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SHARP SOBOLEV INEQUALITIES ON THE COMPLEX SPHERE

YAZHOU HAN ∗ AND SHUTAO ZHANG

(Communicated by J. Pečarić)

Abstract. This paper is devoted to establish a class of sharp Sobolev inequalities on the unit
complex sphere as follows:

1) Case 0 < d < Q = 2n+2 : for any f ∈C∞ and 2 � q � 2Q
Q−d ,

‖ f‖2
q � 8(q−2)

d(Q−d)
Γ2((Q−d)/4+1)

Γ2((Q+d)/4)

(∫
S2n+1

fAd f dξ

−Γ2((Q+d)/4)
Γ2((Q−d)/4)

∫
S2n+1

| f |2dξ
)

+
∫

S2n+1
| f |2dξ ;

2) Case d = Q : for any f ∈C∞ ∩RP and 2 � q < +∞ ,

‖ f‖2
q � q−2

(n+1)!

∫
S2n+1

fA ′
Q f dξ +

∫
S2n+1

| f |2dξ ,

where Ad(0 < d < Q) are the intertwining operator, A ′
Q is the conditional intertwinor intro-

duced in [2], and dξ is the normalized surface measure of S2n+1 .

1. Introduction

It is well known that the classical Sobolev inequalities and Hardy-Littlewood-
Sobolev(HLS) inequalities are basic tools in analysis and geometry and their sharp
constants play an essential role because they contain geometric and probabilistic in-
formation (see e.g., [1, 3, 14, 15]). Recently, many interesting and challenging results
on Riemannian geometry and sub-Riemannian manifolds ( such as Heisenberg Group,
CR sphere) were also obtained to understand different geometry framework. In par-
ticular, many interesting geometric inequalities, Sobolev-type inequalities and HLS in-
equality on the sub-Riemannian manifolds attracted the attention of analysts (see e.g.,
[2, 5, 6, 8, 9]). Based on the work of Frank and Lieb [6] this paper establishes the CR-
sphere counterpart of the Sobolev inequalities discussed in [1] in the Euclidean-sphere
setting.

For convenience, we firstly introduce some notations and known facts about the
complex sphere S2n+1 . More details can be found in [2] and references therein.

Mathematics subject classification (2010): 26D10.
Keywords and phrases: Sharp Sobolev inequality, sharp Hardy-Littlewood-Sobolev inequality, com-

plex sphere, CR manifold.
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-23-12

149

http://dx.doi.org/10.7153/mia-2020-23-12


150 Y. HAN AND S. ZHANG

Denote by S2n+1 the complex sphere

S
2n+1 =

{
ξ = (ξ1,ξ2, · · · ,ξn+1) ∈ C

n+1 :
n+1

∑
j=1

|ξ j|2 = 1
}
.

Then CTS2n+1 is generated by the vectors Tj,T j, j = 1,2, · · · ,n+1 and T , where

Tj =
∂

∂ξ j
− ξ j

n+1

∑
j=1

ξk
∂

∂ξk
, j = 1,2, · · · ,n+1, and T =

i
2

n+1

∑
k=1

(
ξk

∂
∂ξk

− ξk
∂

∂ξk

)
.

Let Q = 2n+ 2 be the homogeneous dimension induced from Heisenberg group by
Cayley transformation and denote by dξ the normalized surface measure on S2n+1 .

It is known that L2(S2n+1) can be decomposed into its U(n+1)-irreducible com-
ponents

L2(S2n+1) =
⊕
j,k�0

H jk, (1.1)

where H jk is the space of restrictions to S2n+1 of harmonic polynomials p(z, z) on
Cn+1 which are homogeneous of degree j in z and degree k in z . Take {Yjk} as an
orthonormal basis of H jk . Moreover, denote the Hardy spaces as follows:

H =
⊕
j�0

H j0

= {L2 boundary values of holomorphic functions on the unit ball},
H =

⊕
j�0

H0 j

= {L2 boundary values of antiholomorphic functions on the unit ball},
P =

⊕
j>0

(H j0 ⊕H0 j)
⊕

H00 = {L2 CR-pluriharmonic functions},

RP = {L2 real-valued CR pluriharmonic functions}.

