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MAJORIZATION AND REFINEMENTS OF

HERMITE–HADAMARD INEQUALITY

MAREK NIEZGODA

(Communicated by I. Perić)

Abstract. In this note we use majorization methods to derive and analyze refinements of Hermite-
Hadamard inequality for a convex function.

1. Introduction and preliminaries

In this expository section we recall some important properties of convex functions.
We begin with the following Hermite-Hadamard inequality (1).

THEOREM A. [2, p. 137] Let f : I →R be a convex function on an interval I ⊂R ,
a,b ∈ I with a < b. Then the following inequality holds

f

(
a+b

2

)
� 1

b−a

b∫
a

f (x)dx � f (a)+ f (b)
2

. (1)

Hammer-Bullen’s inequality (2) provides a refinement of the right-hand side of
inequality (1).

THEOREM B. [4, 7] Assume that f : I → R is a convex function on an interval
I ⊂ R , a,b ∈ I with a < b. Then the following inequality holds:

1
b−a

b∫
a

f (x)dx � 1
4

f (a)+
1
2

f

(
a+b

2

)
+

1
4

f (b) � f (a)+ f (b)
2

. (2)

A generalization of (2) is due to Farissi [6].
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THEOREM C. [6] Assume that f : I → R is a convex function on an interval
I ⊂ R , a,b ∈ I with a < b. Then for all μ ∈ [0,1] the following inequality holds:

f

(
a+b

2

)
� l(μ) � 1

b−a

b∫
a

f (x)dx � L(μ) � f (a)+ f (b)
2

, (3)

where

l(μ) := μ f

(
μb+(2− μ)a

2

)
+(1− μ) f

(
(1+ μ)b+(1− μ)a

2

)
,

L(μ) :=
1
2
[ f (μb+(1− μ)a)+ μ f (a)+ (1−μ) f (b)].

The above inequalities provide some bounds for the integral mean 1
b−a

b∫
a

f (x)dx

by using the sums of 1-3 components. A related results with n -components is due to
Dragomir [5, Theorem 4 and Corollary 4].

In the present note, we continue this approach by employing the majorization
theory [10].

To give a motivation for our studies, remind that the Riemann integral of a function
can be viewed as a result of a limiting process for the corresponding finite Riemann
sums of some values of a function. In consequence, proving integral inequalities can be
reduced to the problem of comparing two sequences of such finite sums.

Some class of important inequalities for convex functions is closely related to the
notion of majorization preorder on R

m .

DEFINITION 1. ([10, p. 8]) Let x = (x1,x2, . . . ,xm) and y = (y1,y2, . . . ,ym) be
two given sequences in R

m . We say that x majorizes y (written as y ≺ x ), if the
sum of j largest entries of y does not exceed the sum of j largest entries of x for all
j = 1,2, . . . ,m with equality for j = m .

That is, y ≺ x iff

j

∑
i=1

y[i] �
j

∑
i=1

x[i] for j = 1,2, . . . ,m , and
m

∑
i=1

yi =
m

∑
i=1

xi,

where the symbols x[i] and y[i] stand for the i th largest entry of x and y , respectively.

DEFINITION 2. An m× k real matrix S = (si j) is said to be column stochastic if

si j � 0 for i = 1,2, . . . ,m , j = 1,2, . . . ,k , and
m
∑
i=1

si j = 1 for j = 1,2, . . . ,k .

An m×m real matrix S = (si j) is said to be doubly stochastic if si j � 0 for

i = 1,2, . . . ,m , j = 1,2, . . . ,m , and
m
∑
j=1

si j = 1 for i = 1,2, . . . ,m , and
m
∑
i=1

si j = 1 for

j = 1,2, . . . ,m .
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It is well known that y ≺ x iff there exists an m×m doubly stochastic matrix S
such that y = xS [10, p. 10].

The next result, due to Hardy, Littlewood, Pólya and Karamata, provides a useful
inequality for two finite sums involving values of a convex function.

