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Abstract. We are devoted to an integral, asymptotic expansion and Maclaurin series representa-
tion for the generalized Gaussian ratio, and find their various related properties such as complete
monotonicity and some useful inequalities. As applications, several simple approximations for
its inverse function are presented, which may be essential to the estimations for the shape param-
eter of the generalized Gaussian distribution.

1. Introduction

Recall that a function f is called completely monotonic (for short, CM) on an
interval I if f has derivatives of all orders on I and satisfies

(−1)k ( f (x))(k) � 0

for all k � 0 on I (see [4], [29]). A positive function f is called logarithmically
completely monotonic (for short, LCM) on an interval I if f has derivatives of all
orders on I and its logarithm ln f satisfies

(−1)k (ln f (x))(k) � 0

for all k ∈ N on I (see [3], [23]). For convenience, we denote the sets of the com-
pletely and logarithmically completely monotonic functions on I by C [I] and L [I] ,
respectively.

The celebrated Bernstein theorem [29, p. 161, Theorem 12b] showed that f (x) is
completely monotonic for 0 < x < ∞ , if and only if

f (x) =
∫ ∞

0
e−xtdμ (t) ,

where μ (t) is nondecreasing and the integral converges for 0 < x < ∞ . We would
like to remark that a continuous function f : (0,∞) → [0,∞) is said to be a Bernstein
function if f is of class C∞ and

(−1)k−1 ( f (x))(k) � 0
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for all k ∈ N and x > 0 (see [25, Chapter 3]). Clearly, f is a Bernstein function if and
only if it is nonnegative, and f ′ is a completely monotone function.

On the other hand, the Euler’s gamma function Γ is defined by

Γ(x) =
∫ ∞

0
tx−1e−tdt (1)

for x > 0, and its logarithmic derivative ψ (x) = Γ′ (x)/Γ(x) is known as the psi or
digamma function, while ψ ′ , ψ ′′ , ... are called polygamma functions.

Since the 1980s, the complete monotonicity of certain ratios of gamma functions
has been investigated widely and deeply, see for example, [12], [7], [23], [2], [17],[6]
[19], [20], [24], [22], [34], [35], [8], [32], [33]. In particular, the following ratio of
gamma functions

T (x,y) =
Γ(x)Γ(y)

Γ((x+ y)/2)2 , ∀x,y > 0

is called the Gurland ratio [11], whose property can be found in [17]. An interesting
relation between T (u,v) and the modified Bessel functions Iv (x) and Kv (x) was es-
tablished in recent papers [36], [37]. Additionally, in the field of probability theory and
its applications, the ratio

T (x,x+2u) =
Γ(x)Γ(x+2u)

Γ(x+u)2
, ∀x,x+2u > 0

is related to the variance of an estimator involving gamma distribution, which satisfies
the inequality

T (x,x+2u) =
Γ(x)Γ(x+2u)

Γ(x+u)2
> 1+

u2

x
(2)

for any x,x+2u > 0 (see [11]).
While the ratio

M (p) =
Γ(1/p)Γ(3/p)

Γ(2/p)2
= T

(
1
p
,
3
p

)
, p > 0

appears in the form of ratio of the variance and the squared absolute expectation for the
generalized Gaussian random variable with a shape parameter p , and also known as
Mallat ratio [16].

It is also well known that the kurtosis ratio is defined by the ratio of the fourth
moment and variance squared. Therefore, the kurtosis ratio of the generalized Gaussian
random variable with the shape parameter p can be expressed by

K (p) =
Γ(1/p)Γ(5/p)

Γ(3/p)2
= T

(
1
p
,
5
p

)
, p > 0.
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The above two ratios M (p) and K (p) have interesting applications in the domain of
image recognition and signal processing, etc. for more details see [27], [18], [26], [9],
[14], [10], [15]. Some related properties involved T (1/p,3/p) can be found in [17],
[8].