For 0 < d < Q , the general intertwining operator Ad of order d is defined with
respect to the spherical harmonics as

AdYj,k = λ j(d)λk(d)Yj,k, j,k = 0,1,2, · · · , (1.2)

where

λ j(d) =
Γ((Q+d)/4+ j)
Γ((Q−d)/4+ j)

, j = 0,1,2, · · · .

In particular, A2 is the conformal sublaplacian D = L + n2

4 = L +(λ0(2))2 with

L = −1
2

n+1

∑
j=1

(TjT j +T jTj).
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Recently, Branson et al [2] introduced a class of intertwinors A ′
Q of order Q , named

conditional intertwinors and defined on P as

A ′
QYj0 = λ j(Q)Yj0 = j( j +1) · · ·( j +n)Yj0, A ′

QY0k = λk(Q)Y0k. (1.3)

In [10] and [6], two classes of Sobolev inequalities (see Theorem 3.1 and Corollary
2.3 of [6]) were established as follows:

E [u] � n2

4

(∫
S2n+1

|u|2Q/(Q−2)dξ
)(Q−2)/Q

(1.4)

and

4(q−2)
Q−2

E0[u]+
∫

S2n+1
|u|2dξ �

(∫
S2n+1

|u|qdξ
)2/q

, 2 < q <
2Q

Q−2
(1.5)

where E [u] = E0[u]+ n2

4 u and

E0[u] =
1
2

n+1

∑
j=1

(|Tju|2 + |T ju|2).

If we adopt the notations of intertwining operator, inequalities (1.4) and (1.5) can be
rewrote as: ∫

S2n+1
uDudξ � n2

4

(∫
S2n+1

|u|2Q/(Q−2)dξ
)(Q−2)/Q

(1.6)

and, for 2 < q < 2Q
Q−2 ,

4(q−2)
Q−2

∫
S2n+1

uL udξ +
∫

S2n+1
|u|2dξ �

(∫
S2n+1

|u|qdξ
)2/q

, (1.7)

respectively.
What is the Sobolev inequality corresponding to the general intertwining op-

erator Ad ?
To answer this question and motivated by the idea ”fractional integration controls

Sobolev inequality”, we establish firstly the following HLS inequalities.

THEOREM 1.1. (Subcritical HLS inequalities) Let 0 < λ < Q = 2n+2 and 2Q
2Q−λ <

p � 2 . Then for any f ,g ∈ Lp(S2n+1) , it holds∣∣∣∣∣
∫

S2n+1

∫
S2n+1

f (ξ )g(η)
|1− ξ ·η |λ/2

dξdη

∣∣∣∣∣� Cλ ,n‖h‖p‖g‖p, (1.8)

where

Cλ ,n =
∫

S2n+1
|1− ξ ·η |−λ/2dη =

Γ(Q/2)Γ((Q−λ )/2)
Γ2((2Q−λ )/4)

.

Moreover, Equality in (1.8) holds if and only if f and g are all constants.
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REMARK 1.2. When p = 2Q
2Q−λ for 0 < λ < Q , then (1.8) is the classical HLS

inequalities ∣∣∣∣∣
∫

S2n+1

∫
S2n+1

f (ξ )g(η)
|1− ξ ·η |λ/2

dξdη

∣∣∣∣∣� Cλ ,n‖h‖p‖g‖p. (1.9)

Moreover, by Theorem 2.2 of [6], we know that equality in (1.9) holds if and only if

f (ξ ) =
c

|1− ζ ·ξ |(2Q−λ )/2
, g(η) =

c′

|1− ζ ·ξ |(2Q−λ )/2
(1.10)

for some c,c′ ∈ C and some ζ ∈ Cn+1 with |ζ | < 1 (unless f ≡ 0 or g ≡ 0).

