
Mathematical
Inequalities

& Applications

Volume 23, Number 1 (2020), 161–167 doi:10.7153/mia-2020-23-13

GEODESIC SANDWICH THEOREM WITH AN APPLICATION

ABSOS ALI SHAIKH ∗ , RAVI P. AGARWAL AND CHANDAN KUMAR MONDAL

(Communicated by J. Pečarić)

Abstract. The main goal of the paper is to prove the sandwich theorem for geodesic convex
functions in a complete Riemannian manifold. Then by using this theorem we have proved
an inequality in a manifold with bounded sectional curvature. Finally, we have shown that the
gradient of a convex function is orthogonal to the tangent vector at some point of any geodesic.

1. introduction

The study of convex function is very important in mathematics, especially, in op-
timization theory, since many objective functions are convex in a sufficiently small
neighborhood of a point which is local minimum. But there are some cases where the
objective functions fail to be convex, hence the generalization of convex function be-
comes necessary. Again to tackle the optimization problem in non-linear space, the
notion of convexity in Euclidean space is not sufficient. Hence the concept of convex-
ity has been generalized from Euclidean space to manifold and developed the notion of
geodesic convexity, see [6], [7], [14]. A full discussion about geodesic convexity on a
complete Riemannian manifold can be found in [12], [15].

The paper is organized as follows: Section 2 deals with some well known facts
of Riemannian manifolds and geodesic convexity. In Section 3 we have proved the
geodesic sandwich theorem as the main result in this paper and as an application of this
Theorem we obtain an inequality ( see Theorem 4). In the last section we show that the
gradient of a convex function is orthogonal to the tangent of a geodesic in some point.

2. Preliminaries

In this section we have discussed some basic facts of a Riemannian manifold
(M,g) , which will be used throughout this paper (for reference see [8]). Throughout
this paper by M we mean a complete Riemannian manifold of dimension n endowed
with some positive definite metric g unless otherwise stated. The tangent space at the
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point p∈M is denoted by TpM and the tangent bundle is defined by TM =∪p∈MTpM .
The length l(γ) of the curve γ : [a,b] → M is given by

l(γ) =
∫ b

a

√
gγ(t)(γ̇(t), γ̇(t)) dt

=
∫ b

a
‖γ̇(t)‖dt.

The curve γ is said to be a geodesic if ∇γ̇(t)γ̇(t) = 0 ∀t ∈ [a,b] , where ∇ is the Rie-
mannian connection of g . For any point p ∈M , the exponential map expp :Vp → M is
defined by

expp(u) = σu(1),

where σu is a geodesic with σ(0) = p and σ̇u(0) = u and Vp is a collection of vectors
of TpM such that for each element u ∈ Vp , the geodesic with initial tangent vector u
is defined on [0,1] . It can be easily seen that for a geodesic σ , the norm of a tangent
vector is constant, i.e., ‖γ̇(t)‖ is constant. If the tangent vector of a geodesic is of
unit norm, then the geodesic is called normal. If the exponential map exp is defined at
all points of TpM for each p ∈ M , then M is called complete. Hopf-Rinow theorem
provides some equivalent cases for the completeness of M . Let p , q∈M . The distance
between p and q is defined by

d(p,q) = inf{l(γ) : γ be a curve joining p and q}.

A geodesic σ joining p and q is said to be minimal if l(σ) = d(p,q) . Hopf-Rinow
theorem guarantees the existence of minimal geodesic between two points of M . A
smooth vector field is a smooth function X : M → TM such that π ◦X = idM , where
π : TM → M is the projection map. The gradient of a smooth function f : M → R at
the point p ∈ M is defined by ∇ f (p) = gi j ∂ f

∂x j

∂
∂xi

|p .

DEFINITION 1. [15] A real valued function f on M is called geodesic convex if
for every geodesic γ : [a,b]→ M , the following inequality holds

f ◦ γ((1− t)a+ tb)� (1− t) f ◦ γ(a)+ t f ◦ γ(b) ∀t ∈ [0,1].

3. Geodesic Sandwich theorem

The functions f ,h : M → R is said to satisfy the property (∗) if the following
relation holds

(∗) f (σxy(t)) � (1− t)h(x)+ th(y) ∀x,y ∈ M,

where σxy : [0,1]→ M is a geodesic such that σxy(0) = x and σxy(1) = y .
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In 1994, Baron et. al. [2] proved the following theorem, which is known as the
sandwich theorem.