Clearly, the square root concerning Mallat ratio and kurtosis ratio has the form of

R (x) ≡ R
[n0]
a,w (x) =

∏n0
j=1 Γ(xa j)wj

Γ
(
x∑n0

j=1 a jwj

) , (3)

where x = 1/p > 0, a j,wj > 0 for 1 � j � n0 with ∑n0
j=1 wj = 1 and max1� j�n0 (a j) �=

min1� j�n0 (a j) . In the context, we call it to be a generalized Gaussian ratio. The
aim of this present paper is to investigate some important properties of the function
L(x) = lnR (x) , such as complete monotonicity and inequalities.

The rest of this paper is organized as follows. In Section 2, a few essential lemmas
are given, in which Lemmas 1–5 will be used to prove Theorem 6. In Section 3, the
integral, asymptotic expansion and Maclaurin series representations of lnR (x) are es-
tablished. Some complete monotonicity results and inequalities involving lnR (x) are
proved in Section 4. As applications, some elementary function approximations for the
inverse of the function x 	→ lnR (1/x) are presented in Section 5.

2. Auxiliary Lemmas

To prove our main results, we need some auxiliary lemmas. The following is
rewritten from [30, Lemma 1], which will be used to prove Lemma 3.

LEMMA 1. Let A(t) = ∑∞
k=0 aktk , B(t) = ∑∞

k=0 bktk and C (t) = ∑∞
k=0 cktk be real

power series with radii of convergence RA = RB = R > 0 and Rc = r < R, respectively,
and B(t) > 0 for t ∈ (0,R) . Assume that A(t)/B(t) converges to C (t) for |t| < r ,
then for integer n � 0 we have

(i) if

dk,2n =
2n

∑
i=0

bk−ici−ak = E1 +
n

∑
j=1

E2, j > (<)0 for k � 2n+1,

where E1 = bkc0−ak and E2, j =
(
bk−2 j+1c2 j−1 +bk−2 jc2 j

)
, then it holds that

A(t)
B(t)

< (>)
2n

∑
k=0

ckt
k (4)

for t ∈ (0,R);
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(ii) if

dk,2n+1 =
2n+1

∑
i=0

bk−ici −ak = O1 +
n

∑
j=1

O2, j > (<)0 for k � 2n+2,

where O1 = (bkc0 +bk−1c1−ak) and O2, j =
(
bk−2 jc2 j +bk−2 j−1c2 j+1

)
, then it holds

that
A(t)
B(t)

< (>)
2n+1

∑
k=0

ckt
k (5)

for t ∈ (0,R) .

REMARK 1. From the proof of [30, Lemma 1], we clearly see that

k

∑
i=0

bk−ici = ak.

To prove Lemma 3, we also need the following lemma due to Qi [21].

LEMMA 2. ([21, Theorem 1.1]) For k ∈ N , the Bernoulli numbers B2k satisfy

22k−1−1
22k+1−1

(2k+1)(2k+2)
π2 <

|B2k+2|
|B2k| <

22k −1
22k+2−1

(2k+1)(2k+2)
π2 . (6)

In particular, let k = 2 j +1 , 2 j we have

24 j+1−1
24 j+3−1

(4 j +3)(4 j +4)
π2 <

∣∣B4 j+4
∣∣∣∣B4 j+2
∣∣ <

24 j+2−1
24 j+4−1

(4 j +3)(4 j +4)
π2 , (7)

24 j−1−1
24 j+1−1

(4 j +1)(4 j +2)
π2 <

∣∣B4 j+2
∣∣∣∣B4 j
∣∣ <

24 j −1
24 j+2−1

(4 j +1)(4 j +2)
π2 . (8)

Such inequalities above-mentioned are often used to prove the complete mono-
tonicity of certain special functions, see [30]. Indeed, by means of Lemmas 1 and 2 we
can prove an interesting inequalities for the hyperbolic functions as follows.

LEMMA 3. For any integer n � 0 , the double inequality

2n+1

∑
k=0

22k+1

(2k)!
B2k+2t

2k <
t cosht − sinht

sinh3 t
<

2n

∑
k=0

22k+1

(2k)!
B2k+2t

2k (9)

holds for all t > 0 , where B2k is the Bernoulli number.