Take f = g = ∑ j,k�0Yj,k in (1.8) and (1.9). Then, we have by (A.5) that

∑
j,k�0

γλ
j,k

∫
S2n+1

|Yj,k|2dξ � ‖ f‖2
p,

2Q
2Q−λ

� p � 2. (1.11)

By a duality argument and letting λ = Q−d , we get the following Sobolev inequalities
on the S2n+1 :

‖ f‖2
q � ∑

j,k�0

1

γλ
j,k

∫
S2n+1

|Yj,k|2dξ

= ∑
j,k�0

Γ( j +(2Q−λ )/4)Γ(k+(2Q−λ )/4)Γ2(λ/4)
Γ2((2Q−λ )/4)Γ( j + λ/4)Γ(k+ λ/4)

∫
S2n+1

|Yj,k|2dξ

= ∑
j,k�0

Γ( j +(Q+d)/4)Γ(k+(Q+d)/4)Γ2((Q−d)/4)
Γ( j +(Q−d)/4)Γ(k+(Q−d)/4)Γ2((Q+d)/4)

∫
S2n+1

|Yj,k|2dξ

=
1

(λ0(d))2

∫
S2n+1

fAd f dξ , 2 � q � 2Q
Q−d

. (1.12)

Particularly, if d = 2 and q = 2Q
Q−2 , then (1.12) is Sobolev inequality (1.6). While for

d = 2 and 2 < q < 2Q
Q−2 , we find that the constant 1

(λ0(2))2 is strictly bigger than the

constant 4(q−2)
Q−2 of (1.7) and therefore not sharp. Next theorem gives the sharp form of

the Sobolev inequalities on the CR-sphere.

THEOREM 1.3. For any f ∈C∞(S2n+1) and 0 < d < Q, we have:
1) Conformal Sobolev inequalities: For q = 2Q

Q−d ,

‖ f‖2
q � Γ2((Q−d)/4)

Γ2((Q+d)/4)

∫
S2n+1

fAd f dξ . (1.13)

Moreover, equality holds if and only if

f (ξ ) = c|1− ζ ·ξ |(d−Q)/2 (1.14)

for some c ∈ C and some ζ ∈ C
n+1 with |ζ | < 1 .
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2) Subcritical Sobolev inequalities: For 2 � q < 2Q
Q−d ,

‖ f‖2
q � 8(q−2)

d(Q−d)
Γ2((Q−d)/4+1)

Γ2((Q+d)/4)

(∫
S2n+1

fAd f dξ

−(λ0(d))2
∫

S2n+1
| f |2dξ

)
+
∫

S2n+1
| f |2dξ . (1.15)

Moreover, for 2 < q < 2Q
Q−d , equality holds if and only if f is constant.

REMARK 1.4. The conformal Sobolev inequalities (1.13) and their derivation from
Frank and Lieb HLS inequality on the Heisenberg group ([6]) are well known within
the group of researchers interested in conformal geometry (see [2] for further details).
We provide concise proof for completeness. On the other hand the subcritical Sobolev
inequalities (1.15) are new. Their Euclidean counterpart can be found in [1].

REMARK 1.5. When d = 2, (1.13) and (1.15) are (1.6) and (1.7), respectively.

Combining the method of Beckner in [1] with the HLS inequality on the Heisen-
berg group ([6]) and letting d → Q− , we have the following sharp inequalities.

THEOREM 1.6. For any f ∈C∞(S2n+1)∩RP , we have:
1) Beckner-Onofri’s inequality:

1
2(n+1)!

∫
S2n+1

fA ′
Q f dξ +

∫
S2n+1

f dξ − log
∫

S2n+1
e f dξ � 0; (1.16)

2) Subcritical Sobolev inequalities: for 2 � q < +∞ ,

‖ f‖2
q � q−2

(n+1)!