THEOREM D. [10, pp. 92] Let f : I → R be a convex function defined on an
interval I ⊂ R . Let x = (x1,x2, . . . ,xm) ∈ Im and y = (y1,y2, . . . ,ym) ∈ Im .

Then

y ≺ x implies
m

∑
i=1

f (yi) �
m

∑
i=1

f (xi). (4)

It follows from Theorem D for m = 2 that if f : I → R is convex, a,b ∈ I with
a < b and ξ ∈ [a, a+b

2 ] and η = a+b− ξ , then

f (ξ )+ f (η) � f (a)+ f (b). (5)

To see this, note that the vector (a,b) ∈ R
2 majorizes the vector (ξ ,η) ∈ R

2 .
Similarly, if f : I → R is convex, and [c,d] ⊂ [a,b] ⊂ I and a � ξ � c � a+b

2 =
c+d
2 � d � η � b with d = a+b− c and η = a+b− ξ , then

(c,d) ≺ (ξ ,η) ≺ (a,b),

and, in consequence,

f (c)+ f (d) � f (ξ )+ f (η) � f (a)+ f (b). (6)

An extension of Theorem D is the following result.

THEOREM E. [13, 1, 3] Let f be a real convex function defined on an interval
J ⊂R . Let a = (a1,a2, . . . ,am) ∈ R

m
+ , b = (b1,b2, . . . ,bn)∈ R

n
+ , x = (x1,x2, . . . ,xm) ∈

Jm and y = (y1,y2, . . . ,yn) ∈ Jn .
If

y = xS and a = bST (7)

for some m×n column stochastic matrix S = (si j) , then

n

∑
j=1

b j f (y j) �
m

∑
i=1

ai f (xi). (8)

Inequality (8) is referred as Sherman’s inequality, and statement (7) determines
the notion of weighted majorization of the pairs (b,y) and (a,x) .

2. Refinements of Hermite-Hadamard inequalities for convex functions

The forthcomming theorem is in a line of Dragomir’s multipoints improvement
of Hermite-Hadamard inequalities for convex functions (see [5, Theorem 4 and Corol-
lary 4]). Here we demonstrate an alternative approach by making use of the majoriza-
tion preorder on R

2 via the property (6).
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THEOREM 1. Let f : I → R be a convex function on an interval I ⊂ R , a,b ∈ I ,
a < b.

For a given fixed positive integer r , let

a = a0 < a1 < .. . < ar−1 < ar =
a+b

2
= br < br−1 < .. . < b1 < b0 = b, (9)

where bi = a+b−ai , Ii = [ai−1,ai] , Ji = [bi,bi−1] , |Ii|= ai−ai−1 , |Ji|= bi−1−bi for
i = 1, . . . ,r .

Then the following Hermite-Hadamard type inequalities hold:

f

(
a+b

2

)
�

r
∑
i=1

|Ii |
b−a ( f (ai)+ f (bi)) � 1

b−a

b∫
a

f (t)dt

�
r
∑
i=1

|Ji|
b−a( f (ai−1)+ f (bi−1)) � f (a)+ f (b)

2
. (10)

Proof. Taking into account (9), for i = 1, . . . ,r let Ii j , j = 1, . . . ,ki , be consecutive
intervals (from left to right) forming a partition of Ii , and Ji j , j = 1, . . . ,ki , be consec-
utive intervals (from right to left) forming a partition of Ji so that Ji j is symmetric to

Ii j about a+b
2 . Thus Ii =

ki⋃
j=1

Ii j and Ji =
ki⋃

j=1
Ji j . Evidently, the lengths of Ii j and Ji j

are equal, i.e., |Ii j| = |Ji j| .
For i = 1, . . . ,r , j = 1, . . . ,ki , take ξi j to be an immediate point in Ii j , and ηi j be

the point in Ji j symmetric to ξi j about a+b
2 , that is, ηi j = a+b− ξi j .

