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MAXIMAL FUNCTIONS AND ROUGH MAXIMAL FUNCTIONS

ON LOCAL MORREY SPACES WITH VARIABLE EXPONENTS

TAT-LEUNG YEE, KA LUEN CHEUNG, KWOK-PUN HO AND CHUN KIT SUEN

(Communicated by L. Pick)

Abstract. We study the local Morrey spaces with variable exponents. We show that the local
block space with variable exponents are pre-duals of the local Morrey spaces with variable ex-
ponents. Using this duality, we establish the extrapolation theory for the local Morrey spaces
with variable exponents. The extrapolation theory gives the mapping properties for the local
sharp maximal functions, the geometric maximal functions and the rough maximal function on
the local Morrey spaces with variable exponents.

1. Introduction

The main theme of this paper is the mapping properties local sharp maximal func-
tions, geometrical maximal functions and rough maximal functions on local Morrey
spaces with variable exponents. We obtain these results by using the duality and the
extrapolation theory for local Morrey spaces with variable exponents.

The local Morrey space is an extension of the classical Morrey space introduced
by Morrey in [35]. One of the remarkable features of the local Morrey spaces is that
the real interpolation of local Morrey spaces can be explicitly identified [7]. In contrast
to the real interpolation of the local Morrey space, the complete description of the real
interpolation of the classical Morrey spaces is yet to be found [1].

Other than the interpolation of the local Morrey spaces, a number of important
results from harmonic analysis had been extended to the local Morrey spaces. The
boundedness of the Hardy-Littlewoodmaximal operator on the local Morrey spaces was
given in [2]. The mapping properties of the singular integral operators were established
in [4]. For the mapping properties of the Riesz potential and the fractional maximal
operator on the local Morrey spaces, the reader may consult [3, 5, 6, 8]. For the studies
of weighted local Morrey spaces, the reader is referred to [39]. In addition, the Stein-
Weiss inequalities for the radial functions in the local Morrey spaces are obtained in
[28].

We generalized local Morrey spaces to the setting of variable exponents. The local
Morrey spaces with variable exponents are extensions of the local Morrey spaces and

Mathematics subject classification (2010): 42B20, 42B35, 46E30.
Keywords and phrases: Variable Lebesgue space, Local Morrey space, local block space, extrapola-

tion, local sharp maximal function, geometric maximal function, rough maximal function.

c© � � , Zagreb
Paper MIA-23-108

1509

http://dx.doi.org/10.7153/mia-2020-23-108


1510 T.-L. YEE, K. L. CHEUNG, K.-P. HO AND C. K. SUEN

Lebesgue spaces with variable exponents. The reader is referred to [12, 13, 14] for the
recent developments and applications of the Lebesgue spaces with variable exponents.

In this paper, we aim to obtain the extrapolation theory for the local Morrey spaces
with variable exponents. The extrapolation theory was originated from Rubio de Fran-
cia [42, 43, 44]. Recently, it has been generalized to the Lebesgue spaces with vari-
able exponent, Morrey spaces, mixed norm spaces, weighted Hardy spaces with vari-
able exponents, Herz spaces with variable exponents and ball-Banach function spaces
[10, 11, 20, 21, 23, 25, 26, 29, 30, 48]. One of the main results in this paper is the
extrapolation theory for the local Morrey spaces with variable exponents.

To obtain the extrapolation theory for the local Morrey spaces with variable expo-
nents, we need to identify the pre-dual spaces of the local Morrey spaces with variable
exponents. We study the local block spaces with variable exponents. We find that the
dual space of the local block space with variable exponent is the local Morrey space
with variable exponent. We also obtain the boundedness of the Hardy-Littlewood max-
imal operators on the local block spaces with variable exponents. With these results,
we extend the extrapolation theory to the local Morrey spaces with variable exponents.
As applications of this result, we obtain the mapping properties of the rough maximal
function, the local sharp maximal function and the geometric maximal operator on local
Morrey spaces with variable exponents.

This paper is organized as follows. The definitions of the Lebesgue spaces with
variable exponents and the local Morrey spaces with variable exponents are given in
Section 2. The local block spaces with variable exponents are introduced in Section
3. The duality and the boundedness of the Hardy-Littlewood maximal operators on
local block spaces with variable exponents are also obtained in this section. The main
results for local Morrey spaces with variable exponents on the mapping properties of the
rough maximal function, the local sharp maximal function, and the geometric maximal
operator are presented in Section 4.

2. Definitions

Let M and L1
loc denote the space of Lebesgue measurable functions and the space

of locally integrable functions on Rn , respectively.
For any x∈Rn and r > 0, define B(x,r) = {y∈Rn : |x−y|< r} and B = {B(x,r) :

x ∈ R
n, r > 0} .
We briefly recall the definition of Lebesgue spaces with variable exponents and

the class of globally log-Hölder continuous functions in the following.

DEFINITION 1. Let p(·) : Rn → [1,∞] be a Lebesgue measurable function. The
Lebesgue space with variable exponent Lp(·) consists of all Lebesgue measurable func-
tions f : Rn → C satisfying

‖ f‖Lp(·) = inf
{

λ > 0 : ρp(·)( f/λ ) � 1
}

< ∞

where Rn
∞ = {x ∈ Rn : p(x) = ∞} and

ρp(·)( f ) =
∫

Rn\Rn
∞
| f (x)|p(x)dx+ esssup

Rn
∞

| f (x)|.
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We call p(x) the exponent function of Lp(·) .