∫
S2n+1

fA ′
Q f dξ +

∫
S2n+1

| f |2dξ . (1.17)

REMARK 1.7. Note that Beckner-Onofri’s inequalities (1.16) is the main result of
[2]. The authors of [2] were well aware that (1.16) could be derived from (1.13) and
they also say how, but [2] was made available as a preprint several years before [6] was
published and at the time (1.13) was only a conjecture. So, for conciseness, we omit
the proof.

REMARK 1.8. As in [1], by making the substitution f → 1 + 1
q f in (1.17) and

taking the limit q → +∞ for bounded f , we can obtain (1.16) again.

The plan of the paper is as follows. Section 2 is devoted to the proof of Theorem
1.1, Theorem 1.3 and the subcritical case of Theorem 1.6. Our main tools are the Funck-
Heck Theorem on the complex sphere and the duality argument. For completeness, in
Appendix A, we state the Fuck-Heck theorem established by Frank and Lieb in [6] and
give some applications.
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2. Proofs of Theorem 1.1, Theorem 1.3 and Theorem 1.6

Proof of Theorem 1.1. 1) Case 2Q
2Q−λ < p < 2 .

Firstly, we claim that, for any λ1 and λ2 satisfying 0 < λ1 < λ2 < Q and any
f ∈ L2(S2n+1) , it holds

∫
S2n+1

∫
S2n+1

f (ξ ) f (η)
|1−ξ ·η|λ1/2 dξdη∫

S2n+1 |1− ξ ·η |−λ1/2dη
�

∫
S2n+1

∫
S2n+1

f (ξ ) f (η)
|1−ξ ·η|λ2/2 dξdη∫

S2n+1 |1− ξ ·η |−λ2/2dη
. (2.1)

Moreover, equality holds if and only if f is constant.

Now, taking λ1 = λ and λ2 = 2Q(1−1/p) in (2.1), noting the positivity of the left
side of (1.8) and combining with the classical HLS inequalities (1.9), we can complete
the proof of Theorem 1.1 for the case 2Q

2Q−λ < p < 2 since L2(S2n+1) is dense in

Lp(S2n+1) . Therefore, it is sufficient to prove (2.1).

To prove inequality (2.1), we only need to show γλ1
j,k � γλ2

j,k, j,k = 0,1,2, · · · by
(A.5).

Obviously, γλ1
0,0 = γλ2

0,0 . While for j + k � 1, it is easy to see that

γλ
j,k =

Γ2((2Q−λ )/4)Γ( j + λ/4)Γ(k+ λ/4)
Γ( j +(2Q−λ )/4)Γ(k+(2Q−λ )/4)Γ2(λ/4)

is strictly increasing with respect to λ . Therefore, (2.1) holds. Moreover, by the de-
composition of L2 function, we know that equality in (2.1) holds if and only if f is a
constant.

2) Case p = 2

Take the spherical harmonic expansion f (ξ ) = ∑ j,k�0Yj,k(ξ ) with Yj,k ∈ H j,k .
Then inequality (1.8) is equivalent to

∑
j,k�0

γλ
j,k

∫
S2n+1

|Yj,k(ξ )|2dξ � ∑
j,k�0

∫
S2n+1

|Yj,k(ξ )|2dξ .

On the other hand, it is easy to obtain that γλ
0,0 = 1 and γλ

j,k < 1 for j + k � 1. So, we
complete the proof. �

Proof of Part 1) of Theorem 1.3: Conformal Sobolev inequalities.

By (1.11), we know that, for any g(ξ ) = ∑ j,k�0Yj,k(ξ ) ∈C∞(S2n+1) ,

∑
j,k�0

γλ
j,k

∫
S2n+1

|Yj,k|2dξ � ‖g‖2
p with p =

2Q
2Q−λ

. (2.2)
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So, for any f (ξ ) = ∑ j,k�0 Zj,k(ξ ) ∈C∞(S2n+1) ,