For i = 1, . . . ,r , j = 1, . . . ,ki , since

ξi j ∈ Ii j ⊂ Ii = [ai−1,ai],

it is readily seen that
(ai,bi) ≺ (ξi j,ηi j) ≺ (ai−1,bi−1),

where ≺ denotes the majorization preorder on R
2 . Therefore by (6),

f (ai)+ f (bi) � f (ξi j)+ f (ηi j) � f (ai−1)+ f (bi−1).

Because |Ii j| = |Ji j| for i = 1,. . . ,r , j = 1, . . . ,ki , it follows that

|Ii j| f (ai)+ |Ii j| f (bi) � |Ii j| f (ξi j)+ |Ji j| f (ηi j) � |Ji j| f (ai−1)+ |Ji j| f (bi−1).

Hence, for i = 1, . . . ,r ,

ki

∑
j=1

|Ii j|( f (ai)+ f (bi)) �
ki

∑
j=1

(|Ii j| f (ξi j)+ |Ji j| f (ηi j)) �
ki

∑
j=1

|Ji j|( f (ai−1)+ f (bi−1)).

Equivalently,

|Ii|( f (ai)+ | f (bi)) �
ki

∑
j=1

(|Ii j| f (ξi j)+ |Ji j| f (ηi j)) � |Ji|( f (ai−1)+ f (bi−1)).
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Now, for each i = 1, . . . ,r , by letting ki tend to ∞ , and |Ii j| and |Ji j| tend to 0,
we obtain inequalities

|Ii|( f (ai)+ f (bi)) �
∫

Ii∪Ji

f (t)dt � |Ji|( f (ai−1)+ f (bi−1)).

By summing over i from 1 to r , we obtain

r

∑
i=1

|Ii|( f (ai)+ f (bi)) �
r

∑
i=1

∫
Ii∪Ji

f (t)dt =
b∫

a

f (t)dt �
r

∑
i=1

|Ji|( f (ai−1)+ f (bi−1)).

This easily leads to the second and third inequalities in (10).
To show the first and last inequalities in (10), notice that

(ar,br) ≺ (ai,bi) ≺ (a0,b0) for i = 0,1, . . . ,r ,

where ar = br = a+b
2 and a0 = a , b0 = b . From this via (6) we deduce that

f

(
a+b

2

)
+ f

(
a+b

2

)
� f (ai)+ f (bi) � f (a)+ f (b) for i = 0,1, . . . ,r . (11)

For this reason,

2
r

∑
i=1

|Ii| f
(

a+b
2

)
�

r

∑
i=1

|Ii|( f (ai)+ f (bi))

However,

(b−a) f

(
a+b

2

)
= 2

r

∑
i=1

|Ii| f
(

a+b
2

)
.

So, we get

f

(
a+b

2

)
�

r

∑
i=1

|Ii|
b−a

( f (ai)+ f (bi))

completing the proof of the first inequality in (10).
In order to see the last inequality in (10), we use (11) and obtain

r

∑
i=1

|Ji|
b−a

( f (ai−1)+ f (bi−1)) �
r

∑
i=1

|Ji|
b−a

( f (a)+ f (b)) =
1
2
( f (a)+ f (b)).

This completes the proof of Theorem 1. �
For equidistant partition (9), Theorem 1 takes the following form.

COROLLARY 1. Under the hypotheses of Theorem 1, if in addition

|I1| = |I2| = . . . = |Ir| = |Jr| = |Jr−1| = . . . = |J1|, (12)
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then

f

(
a+b

2

)
� 1

2r

r
∑
i=1

( f (ai)+ f (bi)) � 1
b−a

b∫
a

f (t)dt

� 1
2r

r
∑
i=1

( f (ai−1)+ f (bi−1)) � f (a)+ f (b)
2

. (13)

Proof. By (12) we have

|Ii| = |Ji| = b−a
2r

for i = 1, . . . ,r .