In view of [14, Theorem 3.2.13], Lp(·) is a Banach function space. In view of the
definition of Banach function spaces, we have

χB ∈ Lp(·), ∀B ∈ B. (1)

For any Lebesgue measurable function p(x) : Rn → [1,∞] , define p− = essinfx∈Rn p(x)
and p+ = esssupx∈Rn p(x) .

The associate space of Lp(·) is given in [14, Theorem 3.2.13].

THEOREM 1. If 1 < p(x) < ∞ , then the associate space of Lp(·) is Lp′(·)(Rn)
where p′ satisfies 1

p(x) + 1
p′(x) = 1 .

We call p′(x) the conjugate function of p(x) . Whenever supx∈Rn p(x) < ∞ , the dual
space of Lp(·) is the associate space of Lp(·) , see [14, Theorem 3.4.6].

DEFINITION 2. Let p(·) : Rn → [1,∞] be a Lebesgue measurable function. We
write p(·) ∈ B if the Hardy-Littlewood maximal operator

M f (x) = sup
B�x

1
|B|
∫

B
| f (y)|dy

where the supremum is taken over all B ∈ B containing x , is bounded on Lp(·) . We
write p(·) ∈ B′ if p′(·) ∈ B .

The following gives the conditions on the exponent functions of Lp(·) that guaran-
tee the boundedness of the Hardy-Littlewood maximal operator on Lp(·) .

DEFINITION 3. A continuous function g on R
n is locally log-Hölder continuous

if there exists clog > 0 such that

|g(x)−g(y)|� clog

log(e+1/|x− y|), ∀x,y ∈ R
n. (2)

We denote the class of locally log-Hölder continuous function by Clog
loc (R

n) .
Furthermore, a continuous function is globally log-Hölder continuous if g∈Clog

loc (R
n)

and there exists g∞ ∈ R so that

|g(x)−g∞| � clog

log(e+ |x|) , ∀x ∈ R
n. (3)

The class of globally log-Hölder continuous function is denoted by Clog(Rn) .

Whenever p(·) ∈ Clog(Rn) , the Hardy-Littlewood maximal operator is bounded
on Lp(·) .

THEOREM 2. If p(·) ∈Clog(Rn) and 1 < p− , then p(·) ∈ B .
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The reader is referred to [10, 13, 40] and [14, Theorem 4.3.8] for the proof of the
preceding theorem.

We now give the definition of local Morrey spaces with variable exponents.

DEFINITION 4. Let p(·) : Rn → (1,∞) and u : (0,∞)→ (0,∞) be Lebesgue mea-

surable functions. The local Morrey space with variable exponent LMp(·)
u consists of

all f ∈ M satisfying

‖ f‖
LM

p(·)
u

= sup
r>0

1
u(r)

‖χB(0,r) f‖Lp(·) < ∞.

When p(·) = p , 1 � p < ∞ , the local Morrey space with variable exponent becomes
the local Morrey space LMp

u . The local Morrey space with variable exponent is also a
generalization of the generalized Morrey spaces in [36]. For the studies of local Morrey
spaces, the reader is referred to [3, 5, 6, 8, 17].

We have a brief discussion on the conditions satisfied by u so that LMp(·)
u is non-

trivial. For any f ∈ LMp(·)
u , we have ‖χB(0,r) f‖Lp(·) � ‖ f‖

LMp(·)
u

u(r) , ∀r > 0.

If infr�a u(r) = 0 for all a > 0, then limr→∞ ‖χB(0,r) f‖Lp(·) = 0, that is, f = 0 a.e.
Thus, we can assume that infr�a u(r) > 0 for some a > 0. Let

U(r) = inf
s�r

u(s), r > 0.

For any f ∈ LMp(·)
U ,

‖χB(0,r) f‖Lp(·) � ‖ f‖
LMp(·)

U
U(r) � ‖ f‖

LMp(·)
U

u(r), r > 0.

Thus, LMp(·)
U ↪→ LMp(·)

u .

For any f ∈ LMp(·)
u , we have

‖χB(0,r) f‖Lp(·) = inf
s�r

‖χB(0,s) f‖Lp(·)

� ‖ f‖
LMp(·)

u
inf
s�r

u(s) = ‖ f‖
LMp(·)

u
U(r).

That is, LMp(·)
u ↪→ LMp(·)

U and, hence, LMp(·)
U = LMp(·)

u . Therefore, we can assume that
u is increasing in the rest of this paper. The reader is also referred to [37, p.446], [45,
Proposition 3.16] and [46, (1.2)] for more results on the conditions imposed on u so

that LMp(·)
u is nontrivial.

We now define the class of weight functions used in this paper.

DEFINITION 5. Let q0 ∈ (0,∞), p(·) : Rn → [1,∞] . We say that a Lebesgue mea-
surable function, u(r) : (0,∞) → (0,∞) , belongs to LW

q0
p(·) if there exists a constant
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C > 0 such that for any r > 0, u fulfills

C � u(r), ∀r � 1, (4)

‖χB(0,r)‖Lp(·) � Cu(r), ∀r < 1, (5)
∞

∑
j=0

‖χB(0,r)‖Lp(·)/q0

‖χB(0,2 j+1r)‖Lp(·)/q0

(u(2 j+1r))q0 < C(u(r))q0 (6)

for all r > 0.

When q0 = 1, we write LWp(·) = LW
1
p(·) .

Roughly speaking, (4)-(5) are used to guarantee that LMp(·)
u is non-trivial and (6)

is related to the boundedness of the Hardy-Littlewood maximal operator on the pre-dual

of LMp(·)
u . There are some equivalent relations between LW

q0
p(·) with different q0 , the

reader is referred to [38, Proposition 2.7] for details.

We now use (4)-(5) to show that χB ∈ LMp(·)
u , B ∈ B .

