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Abstract. K. Audenaert in [1] formulated a determinantal inequality arising from diffusion tensor
imaging. Very recently M. Lin proved in [6] a complement and proposed a conjecture. In this
short note, we generalize his conjecture and we prove it in a wild case, when the matrix is
singular. We also present a refinement of the complement found by Lin and finally we present a
series of determinantal inequalities followed by a conjecture.

1. Introduction

Audenaert formulated in his work [1] the following inequality for all A,B � 0 of
same size n � 1,

det(A2 + |BA|) � det(A2 +AB) (1)

He proved it in order to get the following determinantal inequality arising from
diffusion tensor imaging

det(A+U∗B) � det(A+B)

where A and B are two n -square positive semi-definite matrices and U is a speci-
fied n -square unitary matrix arising from the polar decomposition of the matrix BA .
Throughout this paper, let Mn be the space of n×n complex matrices. In denotes the
identity matrix in Mn . The modulus of a complex matrix X is the unique positive semi-
definite square root of the X∗X denoted by |X | = (X∗X)1/2 . For X ,Y ∈ Mn Hermitian
matrices we say X � Y if X −Y is positive semi-definite matrix. The spectrum of X
is the multiset of the eigenvalues of X denoted by Sp(X) , we can simply rearrange the
eigenvalues of X in decreasing order if they are all real, that is

λ1(X) � λ2(X) � . . . � λn(X).

For every X ∈ Mn Hermitian we have λ (X) = (λ1(X),λ2(X), . . . ,λn(X))t is a real
vector of order n . The spectral norm of a X ∈ Mn is defined by |||X |||op = ρ1/2(X∗X)
where

ρ(X) = sup
λ∈Sp(X)

|λ (X)|.
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Let us recall some definitions of majorizations: for a vector x ∈Rn , the vector obtained
after rearranging the components of x in decreasing order is denoted by
x = (x↓1,x

↓
2, . . . ,x

↓
n)t , we say x ∈ R

n is weakly log majorized by y ∈ R
n denoted by

x ≺w,log y if
k

∏
i=1

(x↓i ) �
k

∏
i=1

(y↓i ) k = 1,2, ...,n (2)

and x is log majorized by y (x ≺log y) if (2) is true and equality holds for k = n .

M. Lin proved in [6] a complement and a generalization for (1),

det(A2 + |AB|) � det(A2 +AB) (3)

and
det(A2 + |BA|p) � det(A2 +ApBp) 0 � p � 2 (4)

And he also introduced the following conjecture.

CONJECTURE 1.1. Let A,B be two positive semi-definite matrices. Then

det(A2 + |AB|p) � det(A2 +ApBp), 0 � p � 2

In this paper, we will show determinantal inequalities that are inspired by (1), (3)
and (4).

2. Main Results

The main result in this paper are the following:

1. Let A,B be two positive semi-definite matrices. Then

det(Akp + |BA|p) � det(Akp +ApBp) k � 1, 0 � p � 2 (5)

2. Let A,B be two positive semi-definite matrices. Then, for all 0 � p � 2,

• det(Ap + |BA|p) � det(Ap +ApBp).

• det(In + |BA|p) � det(In +ApBp).

3. Let A,B be two positive semi-definite matrices. Then, for all p � 2,

• det(Ap + |BA|p) � det(Ap +ApBp).

• det(In + |BA|p) � det(In +ApBp).

4. Let A,B be two n -square hermitian matrices. Then

det(A4 + |AB|2) � det(A4 +A2B2).
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5. Let A,B be two positive semi-definite matrices. Then for every k � 1

det(Ak + |AB|) � det(Ak +AB).

6. Let A,B be two positive semi-definite matrices. Then,

det(A2 + |BA|2) = det(A2 +A2B2) � det(A2 +(AB)2) � det(A2 + |AB|2).

We remark that for two positive semi-definite matrices A and B with A singular,
the following general result holds

det(Ak + |BA|p) = det(Ak +ApBp) and det(Ak + |AB|p) � det(Ak +ApBp)

for all k > 0, p � 0. Which gives a partial answer of the positivity of Lin’s conjecture.
We can find a generalization for (4), to do this we need the following lemmas

where the proof of the first one is in [6] and the proof of the second is a corollary of
Furuta’s inequality and it can be found in [3, p. 128] and the third lemma proved in the
interesting reference [5].

LEMMA 1. If λ (A),λ (B) ∈ Rn
+ such that λ (A) ≺w,log λ (B) then

det(In +A) � det(In +B).

LEMMA 2. Let A, B be two positive semi-definite matrices such that A � B.
Then, for all p � 1 , r � 0 ,

A(p+2r)/p � (ArBpAr)1/p.