∣∣∣∣
∫

S2n+1
f (ξ )g(ξ )dξ

∣∣∣∣=
∣∣∣∣∣ ∑
j,k�0

∫
S2n+1

Zj,k(ξ )Yj,k(ξ )dξ

∣∣∣∣∣
�
√

∑
j,k�0

1

γλ
j,k

∫
S2n+1

|Zj,k|2dξ ·
√

∑
j,k�0

γλ
j,k

∫
S2n+1

|Yj,k|2dξ

�‖g‖p

(
∑

j,k�0

1

γλ
j,k

∫
S2n+1

|Zj,k|2dξ

) 1
2

= ‖g‖p

(
1

(λ0(d))2

∫
S2n+1

fAd f dξ
) 1

2

, (2.3)

where d = Q−λ ∈ (0,Q) . Because of the arbitrariness of g and the density, we get

‖ f‖2
q � 1

(λ0(d))2

∫
S2n+1

fAd f dξ (2.4)

for any f ∈ Lq(S2n+1) and q = 2Q
Q−d .

A direct computation shows that, if f is defined as in (1.14), then equality in
(2.4) holds. So, the constant 1

(λ0(d))2 of (2.4) is sharp. In the following we discuss the

extremal functions.
Assume nonnegative function f0 ∈ Lq(S2n+1) be an extremal function of (2.4),

i.e.,

‖ f0‖2
q =

1
(λ0(d))2

∫
S2n+1

f0Ad f0dξ . (2.5)

By (2.3), we have

| < f0,g > | � ‖ f0‖q‖g‖q′ with q′ =
2Q

Q+d
. (2.6)

It is known that there exists some function g0 ∈ Lq′(S2n+1) such that equality in (2.6)

holds. Using the property of Hölder inequality, we know that f0 = cg
Q−d
Q+d
0 , where c

is some constant. Substituting f0 and g0 into (2.3), we find that g0 is an extremal
function of (1.9). So, the extremal function f0 must have the form (1.14). �

Proof of Part 2) of Theorem 1.3: Subcritical Sobolev inequalities.
Note that case q = 2 is trivial. Therefore, we assume 2 < q < 2Q

Q−d in the sequel.
If

Γ2((Q−d1)/4)
Γ2((Q+d1)/4)

∫
S2n+1

fAd1 f dξ

� 8(q−2)
d(Q−d)

Γ2((Q−d)/4+1)
Γ2((Q+d)/4)

(∫
S2n+1

fAd f dξ

−(λ0(d))2
∫

S2n+1
| f |2dξ

)
+
∫

S2n+1
| f |2dξ (2.7)
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holds for d1 = Q(1− 2/q) and 2Q
Q−d > q > 2, then we can get (1.15) by combining

(1.13). For showing inequality (2.7), by the definition of operator Ad , we need to
prove

λ j(d1)λk(d1)
(λ0(d1))2 � 1+

8(q−2)
d(Q−d)

Γ2((Q−d)/4+1)
Γ2((Q+d)/4)

(λ j(d)λk(d)− (λ0(d))2),

for j,k � 0, So, we will prove that, for j,k � 0,

Γ( j + Q
2q′ )Γ(k+ Q

2q′ )Γ
2( Q

2q)

Γ( j + Q
2q)Γ(k+ Q

2q)Γ2( Q
2q′ )

�1+
8(q−2)
d(Q−d)

Γ2(Q−d
4 +1)

Γ2(Q+d
4 )

(
Γ( j + Q+d

4 )Γ(k+ Q+d
4 )

Γ( j + Q−d
4 )Γ(k+ Q−d

4 )
− Γ2(Q+d

4 )

Γ2(Q−d
4 )

)
, (2.8)

where q′ is the conjugate number of q , i.e., 1
q + 1

q′ = 1. A direct calculation shows that
equality in (2.8) occurs at ( j,k) = (0,0),(1,0) or (0,1) .