PROPOSITION 1. Let p(·) : Rn → [1,∞] . If u is increasing and satisfies (4) and

(5), then for any B ∈ B , χB ∈ LMp(·)
u .

Proof. It suffices to show that for any s > 0, χB(0,s) ∈ LMp(·)
u . Let B = B(0,r) ,

r > 0. When r � 1, (4) assures that

1
u(r)

‖χB(0,r)χB(0,s)‖Lp(·) � 1
u(r)

‖χB(0,s)‖Lp(·) � C‖χB(0,s)‖Lp(·) (7)

for some C > 0. When r < 1, (5) guarantees that

1
u(r)

‖χB(0,s)χB(0,r)‖Lp(·) � 1
u(r)

‖χB(0,r)‖Lp(·) � C. (8)

Consequently, (7) and (8) yield

‖χB(0,s)‖LMp(·)
u

= sup
r>0

1
u(r)

‖χB(0,s)χB(0,r)‖Lp(·) < C+C‖χB(0,s)‖Lp(·) .

Therefore, (1) guarantees that χB ∈ LMp(·)
u .

The above proposition shows that LMp(·)
u is nontrivial whenever u satisfies (4) and

(5). We now go to show that LWp(·) �= /0 . We use the ideas from [22, 24] to obtain the
following results. For the corresponding results of Proposition 1 and the non-emptiness
of the class of weight functions for Morrey spaces built on Banach function space, the
reader is referred to [22, 24].

Let 0 � s < 1, p(·) ∈ Clog(Rn) and ws(r) = ‖χB(0,r)‖s
Lp(·) . According to [19,

Proposition 2.5 and Lemma 6.3], for any p > p+ , there is a constant C > 0 such that
for any r > 0 and j ∈ N ,

‖χB(0,r)‖Lp(·)

‖χB(0,2 jr)‖Lp(·)
� C

( |B(0,r)|
|B(0,2 jr)|

)1/p

=C
‖χB(0,r)‖Lp

‖χB(0,2 jr)‖Lp
. (9)
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For any p > p+ , (9) offers a constant C > 0 such that

∞

∑
j=0

‖χB(0,r)‖Lp(·)

‖χB(0,2 j+1r)‖Lp(·)

ws(2 j+1r)
ws(r)

=
∞

∑
j=0

(
‖χB(0,r)‖Lp(·)

‖χB(0,2 j+1r)‖Lp(·)

)1−s

� C
∞

∑
j=0

2− jn(1−s)/p � C. (10)

That is, ws fulfills (6) with q0 = 1.
In view of [14, Corollary 4.5.9], we obtain

‖χB(0,r)‖Lp(·) ≈
{
|B(0,r)| 1

p(0) , |B(0,r)| � 2n

|B(0,r)| 1
p∞ , |B(0,r)| � 1,

(11)

where p∞ = limx→∞ p(x) and the existence of this limit is guaranteed by the definition
of log-Hölder continuous functions.

Hence, (11) yields that when r � 1, we have

ws(r) = ‖χB(0,r)‖s
Lp(·) � C|B(0,r)| s

p+ > C

for some C > 0. Consequently, (4) is fulfilled.
In addition, (11) gives a constant K > 0 such that ‖χB(0,r)‖Lp(·) � K for all r < 1.

Hence, there exists a C > 0 such that

ws(r) = ‖χB(0,r)‖s
Lp(·) � C‖χB(0,r)‖Lp(·) , 0 < r < 1.

Therefore, (5) is fulfilled and ws ∈ LWLp(·) .

3. Pre-dual of local Morrey spaces with variable exponents

In this section, we study the local block space with variable exponents. We find
that this is a pre-dual of the local Morrey space with variable exponent. Furthermore,
the Hardy-Littlewood maximal operator is also bounded on the local block space with
variable exponent. For the studies on the predual of local Morrey spaces, the reader is
referred to [34, 49].

DEFINITION 6. Let p(·) : Rn → (0,∞) and u(r) : (0,∞) → (0,∞) be Lebesgue
measurable functions. A b ∈ M is a local (u,Lp(·))-block if it is supported in B(0,r) ,
r > 0, and

‖b‖Lp(·) � 1
u(r)

. (12)

Define LBu,p(·) by

LBu,p(·) =
{ ∞

∑
k=1

λkbk :
∞

∑
k=1

|λk| < ∞ and bk is a local (u,Lp(·))-block

}
. (13)
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The space LBu,p(·) is endowed with the norm

‖ f‖LBu,p(·) = inf

{ ∞

∑
k=1

|λk| such that f =
∞

∑
k=1

λkbk a.e.

}
. (14)

We call LBu,p(·) the local block space with variable exponent.

We now have the first main result of this paper. The following result shows that

LBu,p(·) is a pre-dual of the local Morrey space. It also guarantees that LMp(·)
u is a

Banach space.

THEOREM 3. Let p(·) : Rn → (1,∞) and u : (0,∞) → (0,∞) be Lebesgue mea-
surable functions. We have

LB∗
u,p(·) = LMp′(·)

u

where LB∗
u,p(·) denotes the dual space of LBu,p(·) .

