈| f |〉α ,Q.

Taking N := ‖A S
α ,ν( f )‖Lp(wp)→Lq,∞(υ) , then we have

N‖ f‖Lp(wp) � ‖A S
α ,ν( f )‖Lq,∞(υ) � ‖〈| f |〉α ,Q‖Lq,∞(υ)

=
υ(Q)

1
q

|Q|1− α
d

∫
Q
| f | = υ(Q)

1
q

|Q|1− α
d

∫
Q
| f |w−pwp

for all positive functions | f | on Q . By the converse to Hölder’s inequality, this shows
that

N � υ(Q)
1
q

|Q|1− α
d
‖w−p‖Lp′ (wp) =

υ(Q)
1
q σ(Q)

1
p′

|Q|1− α
d

,

and taking the supremuum over all Q proves this theorem. �

THEOREM 7. Let ν � 1 , 0 � α < d and 1 � p � q < ∞ with 1
q + α

d = 1
p . If Φ

be an increasing function such that

‖A S
α ,ν‖Lp(wp)→Lq,∞(wq) � Φ([w]Ap,q)

for all w ∈ Ap,q , then Φ(t) � ct
1
ν − α

d .
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Lacey and Scurry [17] show that this in class of power functions, namely, they
proved that there cannot be a bound the form Φ(t) = t

1
2−η for η > 0. We will extend

their method to general setting.

Proof. We will consider two cases to prove this theorem: ν > 1 and ν = 1.

Case 1: ν > 1. Following the same arguments as those in [12, 17], the assumption
implies

∥∥(∑
Q

〈aQ ·wq〉ν
α ,Q1Q

) 1
ν
∥∥

Lp′ (w−p′ ) � Φ([w]Ap,q)
∥∥(∑

Q

aν
Q

) 1
ν
∥∥

Lq′,1 (wq)
(27)

for all sequences of measurable functions aQ . For ϑ ∈ (0,1) , we consider w(x) =

|x| ϑ−1
q and a sequence of functions

a[0,2−k)(x) := ak(x) := ϑ
1

ν−1− 1
ν

∞

∑
j=k+1

2−ϑ ( j−k)1[2− j,2− j+1)(x), k ∈ N.

Then it is easy to check that

[w]Ap,q = [wq]A1+ q
p′

 ϑ−1 and ∑

k

aν
k (x) � ϑ

ν
ν−1−21[0,1].

In fact, we choose Ik = [0,2−k] and x ∈ (2−(l+1),2−l] with l ∈ N0 such that

ak(x) 
 ϑ
1

ν−1− 1
ν |Ik|−ϑ |x|ϑ 1Ik (x).

A simple calculation shows that

∞

∑
k=0

aν
k (x) = ϑ

ν
ν−1−1|x|νϑ

∞

∑
k=0

|Ik|−νϑ 1Ik (x)

= ϑ
ν

ν−1−1|x|νϑ
l

∑
k=0

(2νϑ )k

= ϑ
ν

ν−1−1|x|νϑ 2ν(l+1)ϑ −1
2νϑ −1

� ϑ
ν

ν−1−2|x|νϑ 2νlϑ � ϑ
ν

ν−1−21[0,1]. (28)

Using (28) , the right hand side of (27) implies that

∥∥( ∞

∑
k=1

ak(x)ν) 1
ν
∥∥

Lq′ ,1(wq) � q′
∫ ∞

0

(∫
{x∈[0,1]:cϑ

ν
ν−1−2

>s}
|x|ϑ−1dx

) 1
q′

ds

�
∫ cϑ

ν
ν−1−2

0

(∫ 1

0
|x|ϑ−1dx

) 1
q′

ds 
 ϑ
ν

ν−1−2ϑ− 1
q′ .
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On the other hand, the left hand side of (27) can be estimated as

〈ak ·wq〉α ,[0,2−k) 
 ϑ
1

ν−1− 1
ν 2k(1− α

d )
∞

∑
j=k+1

2−ϑ ( j−k)2−ϑ j 
 ϑ
1

ν−1− 1
ν −12k(1− α

d −ϑ ).

