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Abstract. If P(z) is a polynomial of degree n which does not vanish in |z| < k , where k � 1 ,
then N. K. Govil [On a theorem of S. Bernstein, Proc. Nat. Acad. Sci., 50 (1980), 50–52] proved
that

max
|z|=1

|P′(z)| � n
1+ kn max

|z|=1
|P(z)|,

provided |P′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1 , where Q(z) =
znP(1/z) . In this paper, we obtain certain refinements and generalizations of this inequality
and related results.

1. Introduction

Let P(z) := ∑n
j=0 c jz j be a polynomial of degree n in the complex plane and

P′(z) its derivative. The study of Bernstein type inequalities that relate the norm of a
polynomial to that of its derivative and their various versions are a classical topic in
analysis. One basic result is that: for P(z) to be a polynomial of degree n , it is true that

max
|z|=1

|P′(z)| � nmax
|z|=1

|P(z)|. (1)

Inequality (1) is a famous result due to Bernstein [2] who proved it in 1912. Over the
last forty years many different authors produced a large number of different versions
and generalizations of (1) by introducing restrictions on the zeros of P(z) , the modulus
of large root of P(z) , restrictions on coefficients etc. For more information on these
inequalities and related results, one can consult the books of Milovanović et al. [10],
Marden [9] and Rahman and Schmeisser [11]. Since equality in (1) holds if and only if
P(z) has all its zeros at the origin, one would expect a relationship between the bound
n and the distance of the zeros of the polynomial P(z) from the origin. This fact was
observed by Erdős and later verified by Lax [7] by proving that if P(z) does not vanish
in |z| < 1, then (1) can be replaced by

max
|z|=1

|P′(z)| � n
2

max
|z|=1

|P(z)|. (2)
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It was proposed by R. P. Boas Jr. to study the class of polynomials having no zeros in
|z|< k , where k > 0, and obtain an inequality analogous to (2). This proposed problem
has been studied extensively by many people, for example see Malik [8], Govil and
Rahman [4], Govil, Qazi and Rahman [5] and others. In 1969, Malik [8] proved a
partial extension of (2) for polynomials P(z) not vanishing in |z| < k , where k � 1, by
obtaining

max
|z|=1

|P′(z)| � n
1+ k

max
|z|=1

|P(z)|.

For the class of polynomials not vanishing in |z|< k , where k � 1, the precise estimate
of maximum |P′(z)| on |z| = 1 does not seem to the easily obtainable in general. For
quite some time it was believed that if P(z) �= 0 in |z| < k , k � 1, then the inequality
analogous to (2) should be

max
|z|=1

|P′(z)| � n
1+ kn max

|z|=1
|P(z)|, (3)

till E. B. Saff gave the example P(z) = (z− 1
2 )(z+ 1

3 ) to counter this belief. Finally, in
1980, it was shown by N. K. Govil [3] that (3) holds with some additional hypothesis
and proved the following result.

THEOREM A. Let P(z) be a polynomial of degree n having no zeros in |z| < k ,
where k � 1 , and let Q(z) = znP(1/z) . If |P′(z)| and |Q′(z)| attain maximum at the
same point on |z| = 1 , then

max
|z|=1

|P′(z)| � n
1+ kn max

|z|=1
|P(z)|. (4)

The result is best possible and equality in (4) holds for P(z) = zn + kn .

In 1997, Aziz and Ahmad [1] improved the bound in (4) and proved the following
result.

THEOREM B. Let P(z) be a polynomial of degree n having no zeros in |z| < k ,
where k � 1 , and let Q(z) = znP(1/z) . If |P′(z)| and |Q′(z)| attain maximum at the
same point on |z| = 1 , then

max
|z|=1

|P′(z)| � n
1+ kn

{
max
|z|=1

|P(z)|−min
|z|=k

|P(z)|
}

. (5)

The result is best possible and equality in (5) holds for P(z) = zn + kn .

The authors are curious to know how the inequalities in Theorems A and B can
be sharpened by using some of the coefficients of P(z) . Indeed, this paper is mainly
motivated by the desire to establish some more refined bounds than given by (4) and (5).

2. Main results

Here, we further sharpen the bounds in (4) and (5) by involving some of the coef-
ficients of P(z) . We begin, by presenting the following strengthening of (4).
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THEOREM 1. Let P(z) = ∑n
j=0 c jz j be a polynomial of degree n having no ze-

ros in |z| < k , where k � 1 , and let Q(z) = znP(1/z) . If |P′(z)| and |Q′(z)| attain
maximum at the same point on |z| = 1 , then

max
|z|=1

|P′(z)| � n

(
kn−1|cn|+ |c0|

(kn−1 + k2n)|cn|+(kn−1 +1)|c0|
)

max
|z|=1

|P(z)|. (6)

The result is best possible and equality in (6) holds for P(z) = zn + kn .