Proof. Let b be a local (u,Lp(·))-block supported in B(0,r) . For any f ∈ LMp′(·)
u ,

the Hölder inequality for Lp(·) yields∫
Rn

| f (x)b(x)|dx � C‖χB(0,r) f‖Lp′(·)‖χB(0,r)b‖Lp(·)

� C
1

u(r)
‖χB(0,r) f‖Lp′(·)

for some C > 0.
Consequently, for any g = ∑k∈N λkbk ∈ LBu,p(·) , we obtain

∫
Rn

| f (x)g(x)|dx �
∞

∑
k=1

|λk|
∫

Rn
| f (x)bk(x)|dx � C‖g‖LBu,p(·)‖ f‖

LMp′(·)
u

(15)

for some C > 0. Thus, LMp′(·)
u ↪→ LB∗

u,p(·) .
It remains prove the reverse embedding. For any r > 0 and L ∈ LB∗

u,p(·) , define

X = {gχB(0,r) : g ∈ Lp(·)} . Obviously, X is a subspace of Lp(·) . Define the linear
functional l : X → C by

l(h) = L(χB(0,r)g)

where h = χB(0,r)g ∈ X and g ∈ Lp(·) .
For any r > 0,

G =
1

‖gχB(0,r)‖Lp(·)u(r)
gχB(0,r)

is a local (u,Lp(·))-block. According to (14), for any local (u,Lp(·))-block b , we have

‖b‖LBu,p(·) � 1. (16)
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Therefore, (16) yields ‖G‖LBu,p(·) � 1. That is,

‖gχB(0,r)‖LBu,p(·) � ‖gχB(0,r)‖Lp(·)u(r). (17)

In view of (17) and L ∈ LB∗
u,p(·) , we find that

|l(h)| = |L(gχB(0,r))| � C‖gχB(0,r)‖LBu,p(·)

� K‖gχB(0,r)‖Lp(·) = K‖h‖Lp(·)

for some K > 0. Therefore, l is bounded on X . The Hahn-Banach theorem assures
that l can be extended to be a member of (Lp(·))∗ . The duality (Lp(·))∗ = Lp′(·) yields
a fr ∈ Lp′(·) such that

l(g) =
∫

Rn
fr(x)g(x)dx, ∀g ∈ Lp(·)

and we can assume that supp fr ⊆ B(0,r) .
Let r,s > 0. For any B ∈ B with B ⊆ B(0,r)∩B(0,s) ,∫

B
fr(x)dx = l(χB) =

∫
B

fs(x)dx.

That is, fr = fs almost everywhere on B(0,r)∩B(0,s) . Therefore, there is an unique
Lebesgue measurable function f such that f (x) = fr(x) on B(0,r) for all r .

Next, we show that f ∈ LMp′(·)
u . For any h ∈ Lp(·) and B(0,r) ,

H =
χB(0,r)h

‖χB(0,r)h‖Lp(·)u(r)
(18)

is a local (u,Lp(·))-block. In view of (16),

‖H‖LBu,p(·) � 1.

That is, ‖χB(0,r)h‖LBu,p(·) � ‖χB(0,r)h‖Lp(·)u(r) .

Since the function given in (18) is a local (u,Lp(·))-block,

1
u(r)

‖χB(x0,r) f‖Lp′(·) =
1

u(r)
sup

‖h‖
Lp(·)=1

∣∣∣∣
∫

B(0,r)
f (x)h(x)dx

∣∣∣∣
� sup

‖h‖
Lp(·)=1

∣∣∣∣
∫

B(0,r)
fr(x)

χB(0,r)(x)h(x)
u(r)

dx

∣∣∣∣
� ‖L‖LB∗

u,p(·) sup
‖h‖

Lp(·)=1

∥∥∥∥hχB(0,r)

u(r)

∥∥∥∥
LBu,p(·)

� ‖L‖LB∗
u,p(·) .

The functionals Lf (g)=
∫
Rn f (x)g(x)dx and L are identical on the set of local (u,Lp(·))-

blocks and according to Definition 6, the set of finite linear combinations of local

(u,Lp(·))-blocks is dense in LBu,p(·) , therefore Lf = L and LB∗
u,p(·) ↪→ LMp′(·)

u .
The following proposition is used to show the boundedness of the Hardy-Littlewood

maximal operator on LBu,p(·) .
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PROPOSITION 2. Let p(·) : Rn → (1,∞) , u : (0,∞) → (0,∞) be Lebesgue mea-
surable functions and f ∈ LBu,p(·) . If g ∈ M satisfying |g| � | f | , then g ∈ LBu,p(·) .

Proof. As f ∈LBu,p(·) , for any ε > 0, we have a family of local (u,Lp(·))-blocks
{bi}∞

i=1 and a family of scalars {λi}∞
i=1 such that

f =
∞

∑
i=1

λibi

and ∑∞
i=1 |λi| � (1+ ε)‖ f‖LBu,p(·) . We find that g = ∑∞

i=1 λici where

ci(x) =

⎧⎨
⎩

g(x)
f (x)

bi(x), f (x) �= 0,

0, f (x) = 0.

As |g| � | f | , {ci}∞
i=1 are local (u,Lp(·))-blocks. Thus, g ∈ LBu,p(·) . As ε is arbitrary,

we also establish ‖g‖LBu,p(·) � ‖ f‖LBu,p(·) .

The next theorem gives the conditions for which LBu,p(·) ⊂ L1
loc and LBu,p(·) is

a Banach space. We use the ideas from the proof of [27, Theorem 3.1] to establish the
following result.

THEOREM 4. Let p(·) : R
n → (1,∞) and u : (0,∞) → (0,∞) be Lebesgue mea-

surable functions. If there exists a constant C > 0 such that for any r > 0 , u fulfills

C � u(r), ∀r � 1, (19)

‖χB(0,r)‖Lp′(·) � Cu(r), ∀r < 1, (20)

then LBu,p(·) ⊂ L1
loc and LBu,p(·) is a Banach space.