To prove (2.8), we differentiate with respect to j and k . If the left derivation is
less than the right for j + k � 1, then we can deduce (2.8) for all j,k � 0 from the
monotonicity. In fact,

∂
∂k

(
Γ( j + Q

2q′ )Γ(k+ Q
2q′ )Γ

2( Q
2q)

Γ( j + Q
2q)Γ(k+ Q

2q )Γ2( Q
2q′ )

)

=
Γ( j + Q

2q′ )Γ(k+ Q
2q′ )Γ

2( Q
2q )

Γ( j + Q
2q )Γ(k+ Q

2q)Γ2( Q
2q′ )

(
Γ′(k+ Q

2q′ )

Γ(k+ Q
2q′ )

−
Γ′(k+ Q

2q)

Γ(k+ Q
2q )

)

=
Γ( j + Q

2q′ )Γ(k+ Q
2q′ )Γ

2( Q
2q )

Γ( j + Q
2q )Γ(k+ Q

2q)Γ2( Q
2q′ )

+∞

∑
l=0

(
1

k+ Q
2q + l

− 1

k+ Q
2q′ + l

)

=
Γ( j + Q

2q′ )Γ(k+ Q
2q′ )Γ

2( Q
2q ) Q

2q

Γ( j + Q
2q)Γ(k+ Q

2q)Γ2( Q
2q′ )

+∞

∑
l=0

q−2

(l + k)2 + Q
2 (l + k)+ (Q

2 )2 1
q

1
q′

, (2.9)

and

∂
∂k

[
1+

8(q−2)
d(Q−d)

Γ2(Q−d
4 +1)

Γ2(Q+d
4 )

(
Γ( j + Q+d

4 )Γ(k+ Q+d
4 )

Γ( j + Q−d
4 )Γ(k+ Q−d

4 )
− Γ2(Q+d

4 )

Γ2(Q−d
4 )

)]

=
8(q−2)
d(Q−d)

Γ2(Q−d
4 +1)

Γ2(Q+d
4 )

Γ( j + Q+d
4 )Γ(k+ Q+d

4 )

Γ( j + Q−d
4 )Γ(k+ Q−d

4 )

(
Γ′(k+ Q+d

4 )

Γ(k+ Q+d
4 )

− Γ′(k+ Q−d
4 )

Γ(k+ Q−d
4 )

)

=
Q−d

4 Γ2(Q−d
4 )

Γ2(Q+d
4 )

Γ( j + Q+d
4 )Γ(k+ Q+d

4 )

Γ( j + Q−d
4 )Γ(k+ Q−d

4 )

+∞

∑
l=0

q−2

(l + k)2 + Q
2 (l + k)+ Q−d

4
Q+d

4

. (2.10)

Combining the facts: d
dx

Γ(l+x)
Γ(x) � 0 for x > 0 and l � 0, d

dx
Γ(l+x)
Γ(1+x) � 0 for x > 0 and
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l � 1, and 2Q
Q+d < q′ < 2 < q < 2Q

Q−d , we have, for j + k � 1⎧⎪⎪⎨
⎪⎪⎩

Γ( j+ Q
2q′ )Γ(k+ Q

2q′ )

Γ2( Q
2q′ )

� Γ( j+ Q+d
4 )Γ(k+ Q+d

4 )

Γ2( Q+d
4 )

,

Γ( j+ Q
2q )Γ(k+ Q

2q )
Q
2q Γ2( Q

2q )
� Γ( j+ Q−d

4 )Γ(k+ Q−d
4 )

Q−d
4 Γ2( Q−d

4 )
.

(2.11)

Moreover, since f (x) = x(1− x) is strictly increasing on [0, 1
2 ] , then

Q−d
2Q

· Q+d
2Q

= f (
Q−d
2Q

) < f (
1
q
) =

1
q
· 1
q′

,

which implies that

q−2

(l + k)2 + Q
2 (l + k)+ (Q

2 )2 1
q

1
q′

� q−2

(l + k)2 + Q
2 (l + k)+ Q−d

4
Q+d

4

(2.12)

for k � 0 and l � 0. So the k derivative of the LHS of (2.8) is less of the one of the
RHS and, the same is true for the j derivative. Then, we get (2.8).