Proof. Inequalities (9) can be written as

2n−1

∑
k=0

22k+1

(2k)!
B2k+2t

2k <
(t cosht− sinht)/t3(

sinh3 t
)
/t3

<
2n

∑
k=0

22k+1

(2k)!
B2k+2t

2k.
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Let

A(t) =
t cosht − sinht

t3
=

∞

∑
k=0

2k+2
(2k+3)!

t2k :=
∞

∑
k=0

akt
2k, |t| < ∞,

B(t) =
1
4

sinh3t−3sinht
t3

=
∞

∑
k=0

32k+3−3
4(2k+3)!

t2k :=
∞

∑
k=0

bkt
2k, |t| < ∞,

C (t) =
A(t)
B(t)

=
∞

∑
k=0

22k+1

(2k)!
B2k+2t

2k :=
∞

∑
k=0

ckt
2k, |t| < π .

(1) Let us first prove that for k � 2n+1 there holds

dk,2n =
2n

∑
i=1

bk−ici−ak = E1 +
n

∑
j=1

E2, j > 0,

where E1 = (bkc0−ak) and E2, j =
(
bk−2 j+1c2 j−1 +bk−2 jc2 j

)
. We now part it by dis-

tinguishing three cases.
Case 1.1. If k = 2n+1, by considering ∑k

i=0 bk−ici = ak we see that

d2n+1,2n =
2n

∑
i=0

b2n+1−ici−a2n+1 = −b0c2n+1 = − 24n+3

(4n+2)!
B4n+4 > 0.

Case 1.2. If k = 2n+2, similarly we have

d2n+2,2n =
2n

∑
i=0

b2n+2−ici−a2n+2 = −b0c2n+2−b1c2n+1

= − 24n+5

(4n+4)!
B4n+6− 1

2
24n+3

(4n+2)!
B4n+4

=
24n+5 |B4n+4|

(4n+4)!

(
1
2

(n+1)(4n+3)− |B4n+6|
|B4n+4|

)
.

Using the right hand side inequality of (8) for j = n+1 we obtain

|B4n+6|
|B4n+4| <

(4n+5)(4n+6)
π2

24n+4−1
24n+6−1

,

which yields

1
2

(n+1)(4n+3)− |B4n+6|
|B4n+4| >

1
2

(n+1)(4n+3)− (4n+5)(4n+6)
π2

24n+4−1
24n+6−1

>
1
2

(n+1)(4n+3)− (4n+5)(4n+6)
8

1
4

=
3
2
n2 +

17
8

n+
9
16

> 0,

where the first inequality holds due to π2 > 8 and
(
24n+4−1

)
/
(
24n+6−1

)
< 1/4. It

then follows that d2n+2,2n < 0.
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Case 1.3. If k � 2n + 3, it suffices to check that E1 = bkc0 − ak > 0 and E2, j =
bk−2 j+1c2 j−1 +bk−2 jc2 j > 0 for 1 � j � n and k � 2n+3. We have

E1 := bkc0 −ak =
32k+3−3
4(2k+3)!

1
3
− 2k+2

(2k+3)!
=

32k+2−8k−9
4(2k+3)!

> 0.

Using the left hand side inequality of (8) we have

E2, j∣∣B4 j
∣∣ =

bk−2 j+1c2 j−1 +bk−2 jc2 j∣∣B4 j
∣∣

= − 32k−4 j+5−3
4(2k−4 j +5)!

24 j−1

(4 j−2)!
+

32k−4 j+3−3
4(2k−4 j +3)!

24 j+1

(4 j)!

∣∣B4 j+2
∣∣∣∣B4 j
∣∣

> − 32k−4 j+5−3
4(2k−4 j +5)!

24 j−1

(4 j−2)!
+

32k−4 j+3−3
4(2k−4 j +3)!

24 j+1

(4 j)!
24 j−1−1
24 j+1−1

(4 j +1)(4 j +2)
π2

=
24 j−1

(
32k−4 j+5−3

)
4(4 j−2)!(2k−4 j +5)!