Proof. According to Proposition 1, χB ∈ LMp′(·)
u , ∀B∈ B . Theorem 3 assures that

χB ∈ LB∗
u,p(·) . Therefore, for any f ∈ LBu,p(·) , (15) gives

∫
B
| f (x)|dx � C‖χB‖

LM
p′(·)
u

‖ f‖LBu,p(·) . (21)

Hence, LBu,p(·) ↪→ L1
loc .

Next, we show that LBu,p(·) is a Banach space. Let fi ∈ LBu,p(·) , where i ∈ N ,
satisfying

∞

∑
i=1

‖ fi‖LBu,p(·) < ∞.

In view of (21), for any B ∈ B ,

∫
B

∞

∑
i=1

| fi(x)|dx � C‖χB‖
LM

p′(·)
u

(
∞

∑
i=1

‖ fi‖LBu,p(·)

)
.
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Therefore, f = ∑∞
i=1 fi is a well defined Lebesgue measurable function and f ∈ L1

loc .
We now show that f = ∑∞

i=1 fi belongs to LBu,p(·) . For any ε > 0, there exists a
N ∈ N such that for any n > N ,

∞

∑
i=n

‖ fi‖LBu,p(·) < ε. (22)

According to the definition of LBu,p(·) , for any ε > 0,

fi =
∞

∑
k=1

λk,ibk,i

where bk,i , i,k ∈ N are local (u,Lp(·))-blocks and

∞

∑
k=1

|λk,i| � (1+ ε)‖ fi‖LBu,p(·) .

Moreover, for any 1 � i � n , there exists a Ni ∈ N such that∥∥∥∥∥ fi −
Ni

∑
k=1

λk,ibk,i

∥∥∥∥∥
LBu,p(·)

�
∞

∑
k=Ni+1

|λk,i| < 2−iε. (23)

Therefore, for any B ∈ B ,

∫
B

∣∣∣∣∣ f (x)−
N

∑
i=1

Ni

∑
k=1

λk,ibk,i(x)

∣∣∣∣∣dx

�
∫

B

∣∣∣∣∣ f (x)−
N

∑
i=1

fi(x)

∣∣∣∣∣dx+
∫
B

∣∣∣∣∣
N

∑
i=1

fi(x)−
N

∑
i=1

Ni

∑
k=1

λk,ibk,i(x)

∣∣∣∣∣dx

�
∫

B

∞

∑
i=N+1

| fi(x)|dx+
N

∑
i=1

∫
B

∣∣∣∣∣ fi(x)−
Ni

∑
k=1

λk,ibk,i(x)

∣∣∣∣∣dx.

By using (21), (22) and (23),

∫
B

∣∣∣∣∣ f (x)−
N

∑
i=1

Ni

∑
k=1

λk,ibk,i(x)

∣∣∣∣∣dx

� C‖χB‖
LM

p′(·)
u

⎛
⎝ ∞

∑
i=N+1

‖ fi‖LBu,p(·) +
N

∑
i=1

∥∥∥∥∥ fi −
Ni

∑
k=1

λk,ibk,i

∥∥∥∥∥
LBu,p(·)

⎞
⎠

� C‖χB‖
LM

p′(·)
u

(
ε +

N

∑
i=1

2−iε

)
< 2C‖χB‖

LM
p′(·)
u

ε.

Consequently,
∞

∑
i=1

∞

∑
k=1

λk,ibk,i
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converges to f in L1
loc . Hence, ∑∞

i=1 ∑∞
k=1 λk,ibk,i converges to f locally in measure.

Therefore, a subsequence of {∑N
i=1 ∑M

k=1 λk,ibk,i}N,M converges to f a.e. Furthermore,
λk,i , where i,k ∈ N , satisfies

∞

∑
i=1

∞

∑
k=1

|λk,i| � (1+ ε)
∞

∑
i=1

‖ fi‖LBu,p(·) < ∞.

That is, ∑∞
i=1 fi converges to f in LBu,p(·) . Since ε > 0 is arbitrary,

∥∥∥ ∞

∑
i=1

fi
∥∥∥

LBu,p(·)
�

∞

∑
i=1

‖ fi‖LBu,p(·) .

Therefore, LBu,p(·) is a Banach space.
The following result presents the boundedness of the Hardy-Littlewood maximal

operator on LBu,p(·) . It is used to obtain the extrapolation theory for LMp(·)
u . We use

the ideas from the proof of [9, Theorem 3.1] to establish the following theorem.

THEOREM 5. Let p(·) : Rn → (1,∞) and u : (0,∞) → (0,∞) be Lebesgue mea-
surable functions. If p(·) ∈ B and u ∈ LWp′(·) , then the Hardy-Littlewood maximal
operator M is bounded on LBu,p(·) .

Proof. In view of Theorem 4, we have LBu,p(·) ⊂ L1
loc , therefore the Hardy-

Littlewood maximal operator is well defined on LBu,p(·) .
Let b be a local (u,Lp(·))-block with support B(0,r) , r > 0. For any k ∈ N , write

Bk = B(0,2kr) . Define mk = χBk+1\Bk
Mb , k ∈ N\{0} and m0 = χB(0,2r) Mb . We have

suppmk ⊆ Bk+1\Bk and M(b) = ∑∞
k=0 mk .

As p(·) ∈ B , we obtain

‖m0‖Lp(·) � C‖Mb‖Lp(·) � C
u(r)

� C
u(2r)

for some constant C > 0 independent r . We have the last inequality because (6) as-

sures that
‖χB(0,r)‖Lp(·)

‖χB(0,2r)‖Lp(·)
u(2r) � Cu(r) and [24, (2.2)] guarantees that ‖χB(0,2r)‖Lp(·) �

C‖χB(0,r)‖Lp(·) for some C > 0 independent of r > 0.