REMARK 1. In fact excepting the case when P(z) has all its zeros on |z| = k ,
where k � 1, the bound obtained in Theorem 1 is always sharper than the bound ob-
tained from Theorem A and for this it needs to show that

kn−1|cn|+ |c0|
(kn−1 + k2n)|cn|+(kn−1 +1)|c0| � 1

1+ kn ,

which is equivalent to showing

|cn|(k2n−1− k2n) � |c0|(kn−1− kn),

that is
kn|cn| � |c0|,

which clearly holds because all the zeros of P(z) lie in |z| � k and k � 1.

REMARK 2. Since P(z) = ∑n
j=0 c jz j �= 0 in |z| < k , k � 1, and if z1,z2, . . . ,zn ,

are the zeros of P(z) then ∣∣∣∣c0

cn

∣∣∣∣ = |z1z2 · · ·zn| � kn. (7)

Here, we show that for 0 � λ � 1,

kn|cn| � |c0|−λm, (8)

where m = min|z|=k |P(z)| .
We can assume, without loss of generality, that P(z) has no zeros on |z| = k, for

otherwise (8) holds trivially by (7). Now, P(z) is analytic in |z| � k and has no zeros
in |z| � k , by the Minimum Modulus Principle,

|P(z)| � m for |z| � k.

This implies |P(z)| > m for |z| < k , which in particular implies

|c0| = |P(0)| > m. (9)

By Rouché’s theorem, the polynomial P(z)−αm = (c0 −αm)+ ∑n
j=1 c jz j , with

|α| � 1 has no zeros in |z| < k, k � 1, hence
∣∣∣∣c0 −αm

cn

∣∣∣∣ � kn. (10)
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Choosing the argument of α suitably in (10), so that |c0−αm|= |c0|− |α|m , which is
possible by (9), we get

kn|cn| � |c0|− |α|m. (11)

If in (11), we take |α| = λ , so that 0 � λ � 1, we get (8).

Next, we will prove the following strengthening of Theorem 1 which in turn refines
the bounds in Theorems A and B. In fact, these two theorems can be represented in a
unified form even for each λ , 0 � λ � 1,

max
|z|=1

|P′(z)| � n
1+ kn

{
max
|z|=1

|P(z)|−λ min
|z|=k

|P(z)|
}

, (12)

i.e.,

M′ � n
1+ kn (M−λm), (13)

where
M′ = max

|z|=1
|P′(z)|, M = max

|z|=1
|P(z)|, m = min

|z|=k
|P(z)|. (14)

For λ = 0 and λ = 1, the inequality (12) reduces to (4) and (5), respectively.

THEOREM 2. Let P(z) = ∑n
j=0 c jz j be a polynomial of degree n having no ze-

ros in |z| < k , where k � 1 , and let Q(z) = znP(1/z) . If |P′(z)| and |Q′(z)| attain
maximum at the same point on |z| = 1 , then for 0 � λ � 1 ,

max
|z|=1

|P′(z)| � n

(
kn|cn|+ λm+ k|c0|

(kn|cn|+ λm)(kn+1 +1)+ k|c0|(kn−1 +1)

)
max
|z|=1

|P(z)|

−λn

(
kn+1|cn|+ kλm+ |c0|

(kn|cn|+ λm)(kn+1 +1)+ k|c0|(kn−1 +1)

)
min
|z|=k

|P(z)|, (15)

where m = min|z|=k |P(z)| . The result is best possible and equality in (15) holds for
P(z) = zn + kn .

REMARK 3. Using the notation (14), the inequality (15) can be written in a form
similar to (13), i.e.,

M′ � n
(kn|cn|+ λm+ k|c0|)M−λ

(
kn+1|cn|+ kλm+ |c0|

)
m

(kn|cn|+ λm)(kn+1 +1)+ k|c0|(kn−1 +1)
, (16)

where 0 � λ � 1.

REMARK 4. As shown in Remark 2 for 0 � λ � 1, that kn|cn|+ λm � |c0| , i.e.,

X =
kn|cn|+ λm

|c0| � 1. (17)
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Then the inequality (16) becomes

M′ � n
X(kn+1 +1)+ kn + k

[(X + k)M−λ (kX +1)m] .

In order to prove that the bound in (16) is better than one in (13) we should check the
inequality

(X + k)M−λ (kX +1)m
X(kn+1 +1)+ kn + k

� M−λm
1+ kn ,

which clearly holds because the function

X �→ f (X) =
(X + k)M−λ (kX +1)m

X(kn+1 +1)+ kn + k

is increasing in [0,1] , hence

f (X) � f (1) =
M−λm
1+ kn as X � 1.

Thus, Theorem 2 improves (12).