(
4

π2 f1 (2k−4 j +3) f2 (4 j)−1

)
,

where

f1 (x) =
(x+2)(x+1)(3x −3)

3x+2−3
, x = 2k−4 j +3, (10)

f2 (y) =
2y−1−1
2y+1−1

(y+2)(y+1)
y(y−1)

, y = 4 j � 4. (11)

Since x = 2k−4 j +3 � 2(2n+3)−4n+3 = 9 and

f1 (x+1)− f1 (x) =
2
3

(x+2)
32x+2 +4(2x−1)×3x +3

(3x+2−1)(3x+1−1)
> 0,

it is derived that f1 (x) � f1 (9) = 8200/671. Also, f2 (y) � 1/4 due to

f2 (y)− 1
4

=
4(2y+1)×2y− (3y2 +13y+8

)
4y(2×2y−1)(y−1)

> 0 for y � 4.

These yield
4

π2 f1 (2k−4 j +3) f2 (4 j)−1 >
4

π2

8200
671

1
4
−1 > 0,

and so E2, j > 0 for 1 � j � n and k � 2n+3 � 3.
From the cases 1.1–1.3, it results in dk,2n < 0 for k � 2n+1, and by Lemma 1 the

right hand side inequality of (9) holds for all t > 0.
(2) We now prove that for k � 2n+2,

dk,2n+1 = (bkc0 +bk−1c1−ak)+
n

∑
j=1

(
bk−2 jc2 j +bk−2 j−1c2 j+1

)
< 0,
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where O1 = (bkc0 +bk−1c1 −ak) and O2, j =
(
bk−2 jc2 j +bk−2 j−1c2 j+1

)
. Similarly, we

distinguish three cases to prove it.
Case 2.1. For k = 2n+2, since ∑k

i=0 bk−ici = ak , we have

d2n+2,2n+1 =
2n+1

∑
i=0

b2n+2−ici −a2n+2 = −b0c2n+2 = − 24n+5

(4n+4)!
B4n+6 < 0.

Case 2.2. For k = 2n+3, likewise, we have

d2n+3,2n+1 =
2n+1

∑
i=0

b2n+3−ici−a2n+3 = −b0c2n+3−b1c2n+2

= − 24n+7

(4n+6)!
B4n+8− 1

2
24n+5

(4n+4)!
B4n+6

=
24n+7 |B4n+6|

(4n+6)!

( |B4n+8|
|B4n+6| −

1
8

(4n+6)(4n+5)
)

.

Using the right hand side inequality of (7) for j = n+1 we obtain

|B4n+8|
|B4n+6| <

(4n+7)(4n+8)
π2

24n+6−1
24n+8−1

,

which yields

|B4n+8|
|B4n+6| −

1
8

(4n+6)(4n+5) <
(4n+7)(4n+8)

π2

24n+6−1
24n+8−1

− 1
8

(4n+6)(4n+5)

<
(4n+7)(4n+8)

8
1
4
− 1

8
(4n+6)(4n+5) = −1

8

(
12n2 +29n+16

)
< 0,

where the first inequality holds due to π2 > 8 and
(
24n+6−1

)
/
(
24n+8−1

)
< 1/4. It

is deduced that d2n+3,2n+1 < 0.
Case 2.3. For k � 2n+ 4, it suffices to check that O1 = bkc0 + bk−1c1 − ak < 0 and
O2, j = bk−2 jc2 j + bk−2 j−1c2 j+1 < 0 for 1 � j � n and k � 2n + 4. We easily check
that

O1 = bkc0 +bk−1c1−ak =
1
3

32k+3−3
4(2k+3)!

− 2
15

32k+1−3
4(2k+1)!

− 2k+2
(2k+3)!

= −
(
8k2 +20k−33

)
32k − (8k2−20k−33

)
20(2k+3)!

< 0

Using the left hand side inequality (7) we have

O2, j∣∣B4 j+2
∣∣ =

bk−2 jc2 j +bk−2 j−1c2 j+1∣∣B4 j
∣∣

=
1
4

24 j+1
(
32k−4 j+3−3

)
(2k−4 j +3)!(4 j)!

− 1
4

24 j+3
(
32k−4 j+1−3

)
(2k−4 j +1)!(4 j +2)!

∣∣B4 j+4
∣∣

B4 j+2
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<
1
4

24 j+1
(
32k−4 j+3−3

)
(2k−4 j +3)!(4 j)!