By putting this to (10), we get inequalities (13). �

REMARK 1. For r = 1 we have

a = a0 < a1 =
a+b

2
= b1 < b0 = b

(see (9)), so in this case inequality (13) reduces to the Hermite-Hadamard inequality
(1) (see Theorem A).

REMARK 2. Inequality (13) can be restated as

f (ar)+ f (br)
2r

� 1
b−a

b∫
a

f (t)dt − f (a1)+ . . .+ f (ar−1)
2r

− f (br−1)+ . . .+ f (b1)
2r

(14)

� f (a0)+ f (b0)
2r

.

We now consider the case of Theorem 1 for r = 2.

COROLLARY 2. Let f : I →R be a convex function on an interval I ⊂R , a,b∈ I ,
a < b. Let a < a1 < a+b

2 < b1 < b with b1 = a+b−a1 .
Then

a1−a
b−a

( f (a1)+ f (b1))+2
a+b
2 −a1

b−a
f

(
a+b

2

)

� 1
b−a

b∫
a

f (t)dt � b−b1

b−a
( f (a)+ f (b))+

b1− a+b
2

b−a
( f (a1)+ f (b1)). (15)
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Proof. By putting r = 2 into (10) we obtain

|I1|
b−a

( f (a1)+ f (b1))+
|I2|

b−a
( f (a2)+ f (b2))

� 1
b−a

b∫
a

f (t)dt � |J1|
b−a

( f (a0)+ f (b0))+
|J2|

b−a
( f (a1)+ f (b1)) (16)

with

a = a0 < a1 < a2 =
a+b

2
= b2 < b1 < b0 = b

and bi = a+b−ai , Ii = [ai−1,ai] , Ji = [bi,bi−1] , |Ii| = ai −ai−1 , |Ji| = bi−1−bi for
i = 1,2.

Therefore (16) implies (15), as claimed. �

REMARK 3. It is not hard to verify that the Hermite-Hadamard inequality (1) is a
limiting case of the above inequality (16) when a1 →

(
a+b
2

)−
and b1 = a+b−a1 →(

a+b
2

)+
. Indeed we have

lim
a1→( a+b

2 )−
f (a1) = f

(
a+b

2

)
and lim

b1→( a+b
2 )+

f (b1) = f

(
a+b

2

)
,

as f is convex on [a,b] and therefore f is continuous on (a,b) .

3. Comparison results

We are now interested in comparison of bounds for integral mean of a convex
function with two partitions of the interval [a,b] .

THEOREM 2. Assume that the hypotheses of Theorem 1 are satisfied.
If additionally ai � ci � a+b

2 � di � bi with ci +di = a+b for i = 1, . . . ,r , then

f

(
a+b

2

)
�

r
∑
i=1

|Ii |
b−a( f (ci)+ f (di))

�
r
∑
i=1

|Ii |
b−a( f (ai)+ f (bi)) � 1

b−a

b∫
a

f (t)dt. (17)

In particular, if ci = a+b
2 = di for i = 1, . . . ,r , then the first inequality of (17) becomes

an equality.
If a � ci−1 � ai−1 and bi−1 � di−1 � b with ci +di = a+b for i = 1, . . . ,r , then

1
b−a

b∫
a

f (t)dt �
r
∑
i=1

|Ji |
b−a( f (ai−1)+ f (bi−1))

�
r
∑
i=1

|Ji |
b−a( f (ci−1)+ f (di−1)) � f (a)+ f (b)

2
. (18)
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In particular, if ci−1 = a and di−1 = b for i = 1, . . . ,r , then the last inequality of (18)
becomes an equality.

Proof. It follows that(
a+b

2
,
a+b

2

)
≺ (ci,di) ≺ (ai,bi) for i = 1, . . . ,r .