THEOREM 1. (Sandwich Theorem) [2] Two real valued functions f and h de-
fined on a real interval I , satisfy (∗) if and only if there is a convex function k : I → R

such that
f (x) � k(x) � h(x), ∀x ∈ I.

There is also another version of the above theorem in n -dimensional Euclidean space
in [2]. Later this theorem has been extended and generalized in Euclidean space by
various authors, see [10, 9, 4, 11], but till now no work has been done in manifold. In
this section we have extended this result in M . The main theorem is as follows:

THEOREM 2. (Geodesic Sandwich Theorem) Let f ,h : M → R be two functions.
Then f and h satisfy the property (∗) if and only if there exists a geodesic convex
function k : M → R such that

f (x) � k(x) � h(x), ∀x ∈ M. (1)

Proof. Suppose that f and h satisfy the property (∗) . The epigraph epi(h) of the
function h is defined by

epi(h) = {(x,y) ∈ M×R : h(x) � y}.

Now M is complete and R is also complete, hence their product M ×R is also a
complete Riemannian manifold. So, for any two points p,q ∈ M×R , there always be
a geodesic σpq : [0,1] → M×R from p to q and each geodesic can be written as

σpq(t) = (σp1q1(t),(1− t)p2 + tq2),

where p = (p1, p2) and q = (q1,q2) such that p1,q1 ∈ M and p2,q2 ∈ R . Consider
the following set

E =
⋃

u,v∈epi(h)

{Gh(u,v)},

where Gh(u,v) = {σuv(t) ∈ M ×R : σuv(0) = u, σuv(1) = v,t ∈ [0,1]}. Now take
(x,y) ∈ E , then (x,y) ∈ Gh(u,v) for some u,v ∈ epi(h) . Also we get

h(x1) � y1 and h(x2) � y2,

for u = (x1,y1) and v = (x2,y2) . Since (x,y) ∈ Gh(u,v) , so we get

(x,y) = σuv(t0) = (σx1x2(t0),(1− t0)y1 + t0y2) for some t0 ∈ [0,1].

Now let y0 = (1− t0)h(x1)+ t0h(x2) . Then

y = (1− t0)y1 + t0y2 � (1− t0)h(x1)+ t0h(x2) = y0.
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Also from the property (∗) , we get y � y0 � f (x) . Now define the function k : M → R

by
k(x) = inf{y ∈ R : (x,y) ∈ E} for x ∈ M.

We shall prove that k is a geodesic convex function. Now for each x1,x2 ∈ M ad
t ∈ [0,1] we can choose y1 and y2 sufficiently big such that (x1,y1),(x2,y2) ∈ E , then
we have

(σx1x2(t),(1− t)y1 + ty2) ∈ E ∀t ∈ [0,1].

Now k satisfies the inequality

k(σx1x2(t)) � (1− t)y1 + ty2.

And from the definition of k , we get

k(σx1x2(t)) � (1− t)k(x1)+ tk(x2).

So k is a geodesic convex function.
Conversely suppose that there is a convex function k : M → R which satisfy the

inequality (1) . Then for a geodesic σxy : [0,1]→ M with initial point x and final point
y , we get

f (σxy(t)) � k(σxy(t))
� (1− t)k(x)+ tk(y)
� (1− t)h(x)+ th(y).

Hence we get our result.

DEFINITION 2. Let f ,h : M → R be two functions realizing the property (∗) .
Then the convex function k : M → R that satisfies the inequality (1) is said to be the
separating convex function for f and h .

The above theorem guarantees the existence of separating convex function for any two
functions, satisfying the property (∗) . Throughout the paper we consider that the sepa-
rating convex function is smooth. Since any smooth convex function in a manifold with
finite volume is constant [3], so we can state the following result:

COROLLARY 1. If M possesses finite volume and f ,h : M → R are two functions
satisfying the property (∗) , then there is a constant c ∈ R such that

f (x) � c � h(x) ∀x ∈ M.

COROLLARY 2. Let f ,h : M → R be two functions satisfying the property (∗)
and f > 0 . If the manifold M contains a closed geodesic, then f = h along any closed
geodesic.

Proof. Since a convex function along a closed geodesic vanishes [3], so from the
equation (1) we get our desired result.
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THEOREM 3. [13] Let BR(p) be a geodesic ball in M . Suppose that the sectional
curvature KM � s for some constant s and R < in j(M,g) . Then for any real valued
smooth function f with Δ f � 0 and f � 0 on M ,

f (p) � 1
Vs(R)

∫
BR(p)

f dV, (2)

where Vs(R) = Vol(BR,gs) is the volume of a ball of radius R in the space form of
constant curvature s, dV is the volume form and in j(M,g) is the injective radius of
M .