It follows that ∫
[0,1]

( ∞

∑
k=1

〈ak ·wq〉ν
α ,[0,2−k)1[0,2−k)

) p′
ν w−p′


 ϑ
p′

ν−1− p′
ν −p′

∫ 1

0
|x|(ϑ−(1− α

d )p′ |x|− (ϑ−1)p′
q dx

= ϑ
p′

ν−1− p′
ν −p′

∫ 1

0
|x|

ϑ p′
q′ −1

dx =
q′

p′
ϑ

p′
ν−1− p′

ν −p′−1.

By assumption, this implies

ϑ
1

ν−1− 1
p′ −

1
ν −1 � Φ([w]Ap,q)ϑ

ν
ν−1−2ϑ− 1

q′ � Φ(cϑ−1)ϑ
ν

ν−1−2ϑ− 1
q′ .

Hence, we show that Φ(t) � t
1
ν − α

d , this finishes the proof of Case 1.

Case 2: ν = 1. The upper bound of this case follows from [15], and we show that

‖A S
α ,1( f )‖Lq,∞(wq) � Φ([w]Ap,q)‖wf‖Lp (29)

holds for Φ(t) � ct1−
α
d .

By (17) , we show that

‖A S
α ,1( f )‖Lq,∞(wq) � Φ([wq]A1+q/p′ )‖wf‖Lp , (30)

and let u = wq , then

‖A S
α ,1( f )‖Lq,∞(u) � Φ([u]A1+q/p′ )‖ f‖Lp(up/q). (31)

Assume now that u ∈ A1 , then (31) it yields that

‖A S
α ,1( f )‖Lq,∞(u) � Φ([u]A1)‖ f‖Lp(up/q). (32)

Since p
q = 1− pα

d , this is equivalent to

‖A S
α ,1(u

α
d f )‖Lq,∞(u) � Φ([u]A1)‖ f‖Lp(u). (33)

Next, we will go to prove (33) holds for Φ(t) � ct1−
α
d . Let

u(x) = |x|ϑ−n

with 0 < ϑ < 1. Then standard computations shows that

[u]A1 
 ϑ−1. (34)
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Consider the function f = χB where B is the unit ball, we can compute its norm to be

‖ f‖Lp(u) = u(B)
1
p 
 ϑ− 1

p . (35)

By sparse domination formula, then there exists a η -sparse family S such that

A S
α ,1(| f |)(x) � |Iα f (x)|, (36)

where Iα is defined by (5) . Let 0 < xϑ < 1 be a parameter whose value will be chosen
soon. By (36) , we have that

‖A S
α ,1(u

α
d f )‖Lq,∞(u) � ‖Iαu

α
d f‖Lq,∞(u)

� sup
λ>0

(
u{|x|< xϑ :

∫
B

|y|(ϑ−1)α/d

|x− y|1−α/d
dx > λ}

) 1
q

� sup
λ>0

(
u{|x|< xϑ :

∫
B\B(0,|x|)

|y|(ϑ−1)α/d

|x− y|1−α/d
dx > λ}

) 1
q

� sup
λ>0

(
u{|x|< xϑ :

∫
B\B(0,|x|)

|y|(ϑ−1)α/d

(2|y|)1−α/d
dx > λ}

) 1
q

= sup
λ>0

(
u{|x|< xϑ :

cα ,d

ϑ
(1−|x|ϑα/d) > λ}

) 1
q

� cα ,d

2ϑ

(
u{|x|< xϑ :

cα ,d

ϑ
(1−|x|ϑα/d) >

cα ,d

2ϑ
}
) 1

q

=
cα ,d

2ϑ
u(B(0,xϑ ))

1
q ,

where taking xϑ = ( 1
2 )d/αϑ in the last step. It now follows that for 0 < ϑ < 1,

‖A S
α ,1(u

α
d f )‖Lq,∞(u) � 1

ϑ

(xϑ
ϑ

) 1
q 
 ϑ−1− 1

q . (37)

Finally, combining (34) , (35) , (37) , and using that 1
q + α

d = 1
p , we have that (33) holds

for Φ(t) � ct1−
α
d , which gives the desired bound by the monotonicity of Φ . �
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