So,

2 f

(
a+b

2

)
� f (ci)+ f (di) � f (ai)+ f (bi) for i = 1, . . . ,r ,

and therefore

2
r

∑
i=1

|Ii|
b−a

f

(
a+b

2

)
�

r

∑
i=1

|Ii|
b−a

( f (ci)+ f (di)) �
r

∑
i=1

|Ii|
b−a

( f (ai)+ f (bi)).

This and (10) yield (17), since
r
∑
i=1

|Ii| = b−a
2 .

Likewise, we have

(ai−1,bi−1) ≺ (ci−1,di−1) ≺ (a,b) for i = 1, . . . ,r .

In consequence,

f (ai−1)+ f (bi−1) � f (ci−1)+ f (di−1) � f (a)+ f (b) for i = 1, . . . ,r .

Hence

r

∑
i=1

|Ji|
b−a

( f (ai−1)+ f (bi−1)) �
r

∑
i=1

|Ji|
b−a

( f (ci−1)+ f (di−1)) �
r

∑
i=1

|Ji|
b−a

f (a)+ f (b).

This together with (10) imply (18), because
r
∑
i=1

|Ji| = b−a
2 . This completes the proof of

Theorem 2. �
In the next results we apply the weighted majorization method described in Theo-

rem E.

THEOREM 3. Let f : I → R be a convex function on an interval I ⊂ R , a,b ∈ I ,
a < b.

For a given fixed positive integer r , let

a = a0 < a1 < .. . < ar−1 < ar =
a+b

2
= br < br−1 < .. . < b1 < b0 = b, (19)

where bi = a+b−ai , Ii = [ai−1,ai] , Ji = [bi,bi−1] , |Ii|= ai−ai−1 , |Ji|= bi−1−bi for
i = 1, . . . ,r .
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For a given fixed positive integer r̃ , let

a = ã0 < ã1 < .. . < ãr̃−1 < ãr̃ =
a+b

2
= b̃r̃ < b̃r̃−1 < .. . < b̃1 < b̃0 = b, (20)

where b̃i = a+b− ãi , Ĩi = [ãi−1, ãi] , J̃i = [b̃i, b̃i−1] , |Ĩi|= ãi− ãi−1 , |J̃i|= b̃i−1− b̃i for
i = 1, . . . , r̃ .

If there exists a column stochastic matrix S of size r̃× r such that

(a1, . . . ,ar) = (ã1, . . . , ãr̃)S and (|Ĩ1|, . . . , |Ĩr̃|) = (|I1|, . . . , |Ir|)ST , (21)

then

f

(
a+b

2

)
�

r
∑
i=1

|Ii |
b−a( f (ai)+ f (bi))

�
r̃
∑
i=1

|Ĩi |
b−a( f (ãi)+ f (b̃i)) � 1

b−a

b∫
a

f (t)dt. (22)

Proof. We denote

a = (a1, . . . ,ar) and b = (b1, . . . ,br),

Δ = (|I1|, . . . , |Ir|) and Γ = (|J1|, . . . , |Jr|),
ã = (ã1, . . . , ãr̃) and b̃ = (b̃1, . . . , b̃r̃),

Δ̃ = (|Ĩ1|, . . . , |Ĩr̃|) and Γ̃ = (|J̃1|, . . . , |J̃r̃|).
The first and last inequalities of (22) are satisfied by Theorem 1 applied to a , b ,

Δ and ã , b̃ , Δ̃ , respectively. It remains to prove the middle inequality of (22).
To do so, it is enough to show that

r

∑
i=1

|Ii| f (ai) �
r̃

∑
i=1

|Ĩi| f (ãi), (23)

and
r

∑
i=1

|Ji| f (bi) �
r̃

∑
i=1

|J̃i| f (b̃i). (24)

In fact, in light of (21), inequality (23) is an immediate consequence of Sherman’s
inequality (8) (see Theorem E).

To see (24), we now establish an analog of (21) corresponding to b , b̃ , Γ and Γ̃ .
We denote

e = (1, . . . ,1) ∈ R
r and ẽ = (1, . . . ,1) ∈ R

r̃.