THEOREM 4. Let M has sectional curvature KM � s, for some constant s. If k
is a separating convex function for f and h and k � 0 , then for any p ∈ M

f (p) � 3ωM

2Vs
h(r), for some r ∈ ∂B(p,ξ ),

where B(p,ξ ) is the a ball in M with the center p and radius ξ such that B(p,ξ ) ⊂
B(p,R) for R < in j(M) , ωM is the surface area of B(p,ξ ) and Vs is the volume of the
ball B(ξ ) of radius ξ in the space form of constant cuvature s.

Proof. Since k is the separating convex function for the real valued functions f
and h on M , so for any p ∈ M , we get

f (p) � k(p) � h(p).

Since k is convex, so k is also subharmonic [5]. Then from Theorem 3, we get

k(p) � 1
Vs

∫
B(p,ξ )

kdV, (3)

=
1
Vs

∫
∂B(p,ξ )

{∫ 1

0
k ◦σx(t)dt

}
dx, (4)

where σx : [0,1] → M is the minimal geodesic such that σx(0) = p and σx(1) = x for
each x ∈ ∂B(p) . By using convexity of f we obtain

f (p) � k(p) � 1
Vs

∫
∂B(p,ξ )

{∫ 1

0
((1− t)k(p)+ tk(x))dt

}
dx

=
1
Vs

∫
∂B(p,ξ )

{
k(p)

∫ 1

0
(1− t)dt + k(x)

∫ 1

0
tdt

}
dx

=
1

2Vs

∫
∂B(p,ξ )

(k(p)+ k(x))dx

=
ωM

2Vs
k(p)+

1
Vs

∫
∂B(p,ξ )

k(x)dx.
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Since k is subharmonic and B(p,ξ ) lies in the normal neighborhoodof p , so maxB(p,ξ ) k =
k(r) for some r ∈ ∂B(p,ξ ). Hence from the above inequality we get

f (p) � k(r)
{ωM

2Vs
+

1
Vs

∫
∂B(p,ξ )

dx
}

= k(r)
3ωM

2Vs
� 3ωM

2Vs
h(r).

4. Gradient of a convex function along a geodesic

THEOREM 5. (Mean value theorem) [1] Let f : M → R be a differentiable func-
tion. Then, for every pair of points p,q ∈ M and every minimal geodesic path σ :
[0,1]→ M joining p and q, there exists t0 ∈ [0,1] such that

f (p)− f (q) = d(p,q)d fσ(t0)(σ
′(t0)),

in particular | f (p)− f (q)| � ‖d f (σ(t0))‖σ(t0) d(p,q).

THEOREM 6. Let f : M → R be a convex function and p ∈ M. Then for any
u ∈ TpM and for any geodesic σ : [0,1] → M such that σ(0) = p, σ ′(0) = u and
d fp(u) � 0 , there exists t0 ∈ [0,1] such that

d fσ(t0)(σ ′(t0)) = 〈∇ f (σ(t0)),σ ′(t0)〉 = 0,

where the symbol 〈,〉 denotes the Riemannian metric operator g.

Proof. The function f : M → R is convex, hence for any u ∈ TpM there exists a
minimal geodesic σ : [0,1]→ M such that σ(0) = p and σ ′(0) = u and the following
inequality holds

d fp(u) � f (q)− f (p), (5)

where q = σ(1) . Now applying mean value theorem for the function f there exists
t0 ∈ [0,1] such that

f (p)− f (q) = d(p,q)d fσ(t0)(σ
′(t0)), (6)

where d(p,q) = inf{L(σ) : σ(0) = p, σ(1) = q and σ is length minimizing} . Now
combining the equations (5) and (6) we get

d fp(u)+d(p,q)d fσ(t0)(σ
′(t0)) � 0. (7)

It is given that d fp(u) � 0, then from (7) we get d fσ(t0)(σ
′(t0)) � 0. Consider a

function ϕ : [0,1] → R defined by

ϕ(t) = d fσ(t)(σ ′(t)), ∀t ∈ [0,1].

The function ϕ is continuous and ϕ(0) � 0 and ϕ(t0) � 0, hence there exists ξ ∈ [0,1]
such that ϕ(ξ ) = 0. This implies that

d fσ(ξ )(σ ′(ξ )) = 〈∇ f (σ(ξ )),σ ′(ξ )〉 = 0.

Hence we get our result.
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