Consequently, m0 is a constant-multiple of a local (u,Lp(·))-block.
The Hölder inequality for Lp(·) yields

mk = χBk+1\Bk
Mb �

χBk+1\Bk

2knrn

∫
B(0,r)

|b(x)|dx

� CχBk+1\Bk

1
2knrn ‖b‖Lp(·)‖χB(0,r)‖Lp′(·)

for some C > 0 independent of k .
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[9, Proposition 3.1] asserts that

‖mk‖Lp(·) � C
‖χBk+1\Bk

‖Lp(·)

2knrn ‖b‖Lp(·)‖χB(0,r)‖Lp′(·)

� C
‖χB(0,r)‖Lp′(·)

‖χBk+1‖Lp′(·)

u(2k+1r)
u(r)

1
u(2k+1r)

.

Define mk = σkbk where

σk =
‖χB(0,r)‖Lp′(·)

‖χBk+1‖Lp′(·)

u(2k+1r)
u(r)

.

We find that bk is a constant-multiple of a local (u,Lp(·))-block and this constant does
not depend on k . As u ∈ LWp′(·) , we have

∞

∑
j=0

‖χB(0,r)‖Lp′(·)

‖χB(0,2 j+1r)‖Lp′(·)
u(2 j+1r) � Cu(r).

Consequently, we find that ∑∞
k=0 σk < C for some C > 0. Therefore, Mb ∈

LBu,p(·) . Furthermore, there exists a constant C0 > 0 so that for any local (u,Lp(·))-
block b ,

‖Mb‖LBu,p(·) < C0.

We now consider f ∈LBu,p(·) . The definition of LBu,p(·) yields a family of local

(u,Lp(·))-blocks {ck}∞
k=1 and a sequence Λ = {λk}∞

k=1 ∈ l1 such that f = ∑∞
k=1 λkck

with ‖Λ‖l1 � 2‖ f‖LBu,p(·) . We have

∥∥∥∥ ∞

∑
k=1

λk Mck

∥∥∥∥
LBu,p(·)

�
∞

∑
k=1

|λk|‖Mck‖LBu,p(·)

� C0

∞

∑
k=1

|λk| � 2C0‖ f‖LBu,p(·) .

Since M f � ∑∞
k=1 |λk|Mck , Proposition 2 guarantees that M f ∈ LBu,p(·) and

‖M f‖LBu,p(·) � C‖ f‖LBu,p(·) for some C > 0.

4. Main results

In this section, we present the mapping properties of the local sharp maximal func-

tion, the geometric maximal function and the rough maximal function on LMp(·)
u .

In order to establish the main results, we first extend the extrapolation theory to lo-
cal Morrey spaces with variable exponents, we recall the definition of the Muckenhoupt
classes of weight functions.
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DEFINITION 7. For 1 < p < ∞ , a locally integrable function ω : Rn → [0,∞) is
said to be an Ap weight if

[ω ]Ap = sup
B∈B

(
1
|B|
∫

B
ω(x)dx

)(
1
|B|
∫

B
ω(x)−

p′
p dx

) p
p′

< ∞

where p′ = p
p−1 . A locally integrable function ω : Rn → [0,∞) is said to be an A1

weight if
1
|B|
∫

B
ω(y)dy � Cω(x), a.e.x ∈ B

for some constants C > 0. The infimum of all such C is denoted by [ω ]A1 . We define
A∞ = ∪p�1Ap .

Notice that we have Ap ⊆ Aq whenever 1 � p � q .
By F we mean a family of pairs ( f ,g) of non-negative, Lebesgue measurable

functions that are not identically zero. Given such a family F , p > 0 and a weight
ω ∈ Aq , if we say that

∫
Rn

f (x)pω(x)dx � C
∫

Rn
g(x)pω(x)dx, ( f ,g) ∈ F ,

then we mean that this inequality holds for all pairs ( f ,g) ∈ F such that the left-hand
side is finite, and that the constant C depends only on p and [ω ]Ap .

The extrapolation theory for local Morrey spaces with variable exponents is given
in the following theorem.

THEOREM 6. Let 0 < p0 < ∞ and p(·) : R
n → (0,∞) be a Lebesgue measurable

function. Let f ,g ∈ M (Rn) . Suppose that for every ω ∈ A1 , we have∫
Rn

f (x)p0ω(x)dx � C
∫

Rn
g(x)p0ω(x)dx, ( f ,g) ∈ F (24)

where C is independent of f , g and p0 .
Suppose that there exists q0 satisfying q0 � min(p0, p−) < ∞ such that p(·)/q0 ∈

B′ and u ∈ LW
q0
p(·) is increasing.

Then
‖ f‖

LM
p(·)
u

� C‖g‖
LM

p(·)
u

, ( f ,g) ∈ F . (25)

Moreover, for every q, 1 < q < ∞ , and ( fi,gi) ∈ F , i ∈ N , satisfying (24), we
have ∥∥∥(∑

i∈N

| fi|q
)1/q∥∥∥

LM
p(·)
u

� C
∥∥∥(∑

i∈N

|gi|q
)1/q∥∥∥

LM
p(·)
u

(26)

for some C > 0 .

Proof. Without loss of generality, we assume that f is non-negative. We follow
the Rubio de Francia iteration algorithm presented in [11].
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We only give the proof of (25) as the proof of (26) follows similarly [11, Corollary
3.12].

As u∈LW
q0
p(·) , we have uq0 ∈LWp(·)/q0

, Theorem5 guarantees that M is bounded
on LBuq0 ,(p(·)/q0)′ . For any nonnegative function h , define

Rh(x) =
∞

∑
k=0

Mk h(x)
2k‖Mk ‖LBuq0 ,(p(·)/q0)′

.