Since S is column stochastic, we get

e = ẽS.
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It follows that b = (a+b)e−a and b̃ = (a+b)̃e− ã . Hence via (21) we derive

b̃S = (a+b)̃eS− ãS = (a+b)e−a = b.

On the other hand, we infer from Δ̃ = ΔST (see (21)) that

Γ̃ = (|J̃1|, . . . , |J̃r̃|) = (|J1|, . . . , |Jr|)ST = ΓST ,

because |Ji| = |Ii| for i = 1, . . . ,r and |J̃i| = |Ĩi| for i = 1, . . . , r̃ .
In consequence, by Sherman’s inequality (8) (see Theorem E), we obtain (24), as

wanted. �

THEOREM 4. Let f : I → R be a convex function on an interval I ⊂ R , a,b ∈ I ,
a < b.

For a given fixed positive integer r , let

a = a0 < a1 < .. . < ar−1 < ar =
a+b

2
= br < br−1 < .. . < b1 < b0 = b, (25)

where bi = a+b−ai , Ii = [ai−1,ai] , Ji = [bi,bi−1] , |Ii|= ai−ai−1 , |Ji|= bi−1−bi for
i = 1, . . . ,r .

For a given fixed positive integer r̃ , let

a = ã0 < ã1 < .. . < ãr̃−1 < ãr̃ =
a+b

2
= b̃r̃ < b̃r̃−1 < .. . < b̃1 < b̃0 = b, (26)

where b̃i = a+b− ãi , Ĩi = [ãi−1, ãi] , J̃i = [b̃i, b̃i−1] , |Ĩi|= ãi− ãi−1 , |J̃i|= b̃i−1− b̃i for
i = 1, . . . , r̃ .

If there exists a column stochastic matrix S of size r× r̃ such that

(ã0, . . . , ãr̃−1) = (a0, . . . ,ar−1)S and (|J1|, . . . , |Jr|) = (|J̃1|, . . . , |J̃r̃|)ST , (27)

then

1
b−a

b∫
a

f (t)dt �
r̃
∑
i=1

|J̃i |
b−a( f (ãi−1)+ f (b̃i−1))

�
r
∑
i=1

|Ji |
b−a( f (ai−1)+ f (bi−1)) � f (a)+ f (b)

2
. (28)

Proof. By denoting

a = (a0, . . . ,ar−1) and b = (b0, . . . ,br−1),

Δ = (|I1|, . . . , |Ir|) and Γ = (|J1|, . . . , |Jr|),
ã = (ã0, . . . , ãr̃−1) and b̃ = (b̃0, . . . , b̃r̃−1),

Δ̃ = (|Ĩ1|, . . . , |Ĩr̃|) and Γ̃ = (|J̃1|, . . . , |J̃r̃|),
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we see that the first and third inequalities of (28) are valid by Theorem 1 applied to ã ,
b̃ , Γ̃ , and a , b , Γ , respectively.

In order to prove the second inequality of (28), we employ Theorem E in the
context of (27) and obtain

r̃

∑
i=1

|J̃i| f (ãi−1) �
r

∑
i=1

|Ji| f (ai−1). (29)

We utilize equalities

b = (a+b)e−a, b̃ = (a+b)̃e− ã and ẽ = eS,

where e = (1, . . . ,1) ∈ R
r and ẽ = (1, . . . ,1) ∈ R

r̃ . Therefore, by (27),

bS = (a+b)eS−aS = (a+b)̃e− ã = b̃.

On account of (27) we find that

(|J1|, . . . , |Jr|) = (|J̃1|, . . . , |J̃r̃|)ST .

In summary, by Sherman’s inequality (8) we get

r̃

∑
i=1

|J̃i| f (b̃i−1) �
r

∑
i=1

|Ji| f (bi−1). (30)

This together with (29) completes the proof of (28). �
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