LEMMA 3. Let X and Y be two positive semi-definite matrices. Then for every
unitarily invariant norm, we have

|||XtYtXt ||| � |||(XYX)t ||| 0 � t � 1 (6)

and

|||XtY tXt ||| � |||(XYX)t ||| t � 1 (7)

The following theorem is one of our main result.

THEOREM 1. Let A,B be two positive semi-definite matrices. Then for all 0 �
p � 2 and for all k � 1 ,

det(Akp + |BA|p) � det(Akp +ApBp) (8)
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Proof. It is enough to prove the result for k > 1 as the case k = 1 is followed by
limit argument. Assume that A is invertible, for A singular the inequality is true. First
we need to prove that, for all 0 � t � 1 and k > 1, we have

λ (Akt/2(A−1/2BA−1/2)tAkt/2) ≺log λ (A(k−1)tBt). (9)

To achieve (9), it is enough to show that

A
(k−1)t

2 BtA
(k−1)t

2 � In ⇒ Akt/2(A−1/2BA−1/2)tAkt/2 � In.

Assume that A
(k−1)t

2 BtA
(k−1)t

2 � In , so 0 � Bt � A−(k−1)t and by applying Lemma
2, we get

A−(k−1)t(p+2r)/p �
(
A−(k−1)trBt pA−(k−1)tr

)1/p
.

Now, by replacing p with 1
t � 1 and r with 1

2(k−1)t > 0 we obtain

A
−(k−1)t2

(
1
t + 1

(k−1)t

)
�

(
A−1/2BA−1/2

)t

which implies

A−kt �
(
A−1/2BA−1/2

)t
.

Therefore Akt/2(A−1/2BA−1/2)tAkt/2 � In.

Let a = λ1(A
(k−1)t

2 BtA
(k−1)t

2 ) . If a = 0, then it is obvious that (9) is true. If a > 0,
we observe that

A
(k−1)t

2 BtA
(k−1)t

2 � a In and

(
1

a1/kt
A

) (k−1)t
2

(
1

a1/kt
B

)t ( 1

a1/kt
A

) (k−1)t
2

� In.

This yields

(
1

a1/kt
A

)kt/2
[(

1

a1/kt
A

)−1/2 (
1

a1/kt
B

)(
1

a1/kt
A

)−1/2
]t (

1

a1/kt
A

)kt/2

� In.

Thus
Akt/2(A−1/2BA−1/2)tAkt/2 � a In.

And hence

λ1

(
Akt/2(A−1/2BA−1/2)tAkt/2

)
� λ1

(
A

(k−1)t
2 BtA

(k−1)t
2

)
(10)

Now, using the antisymmetric tensor product, we have

∧s(Akt/2(A−1/2BA−1/2)tAkt/2) = (∧sA)kt/2
(
(∧sA)−1/2(∧sB)(∧sA)−1/2

)t
(∧sA)kt/2
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and

∧s
(
A

(k−1)t
2 BtA

(k−1)t
2

)
= (∧sA)

(k−1)t
2 (∧sB)t(∧sA)

(k−1)t
2 for 1 � s � n.

Replacing A and B with ∧sA and ∧sB respectively in (10) yields

λ1

(
∧s(Akt/2(A−1/2BA−1/2)tAkt/2)

)
� λ1

(
∧s(A

(k−1)t
2 BtA

(k−1)t
2 )

)
.

And so, for all 1 � s � n−1, we have

s

∏
i=1

λi

(
Akt/2(A−1/2BA−1/2)tAkt/2

)
�

s

∏
i=1

λi

(
A

(k−1)t
2 BtA

(k−1)t
2

)
.

And as in general det
(
Akt/2(A−1/2BA−1/2)tAkt/2

)
= det

(
A

(k−1)t
2 BtA

(k−1)t
2

)
, we ob-

tain
n

∏
i=1

λi

(
Akt/2(A−1/2BA−1/2)tAkt/2

)
=

n

∏
i=1

λi

(
A

(k−1)t
2 BtA

(k−1)t
2

)
.

and by consequently,

λ (Akt/2(A−1/2BA−1/2)tAkt/2) ≺log λ (A(k−1)tBt).

By applying Lemma 1, we get

det(In +Akt/2(A−1/2BA−1/2)tAkt/2) � det(In +A(k−1)tBt).

Now taking A = A−2 , B = B2 and t = p/2 yields

det(In +A−kp/2(AB2A)p/2A−kp/2) � det(In +A−kp+pBp) (11)

Pre-post multiplying both sides of (11) by det(Akp/2) leads to the result for k > 1
and 0 < p � 2. Finally, it is easy to see that (8) is true for p = 0. �

The next theorem shows some reverse inequalities.