REMARK 5. It is important to mention that by virtue of Remark 2, the bound
obtained from Theorem 2 is optimal when λ = 1 and the same is true for the inequality
(12) which gives the most desirable bound for λ = 1 in the form of the inequality
(5). However, the parameter λ plays a vital role for making Theorem 2 more general
and to get different bounds from it by simply giving different values to it from 0 to 1
and without changing the hypothesis of the theorem. For example, for λ = 0 (without
assuming that P(z) has a zero on |z| = k ) it gives the inequality (6). Thus, Theorem 1
is a corollary of Theorem 2.

Now we illustrate the obtained results by means of the following example.

EXAMPLE 1. Consider the polynomial P(z) = z3 − z2 + z− 1, then clearly P(z)
has all its zeros {1, i,−i} on |z| = 1. Further,

Q(z) = znP(1/z) = −P(z),

so that |P′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1. We take
k = 1/2, so that P(z) �= 0 in |z| < k = 1/2. By Theorem A and Theorem B we obtain
the following estimates

max
|z|=1

|P′(z)| � 10.7 and max
|z|=1

|P′(z)| � 9.0,

respectively, but by Theorem 2, with λ = 1, we get

max
|z|=1

|P′(z)| � 8.7.
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Figure 1: Bounds obtained by Theorem A and Theorem 1 (left) and by Theorem B and
Theorem 2 (for λ = 1) (right) when 0 � k � 1

In Figure 1 we displayed the bounds obtained by the previous theorems when k
runs over [0,1] .

Finally, we compare bounds obtained by (12) and by (15) from Theorem 2, for
different values of λ = 0, 0.25, 0.5, 0.75, 1 and 0 � k � 1. Namely, in Figure 2 we
give the graphics of difference between these bounds, i.e.,

d(k,λ ) = right side of (13)− right side of (16),

confirming the theoretical result presented in Remark 4.
Otherwise, in this example we have that

M′ = max
|z|=1

|P′(z)| = 6, M = max
|z|=1

|P(z)| = 4, m = min
|z|=k

|P(z)| = (1− k)(1+ k2).

0.2 0.4 0.6 0.8 1.0
k

0.5

1.0

1.5

2.0

d(k, λ)

λ =
λ =
λ =

λ =
λ =

Figure 2: The function k �→ d(k,λ ) , when 0 � k � 1 for λ = 0,1/4,1/2,3/4,1

3. Auxiliary results

In order to prove our main results, we need the following lemmas.
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LEMMA 1. If P(z) is a polynomial of degree n and Q(z) = znP(1/z) , then on
|z| = 1,

|P′(z)|+ |Q′(z)| � nmax
|z|=1

|P(z)|.

This lemma is a special case of a result due to Govil and Rahman [4].

LEMMA 2. Let P(z) = ∑n
j=0 c jz j be a polynomial of degree n having all its zeros

in |z| � k , k � 1 , then

max
|z|=1

|P′(z)| � n

( |c0|+ |cn|kn+1

|c0|(1+ kn+1)+ |cn|(kn+1 + k2n)

)
max
|z|=1

|P(z)|.

The above lemma is due to Jain [6].

LEMMA 3. Let P(z) = ∑n
j=0 c jz j be a polynomial of degree n having all its zeros

in |z| � k , k � 1 , then for 0 � λ � 1 , we have

max
|z|=1

|P(z)| � n

( |c0|+ λm+ |cn|kn+1

(|c0|+ λm)(1+ kn+1)+ |cn|(kn+1 + k2n)

){
max
|z|=1

|P(z)|+ λm

}
,

(18)
where m = min|z|=k |P(z)| .

Proof. If P(z) = ∑n
j=0 c jz j has a zero on |z|= k , then m = min|z|=k |P(z)|= 0 and

the result follows from Lemma 2 in this case. Henceforth, we suppose that P(z) has all
its zeros in |z| < k , where k � 1.

Let H(z) = P(kz) and G(z) = znH(1/z) = znP(k/z) . Then all the zeros of G(z)
lie in |z| > 1 and |H(z)| = |G(z)| for |z| = 1.

This gives ∣∣∣∣∣znP

(
k
z

)∣∣∣∣∣ = |P(kz)| � m for |z| = 1.

It follows by the Minimum Modulus Principle, that∣∣∣∣∣znP

(
k
z

)∣∣∣∣∣ � m for |z| � 1.