From the above proof, we know that equality of (2.8) occurs only at ( j,k) =
(0,0), (1,0) or (0,1) . Therefore, equality of (2.7) holds if and only if

f ∈ H0,0

⊕
H0,1

⊕
H1,0.

Combining the extremal result of (1.14), we know that equality of (1.15) for 2 < q <
2Q

Q−d holds if and only if f is constant. �

Proof of part 2) of Theorem 1.6: Subcritical Sobolev inequalities.
For any Yj0 ∈ H j0 , j = 0,1,2, · · · , we have, as d → Q− ,

8(q−2)
d(Q−d)

Γ2((Q−d)/4+1)
Γ2((Q+d)/4

AdYj0

=
2(q−2)

d

Q+d
4 (Q+d

4 +1) · · ·(Q+d
4 + j−1)

(Q−d
4 +1) · · ·(Q−d

4 + j−1)
Yj0

→(q−2)
j( j +1) · · ·( j +n)

(n+1)!
Yj0 =

q−2
(n+1)!

A ′
QYj0.

Similarly, the above result holds for any Y0k ∈ H0k , k = 0,1,2, · · · . On the other hand,
we have

λ0(d) → 0, as d → Q−.

So, we get (1.17) via letting d → Q− in (1.15).

A. Appendix The Funk-Hecke Theorem on the complex sphere

In [6], Frank and Lieb established the following two results. Notice that, in the
following formulas, the factor |S2n+1| appears in the denominators because we use the
normalized surface measure.
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PROPOSITION A.1. (Proposition 5.2 of [6]) Let K be an integrable function on
the unit ball in C . Then the operator on S2n+1 with kernel K(ξ ·η) is diagonal with
respect to decomposition (1.1), and on the space H j,k its eigenvalue is given by

1
|S2n+1|

πnm!

2n+| j−k|/2(m+n−1)!

∫ 1

−1
dt(1− t)n−1(1+ t)| j−k|/2P(n−1,| j−k|)

m (t)

×
∫ π

−π
dϕK(e−iϕ

√
(1+ t)/2)ei( j−k)ϕ ,

(A.1)

where m := min{ j,k} and P(α ,β )
m are the Jacobi polynomials.

PROPOSITION A.2. (Corollary 5.3 of [6]) Let −1 < α < n+1
2 .

(1) The eigenvalue of the operator with kernel |1−ξ ·η |−2α on the subspace H j,k

is

E j,k :=
2πn+1Γ(n+1−2α)

|S2n+1|Γ2(α)
Γ( j + α)

Γ( j +n+1−α)
Γ(k+ α)

Γ(k+n+1−α)
. (A.2)

(2)The eigenvalue of the operator with kernel |ξ ·η |2|1−ξ ·η |−2α on the subspace
H j,k is

E j,k

(
1− (α −1)(n+1−2α)(2 jk+n( j + k−1+α)

( j−1+ α)( j +n+1−α)(k−1+α)(k+n+1−α)

)
. (A.3)

When α = 0 or 1 , formula (A.3) and (A.2) are to be understood by taking limits with
fixed j and k .

As application, we have the following result.

PROPOSITION A.3. For 0 < λ < Q, we have∫
S2n+1

|1− ξ ·η|−λ/2dη =
Γ(Q/2)Γ((Q−λ )/2)

Γ2((2Q−λ )/4)
. (A.4)

For f (ξ ) = ∑ j,k�0Yj,k with Yj,k ∈ H j,k , then

∫
S2n+1

∫
S2n+1

f (ξ ) f (η)
|1−ξ ·η|λ/2 dξdη∫

S2n+1 |1− ξ ·η |−λ/2dη
= ∑

j,k�0

γλ
j,k

∫
S2n+1

|Yj,k(ξ )|2dξ (A.5)

with

γλ
j,k =

Γ2((2Q−λ )/4)Γ( j + λ/4)Γ(k+ λ/4)
Γ( j +(2Q−λ )/4)Γ(k+(2Q−λ )/4)Γ2(λ/4)

, j,k = 0,1,2, · · · .
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