− 1
4

24 j+3
(
32k−4 j+1−3

)
(2k−4 j +1)!(4 j +2)!

(4 j +4)(4 j +3)
π2

24 j+1−1
24 j+3−1

=
1
4

24 j+1
(
32k−4 j+3−3

)
(2k−4 j +3)!(4 j)!

(
1− 4

π2 f1 (2k−4 j +1) f2 (4 j)
)

,

where f1 and f2 are given by (10) and (11), respectively. As shown in Case 1.3, f1 (x)
is increasing. This in combination with x = 2k−4 j+1 � 2(2n+4)−2n+1 = 9 yields
f1 (2k−4 j +1) � f1 (9) = 8200/671. Also, f2 (4 j) > 1/4. Therefore, we obtain

1− 4
π2 f1 (2k−4 j +1) f2 (4 j) < 1− 4

π2

8200
671

1
4

< 0,

and so is O2, j for 1 � j � n and k � 2n+4.
Taking into account Cases 2.1–2.3, we arrive at dk,2n+1 < 0 for k � 2n+ 2. By

Lemma 1 the left hand side inequality of (9) holds for all t > 0, which completes the
proof.

REMARK 2. The double inequality (9) is equivalent to

(−1)m
(

t cosht − sinht

sinh3 t
−

m

∑
k=0

22k+1

(2k)!
B2k+2t

2k

)
< 0

for any integer m � 0 and all t > 0.

The following Lemmas 4 and 5 are also useful to prove Theorem 6.

LEMMA 4. Let m � 0 be an integer. Then the function

φm (x) = coth
1
x
−

m

∑
k=0

22kB2k

(2k)!
1

x2k−1 (12)

is convex on (0,∞) if m is even and concave on (0,∞) if m is odd.

Proof. It suffices to prove (−1)m φ ′′
m (x) > 0 for x ∈ (0,∞) . Differentiation yields

that for m � 1,

φ ′′
m (x) = 2

cosh(1/x)− xsinh(1/x)
x4 sinh3 (1/x)

−
m

∑
k=1

22kB2k

(2k−2)!
1

x2k+1

= 2t3
(

t cosh t− sinht

sinh3 t
−

m−1

∑
k=0

22k+1B2k+2

(2k)!
t2k

)
, t =

1
x
,

which, by Lemma 3, gives the (−1)m φ ′′
m (x) > 0 for x ∈ (0,∞) . Clearly, it is also true

for m = 0. This completes the proof.
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In what follows, we will encounter some classical mean values. The r -th power
mean of a = (a1,a2, ...an) with weight w = (w1,w2, ...wn) is defined as in [5]

M[r]
n (a;w) =

(
n

∑
k=1

wka
r
k

)1/r

if r �= 0 and M[0]
n (a;w) =

n

∏
k=1

awk
k , (13)

where M[1]
n (a;w) and M[0]

n (a;w) are called the weighted arithmetic and geometric
means, and also denoted by An (a;w) and Gn (a;w) , respectively. A special Gini mean,
also called the power-exponential mean in [31], is given by

Zn (a;w) = exp

(
∑n0

j=1 wja j lna j

∑n0
j=1 wja j

)
. (14)

LEMMA 5. Let a j,wj > 0 for 1 � j � n0 with ∑n0
j=1 wj = 1 and max1� j�n0 (a j) �=

min1� j�n0 (a j) , let h0 and hm (m ∈ N) be defined on (0,∞) by

h0 (t) =
n0

∑
j=1

wj coth

(
t

2a j

)
− coth

(
t

2∑n0
j=1 wja j

)
, (15)

hm (t) = h0 (t)−
m

∑
k=0

2d1−2kB2k

(2k)!
t2k−1, (16)

where
dr = M[r]

n0 (a;w)r −An0 (a;w)r , r ∈ R. (17)

Then we have (−1)m hm (t) > 0 for any integer m � 0 and t > 0 .

Proof. (i) As shown in Lemma 4, [coth(1/x)]′′ > 0 for x ∈ (0,∞) , which yields
h0 (t) > 0 for t ∈ (0,∞) .