Since M : LBuq0 ,(p(·)/q0)′ → LBuq0 ,(p(·)/q0)′ is bounded, ‖M‖LBuq0 ,(p(·)/q0)′ is well de-

fined.
The operator R fulfills

h(x) � Rh(x), (27)

‖Rh‖LBuq0 ,(p(·)/q0)′ � 2‖h‖LBuq0 ,(p(·)/q0)′ , (28)

[Rh]A1 � 2‖M‖LBuq0 ,(p(·)/q0)′ . (29)

The proof of (27) is straight-forward. Since

M(Rh) �
∞

∑
k=0

Mk+1 h

2k‖Mk ‖LBuq0 ,(p(·)/q0)′

� 2‖M‖LBuq0 ,(p(·)/q0)′

∞

∑
k=1

Mk h

2k‖Mk ‖LBuq0 ,(p(·)/q0)′

� 2‖M‖LBuq0 ,(p(·)/q0)′Rh

the properties (28) and (29) are consequences of Theorem 5 and the definition of A1 .
By applying the standard extrapolation for Lebesgue spaces [11, Corollary 3.14],

for any ω ∈ A1 , we obtain∫
Rn

f (x)q0ω(x)dx � C
∫

Rn
g(x)q0ω(x)dx. (30)

Lemma 3 guarantees

‖ f‖q0

LMp(·)
u

= ‖ f q0‖
LM

p(·)/q0
uq0

� C sup

{∫
Rn

| f (x)q0h(x)|dx : ‖h‖LBuq0 ,(p(·)/q0)′ � 1,h � 0

}
(31)

for some C > 0.
(15) and (27) yield∫

Rn
f (x)q0h(x)dx � C

∫
Rn

f (x)q0Rh(x)dx

� C‖ f q0‖
LM

p(·)/q0
uq0

‖h‖LBuq0 ,(p(·)/q0)′ < ∞.
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Moreover, (29) asserts that Rh ∈ A1 . By applying ω = Rh on (30) and using
(27), we find that∫

Rn
f (x)q0h(x)dx �

∫
Rn

f (x)q0Rh(x)dx � C
∫

Rn
g(x)q0Rh(x)dx.

Consequently, (15) and (28) give∫
Rn

f (x)q0h(x)dx � C‖gq0‖
LM

p(·)/q0
uq0

‖Rh‖LBuq0 ,(p(·)/q0)′

� C‖g‖
LMp(·)

u
‖h‖LBuq0 ,(p(·)/q0)′ � C‖g‖q0

LM
p(·)
u

. (32)

By taking supremum over those h ∈ LBuq0 ,(p(·)/q0)′ , Theorem 3, (31) and (32) yield
(25).

We now present the applications of Theorem 6 to the Fefferman-Stein inequalities,
the John-Nirenberg inequalities and the boundedness of geometric maximal operators
on local Morrey spaces with variable exponents.

We first consider the sharp maximal function. The sharp maximal function for
f ∈ L1

loc is defined as

M� f (x) = sup
x�B

1
|B|
∫

B
| f (y)− fB|dy

where the supremum is taken over all B ∈ B containing x and fB = 1
|B|
∫
B f (y)dy .

Let L∞
c denote the set of bounded function with compact support. The Fefferman-

Stein inequality [15] states that for any 0 < p < ∞ and ω ∈ A∞ , we have∫
Rn

(M f (x))pω(x)dx � C
∫

Rn
(M� f (x))pω(x)dx, f ∈ L∞

c . (33)

The following Fefferman-Stein inequalities for LMp(·)
u follow from Theorem 6

and the fact that the Hardy-Littlewood maximal operator is bounded on Lp(·) whenever
p(·) ∈ B .

THEOREM 7. Let 1 < r < ∞ , p(·) ∈ B and u : (0,∞) → (0,∞) be a Lebesgue
measurable function. If u ∈ LW

p−
p(·) is increasing, then there is a constant C > 0 such

that for any { fi}∞
i=1 ⊂ L∞

c , we have

∥∥∥( ∞

∑
i=1

(M fi)r
)1/r∥∥∥

LM
p(·)
u

� C
∥∥∥( ∞

∑
i=1

(M� fi)r
)1/r∥∥∥

LM
p(·)
u

. (34)

Notice that L∞
c is not dense in LMp(·)

u in general. For instance, L∞
c is not dense in

the local Morrey space when p(·) = p , 1 < p < ∞ , is a constant function, this result
follows from the fact that the power function |x|−n/p belongs to the local Morrey space
[33, p.1725].

For the above result for Morrey space, it suffices to show that fi is a Morrey
function, see [45].



1524 T.-L. YEE, K. L. CHEUNG, K.-P. HO AND C. K. SUEN

The studies of the sharp operator have been extended to the local sharp opera-
tor by Strömberg in [51]. To define the local sharp maximal operator, we recall the
notation of the decreasing rearrangement, the median value and the local mean oscilla-
tion of Lebesgue measurable functions. For any Lebesgue measurable function f , the
decreasing rearrangement of f is defined as

f ∗(t) = inf{λ > 0 : |{x ∈ R
n : | f (x)| > λ}| < t}, t ∈ (0,∞).

For any cube Q , let mf (Q) be the median value of f over Q . That is, it satisfies

|{x ∈ Q : f (x) > mf (Q)}| � |Q|/2,

|{x ∈ Q : f (x) < mf (Q)}| � |Q|/2.