Replacing z by 1/z , it implies that

|P(kz)| � m|z|n for |z| � 1,

or
|P(z)| � m

∣∣∣ z
k

∣∣∣n for |z| � k. (19)

Now, consider the polynomial F(z) = P(z)+ αm, where α is a complex number
with |α| � 1, then all the zeros of F(z) lie in |z| � k . Because, if for some z = z1 with
|z1| > k , we have F(z1) = P(z1)+ αm = 0, then

|P(z1)| = |αm| � m < m
∣∣∣ z1

k

∣∣∣n ,
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which contradicts (19). Hence, for every complex number α with |α|� 1, the polyno-
mial

F(z) = P(z)+ αm = (c0 + αm)+
n

∑
j=1

c jz
j,

has all its zeros in |z| � k , where k � 1. Applying Lemma 2 to the polynomial F(z) ,
we get for every complex α with |α| � 1 and |z| = 1,

max
|z|=1

|P′(z)| � n

( |c0 + αm|+ |cn|kn+1

|c0 + αm|(1+ kn+1)+ |cn|(kn+1 + k2n)

)
|P(z)+ αm|. (20)

For every α ∈ C , we have

|c0 + αm| � |c0|+ |α|m,

and since the function

x �→ x+ |cn|kn+1

x(1+ kn+1)+ |cn|(kn+1 + k2n)
(x � 0)

is decreasing for k � 1, it follows from (20) that for every α with |α| � 1 and |z|= 1,

max
|z|=1

|P′(z)| � n

( |c0|+ |α|m+ |cn|kn+1

(|c0|+ |α|m)(1+ kn+1)+ |cn|(kn+1 + k2n)

)
|P(z)+ αm|. (21)

Choosing the argument of α on the right hand side of (21) such that

|P(z)+ αm| = |P(z)|+ |α|m,

we obtain from (21) that

max
|z|=1

|P′(z)| � n

{ |c0|+ |α|m+ |cn|kn+1

(|c0|+ |α|m)(1+ kn+1)+ |cn|(kn+1 + k2n)

}(|P(z)|+ |α|m)
,

for every α with |α|� 1 and |z|= 1, thereby leading to (18). This completes the proof
of Lemma 3.

4. Proofs of main results

According to Remark 5 we need only to prove Theorem 2.

Proof of Theorem 2. Recall that P(z) = ∑n
j=0 c jz j �= 0 in |z|< k , k � 1, it follows

that all the zeros of Q(z) = znP(1/z) lie in |z| � 1/k , 1/k � 1. Applying Lemma 3 to
the polynomial Q(z) , we get for 0 � λ � 1,

max
|z|=1

|Q′(z)| � n
|cn|+ λm′+ |c0| 1

kn+1(
1+ 1

kn+1

)
(|cn|+ λm′)+

(
1

kn+1 + 1
k2n

)
|c0|

{
max
|z|=1

|Q(z)|+ λm′
}

,

(22)
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where

m′ = min
|z|= 1

k

|Q(z)| = 1
kn min

|z|=k
|P(z)| = m

kn .

Since
max
|z|=1

|P(z)| = max
|z|=1

|Q(z)|,

we have inequality (22) is equivalent to

max
|z|=1

|Q′(z)| � n
(kn+1|cn|+ kλm+ |c0|)kn

(kn+1 +1)(kn|cn|+ λm)+ k|c0|(kn−1 +1)

{
max
|z|=1

|P(z)|+ λm
kn

}
.

(23)
By the given hypothesis, |P′(z)| and |Q′(z)| attain maximum at the same point on

|z| = 1. Let
max
|z|=1

|P′(z)| = |P′(eiα )|, 0 � α < 2π , (24)

then
max
|z|=1

|Q′(z)| = |Q′(eiα)|. (25)

Also by Lemma 1, we have

|P′(eiα)|+ |Q′(eiα)| � nmax
|z|=1

|P(z)|,

which gives with the help of (23), (24) and (25), that

nmax
|z|=1

|P(z)| �max
|z|=1

|P′(z)|

+n
(kn+1|cn|+ kλm+ |c0|)kn

(kn|cn|+ λm)(kn+1 +1)+ (kn−1 +1)k|c0|
{

max
|z|=1

|P(z)|+ λm
kn

}
,

which implies

max
|z|=1

|P′(z)| � n

{
1− kn(kn+1|cn|+ kλm+ |c0|)

(kn|cn|+ λm)(kn+1 +1)+ k|c0|(kn−1 +1)

}
max
|z|=1

|P(z)|

−λn

(
kn+1|cn|+ kλm+ |c0|

(kn|cn|+ λm)(kn+1 +1)+ k|c0|(kn−1 +1)

)
m.

From this, we get

max
|z|=1

|P′(z)| � n

{
kn|cn|+ λm+ k|c0|

(kn|cn|+ λm)(kn+1 +1)+ k|c0|(kn−1 +1)

}
max
|z|=1

|P(z)|

−λn

(
kn+1|cn|+ kλm+ |c0|

(kn|cn|+ λm)(kn+1 +1)+ k|c0|(kn−1 +1)

)
m,

which is (15) and this completes the proof of Theorem 2.
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