(ii) If we prove that hm (t) can be written by

hm (t) =
n

∑
j=1

wjφm

(
2a j

t

)
−φm

(
2a
t

)
,

where φm is defined by (12) and a = ∑n0
j=1 wja j . Then by Lemma 4 we arrive at

(−1)m hm (t) > 0 for m � 1 and t > 0, and the proof is complete. Now using (15) and
(17) leads to

hm (t) =
n

∑
j=1

wj coth

(
t

2a j

)
− coth

( t
2a

)
−2

m

∑
k=0

(
n0

∑
j=1

wja
1−2k
j − a1−2k

)
B2k

(2k)!
t2k−1

=
n

∑
j=1

wj coth

(
t

2a j

)
−coth

( t
2a

)
−2

n

∑
j=1

m

∑
k=0

wja
1−2k
j

B2k

(2k)!
t2k−1+2

m

∑
k=0

a1−2k B2k

(2k)!
t2k−1
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=
n

∑
j=1

wj

[
coth

(
t

2a j

)
−

m

∑
k=0

22kB2k

(2k)!

(
t

2a j

)2k−1
]

−
[
coth

( t
2a

)
−

m

∑
k=0

22kB2k

(2k)!

( t
2a

)2k−1
]

=
n

∑
j=1

wjφm

(
2a j

t

)
−φm

(
2a
t

)
,

which completes the proof.

LEMMA 6. Let L(x) = lnR (x) , where R (x) is defined on (0,∞) by (3). Then
we have

L
(
0+)= ln

An0 (a;w)
Gn0 (a;w)

= c0, (18)

L(m) (0+)=
(
M[m]

n0 (a;w)m −An0 (a;w)m
)

ψ(m−1) (1) = dmψ(m−1) (1) (19)

for m ∈ N , where dm is defined by (17).

Proof. To obtain the desired limit values, we denote a = ∑n0
j=1 wja j and write

L(x) as

L(x) = lnR (x) =
n0

∑
j=1

wj lnΓ(a jx)− lnΓ(ax)

=
n0

∑
j=1

wj [lnΓ(a jx+1)− ln(a jx)]− lnΓ(ax+1)+ ln(ax)

=
n0

∑
j=1

wj lnΓ(a jx+1)− lnΓ(ax+1)+

(
ln a−

n0

∑
j=1

wj lna j

)
,

which yields L(0+) = d0 . Differentiation leads to

L(m) (x) =
n0

∑
j=1

wja
m
j ψ(m−1) (a jx+1)− amψ(m−1) (ax+1) , m ∈ N,

which implies

L(m) (0+)=

(
n0

∑
j=1

wja
m
j − am

)
ψ(m−1) (1) .

This completes the proof.
The following lemma is needed to prove Theorem 7.

LEMMA 7. Let n � 0 be an integer. The double inequality

2n+1

∑
k=0

(−1)k xk

k!
< e−x <

2n

∑
k=0

(−1)k xk

k!
(20)

holds for x > 0 .
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Proof. For every integer m � 0, let

gm (x) = e−x −
m

∑
k=0

(−1)k xk

k!
.

It suffices to prove (−1)m gm (x) < 0 for x > 0. Differentiation yields

(−1)m g( j)
m (x) = (−1)m+ j

[
e−x −

m

∑
k= j

(−1)k− j xk− j

(k− j)!

]
, j = 1,2, ...,m−1,m.

In particular, we have

(−1)m g(m)
m (x) = e−x−1 < 0 for x > 0,

which together with

(−1)m g( j)
m (0) = 0, j = 0,1,2, ...,m−1

gives (−1)m gm (x) < 0. This completes the proof.

3. Integral and asymptotic expansion representations

In this section, we are devoted to presenting the integral, asymptotic expansion
and Maclaurin series representations for the generalized Gaussian ratio.

3.1. Integral representations

THEOREM 1. Let x 	→ R (x) be defined on (0,∞) by (3). Then L(x) = lnR (x)
can be expressed as

L(x) = lnR (x) =
1
2
c0 + c1x+

1
2

∫ ∞

0

h0 (t)
t

e−xtdt, (21)

where c0 is given by (18) and

c1 =
n0

∑
j=1

wja j lna j −
(

n0

∑
j=1

wja j

)
ln

(
n0

∑
j=1

wja j

)
, (22)

while h0 (t) is defined by (15).