Notice that the median value of f over Q is not necessary unique.
For any γ ∈ (0,1) and cube Q , the local mean oscillation of f is defined by

ωγ ( f ,Q) = (( f −mf (Q))χQ)∗(γ|Q|).
For any Lebesgue measurable function f , the local sharp maximal operator is

defined as
M�

γ f (x) = sup
B�x

ωγ( f ,Q)

where the supremum is taken over all B ∈ B containing x .
The main result in [51] for the local sharp maximal operator is its boundedness on

Lebesgue space.

THEOREM 8. Let p > 0 and γ ∈ (0, 1
2 ) . We have a constant C > 0 such that

‖ f‖Lp � C‖M�
γ f‖Lp .

The weighted version of Theorem 8 is given in [31, Theorem 4.6].

THEOREM 9. Let ω ∈ A∞ and p > 0 . There exist γn,C > 0 such that for any
γ ∈ (0,γn) and Lebesgue measurable function f satisfying f ∗(+∞) = 0 , we have∫

Rn
| f (x)|pω(x)dx � C

∫
Rn

(M�
γ f (x))pω(x)dx.

Since A1 ⊂ A∞ , Theorems 6 and 9 give the following result.

THEOREM 10. Let 1 < r < ∞ , p(·) ∈ B and u : (0,∞) → (0,∞) be a Lebesgue
measurable function. If u ∈ LW

p−
p(·) is increasing, then there is a constant C > 0 such

that for any γ ∈ (0,γn) and Lebesgue measurable functions { fi}∞
i=1 ⊂ L∞

c satisfying
f ∗i (+∞) = 0 , we have

∥∥∥( ∞

∑
i=1

| fi|r
)1/r∥∥∥

LMp(·)
u

� C
∥∥∥( ∞

∑
i=1

(M�
γ fi)r

)1/r∥∥∥
LMp(·)

u
. (35)
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For any f ∈ M , the geometrical maximal operator is defined as

M0 f (x) = sup
B�x

exp

(
1
|B|
∫

B
log | f (y)|dy

)

where the supremum is taken over all balls B ∈ B containing x . Notice that we have
M0 | f | = M0 f .

We present the weighted norm inequality for the geometrical maximal operator.
According to [50], we have the following weighted norm inequality for M0 .

THEOREM 11. Let 0 < p < ∞ . We have∫
Rn

(M0 f (x))pω(x) � C
∫

Rn
| f (x)|pω(x)dx, ∀ f ∈ Lp(Rn) (36)

for some C > 0 if and only if ω ∈ A∞ .

We are now ready to establish the boundedness of the geometric maximal operator
on local Morrey spaces with variable exponents.

THEOREM 12. Let p(·) ∈ B and u : (0,∞) → (0,∞) be a Lebesgue measurable
function. If u ∈ LW

p−
p(·) is increasing, then there is a constant C > 0 such that for any

f ∈ LMp(·)
u , we have

‖M0 f‖
LM

p(·)
u

� C‖ f‖
LM

p(·)
u

. (37)

Proof. For any f ∈ LMp(·)
u and N ∈ N , write fN = f χ{x∈B(0,N):| f |�N} . For any

ω ∈ A1 , Theorem 11 yields∫
Rn

(M0 fN(x))pω(x) � C
∫

Rn
| fN(x)|pω(x)dx < ∞.

Theorem 6 gives
‖M0 fN‖LM

p(·)
u

� C‖ fN‖LM
p(·)
u

. (38)

It is easy to see that fN ↑ f and M0 fN ↑M0 f as N →∞ . Consequently, ‖ fN‖LMp(·)
u

↑
‖ f‖

LM
p(·)
u

and ‖M0 fN‖LM
p(·)
u

↑ ‖M0 f‖
LM

p(·)
u

. Thus, by letting N → ∞ in (38), we ob-

tain (37).
Finally, we apply Theorem 6 to the rough maximal function. Let Ω be a Lebesgue

measurable function satisfying

Ω(λx) = Ω(x), λ > 0, x ∈ R
n. (39)

Any function satisfying (39) will be identified with a function defined over Sn−1 where
Sn−1 is the unit sphere on Rn .

For any f ∈ L1
loc , the rough maximal function is defined as

MΩ f (x) = sup
r>0

1
rn

∫
|y|�r

|Ω(y)|| f (x− y)|dy, x ∈ R
n,
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see [32, (2.3.1)].
In view of [32, Theorem 2.3.8 (i)], we have the following weighted norm inequal-

ities for the rough maximal function.

THEOREM 13. Let 1 < p,q < ∞ and Ω ∈ Lq(Sn−1) satisfy (39). If q′ � p < ∞
and ω ∈ Ap/q′ , then there is a constant C > 0 such that

∫
Rn

(MΩ f (x))pω(x) � C
∫

Rn
| f (x)|pω(x)dx, ∀ f ∈ Lp(Rn).

Theorems 6 and 13 yield the boundedness of the rough maximal function on the
local Morrey spaces with variable exponents.

THEOREM 14. Let 1 < q < ∞ , p(·) ∈ B and u : (0,∞) → (0,∞) be a Lebesgue
measurable function. If Ω ∈ Lq(Sn−1) satisfies (39) and u ∈ LW

q0
p(·) is increasing

where q0 = min(q′, p−) , then there is a constant C > 0 such that for any f ∈ LMp(·)
u ,

we have
‖MΩ f‖

LM
p(·)
u

� C‖ f‖
LM

p(·)
u

.

Since the proof of the preceding theorem is similar to the proof of Theorem 12,
for brevity, we omit the proof and leave it to the reader.
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[13] L. DIENING,Maximal functions on generalized Lebesgue spaces Lp(·) , Math. Inequal. Appl. 7 (2004),

245–253.
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