THEOREM 2. Let A and B be two positive semi-definite matrices. Then for 0 �
p � 2 ,

det(In + |BA|p) � det(In +ApBp) (12)

Proof. Take Y = B2 , X = A and the spectral norm in (6) gives

λ1(BtA2tBt) � λ1((BA2B)t) 0 � t � 1 (13)

Note that ∧s(AtB2tAt)= (∧sA)t(∧sB)2t(∧sA)t and ∧s((AB2A)t)=
(∧sA(∧sB)2∧s A

)t
.

Replacing A and B with ∧sA and ∧sB respectively in (13) yields
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λ1(∧s(AtB2tAt)) � λ1(∧s((AB2A)t)).

And as det((AB2A)t) = det(AtB2tAt) , then for 0 � t � 1

λ (AtB2tAt) ≺log λ ((AB2A)t).

Assume that A is positive definite matrix. For t = p/2 and by Lemma 1 we get

det(In +Ap/2BpAp/2) � det(In + |BA|p)

Therefore we get the desired for A positive semi-definite matrix by continuity ar-
gument. �

With a similar proof using (7), we can get the following.

THEOREM 3. Let A,B be two positive semi-definite matrices. Then for all p � 2 ,

• det(Ap + |BA|p) � det(Ap +ApBp).

• det(In + |BA|p) � det(In +ApBp).

We can find a more general complement for (8) when k = 2 and p = 2 as the
following theorem shows.

THEOREM 4. Let A,B be two n-square hermitian matrices. Then

det(A4 + |AB|2) � det(A4 +A2B2).

Proof. Again, assume that A is an invertible matrix, the case of A singular is true
by continuity argument. It is well known, in [7, p. 352], that if a matrix

M =
(

X Y
Y ∗ Z

)
∈ Mn+n(C) is positive semi-definite, then

|λ (Y )| ≺w,log λ
1
2 (X)◦λ

1
2 (Z).

where X ◦Y represents the Hadamard product of the two matrices X and Y .

Replacing X = BA−2B , Y = B2A−2 and Z = A−2BA2BA−2 , and by using Schur’s

complement we get M =
(

BA−2B B2A−2

A−2B2 A−2BA2BA−2

)
� 0. Thus

|||B2A−2|||2op � |||BA−2B|||op · |||A−2BA2BA−2|||op.

If |||B2A−2|||op = 0, then the desired determinantal inequality is true.
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Noticing that |||B2A−2|||op = |||BA−2B|||op , and dividing both sides by
|||B2A−2|||op > 0 gives

|||A−1B2A−1|||op = |||B2A−2|||op � |||A−2BA2BA−2|||op

which is
λ1(A−1B2A−1) � λ1(A−2BA2BA−2). (14)

Observe that ∧s(A−1B2A−1) = (∧sA)−1(∧sB)2(∧sA)−1 ,

∧s(A−2BA2BA−2) = (∧sA)−2(∧sB)(∧sA)2(∧sB)(∧sA)−2

and replacing A with ∧sA and B with ∧sB in (14) yields

λ1(∧s(A−1B2A−1)) � λ1(∧s(A−2BA2BA−2)), 1 � s � n−1.

Also as det(A−1B2A−1) = det(A−2BA2BA−2) we obtain

λ (A−1B2A−1) ≺log λ (A−2BA2BA−2).

Using Lemma 1 gives

det(In +A−1B2A−1) � det(In +A−2BA2BA−2).

Pre-post multiplying by det(A2) both sides yields

det(A4 +A2B2) � det(A4 +BA2B) = det(A4 + |AB|2). �

We may ask whether the following conjecture is true

CONJECTURE 2.1. Let A and B be two positive semi-definite matrices. Then

det(Ak +A2B2) � det(Ak +(AB)2) for all k � 1 (15)

If (15) is true we get

det(Ak′ +A2B2) � det(Ak′ + |AB|2) for all k′ � 1 (16)

Also, if (16) is true then (15) is true.

The inequality (15) is true for k = 1,3

• When k = 1 we have

det(A+(AB)2) = det(A) ·det(In +BAB)

= det(A) ·det(In +AB2)

= det(A+A2B2)
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• When k = 3 we have

det(A3 +(AB)2) = det(A) ·det((A1/2)4 + |A1/2B|2)
� det(A) ·det((A1/2)4 +(A1/2)2B2) (using Theorem 4)

= det(A3 +A2B2)

The inequality (15) is not valid for k < 1 as the following example shows.

EXAMPLE 1. For A =
(

4 0
0 1

)
, B =

(
1 1
1 2

)
and k = 1/2, we have

det(A1/2 +A2B2) = 60 > det(A1/2 +(AB)2) = 54.
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