Proof. Using the following Binet’s first expression for lnΓ(z) in terms of an infi-
nite integral (see [28, p. 248–250]),

lnΓ(z) =
(

z− 1
2

)
lnz− z+

1
2

ln(2π)+
∫ ∞

0

(
1
2
− 1

t
+

1
et −1

)
e−zt

t
dt Re (z) > 0,
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whose variant form (see [30]) is shown as

lnΓ(z) =
(

z− 1
2

)
lnz− z+

1
2

ln(2π)+
∫ ∞

0

(
coth

t
2
− 2

t

)
e−zt

2t
dt Re(z) > 0,

we obtain that for a j,x > 0 there holds

lnΓ(a jx) =
(

a jx− 1
2

)
ln(a jx)−a jx+

1
2

ln(2π)+
∫ ∞

0

(
coth

t
2
− 2

t

)
e−a jxt

2t
dt

= (a j lna j)x− 1
2

lna j−a jx+a jx lnx− 1
2

lnx+
1
2

ln(2π)+
∫ ∞

0

(
coth

t
2a j

− 2a j

t

)
e−xt

2t
dt,

where we have made a change of variable a jt → t in the above integral. It then follows
that

lnR (x) =
n0

∑
j=1

wj lnΓ(a jx)− lnΓ(ax)

=

(
n0

∑
j=1

wja j lna j − a ln a

)
x+

1
2

(
ln a−

n0

∑
j=1

wj lna j

)

+
1
2

∫ ∞

0

(
n0

∑
j=1

wj coth
t

2a j
− coth

t
2a

)
e−xt

t
dt

with a = ∑n0
j=1 wja j . This completes the proof.

From Lemma 6 and Theorem 1 we can obtain the integral value of
∫ ∞
0 tm−1h0 (t)dt

with every integer m � 0.

PROPOSITION 1. Let h0 be defined on (0,∞) by (15). Then for every integer
m � 0 , we have

∫ ∞

0
tm−1h0 (t)dt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ln
An0 (a;w)
Gn0 (a;w)

= c0 if m = 0,

2An0 (a;w) ln
Zn0 (a;w)
An0 (a;w)

= 2c1 if m = 1,

2
(
M[m]

n0 (a;w)m −An0 (a;w)m
)∣∣∣ψ(m−1) (1)

∣∣∣ if m � 2.

(23)

Proof. The integral representation (21) together with (18) yields

L
(
0+)= c0 =

1
2
c0 +

1
2

∫ ∞

0

h0 (t)
t

dt,

which implies (23) for m = 0. Similarly, we easily get

L′ (0) = 0 = c1− 1
2

∫ ∞

0
h0 (t)dt, (24)
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which implies (23) for m = 1.
Taking into account the integral representation (21) and (19) we have

L(m) (0+)=

[
n0

∑
j=1

wja
m
j −
(

n0

∑
j=1

wja j

)m]
ψ(m−1) (1) =

(−1)m

2

∫ ∞

0
tm−1h0 (t)dt.

for m � 2, which indicates (23) for m � 2, and the proof is completed.

REMARK 3. Proposition 1 exhibits an interesting relation connecting the ratio or
difference of classical means and integrals

∫ ∞
0 tm−1h0 (t)dt for any integer m � 0. This

allows us to establish a few new inequalities of some means values, for example, the
inequality

∣∣∣2ψ(m−1) (1)
∣∣∣1/m

(
dm

c0

)1/m

<
∣∣∣2ψ(n−1) (1)

∣∣∣1/n
(

dm

c0

)1/n

holds for m,n ∈ N with 2 � m < n , which follows from the known integral inequality

(∫ ∞
0

(
t−1h0 (t)

)
tmdt∫ ∞

0 t−1h0 (t)dt

)1/m

<

(∫ ∞
0

(
t−1h0 (t)

)
tndt∫ ∞

0 t−1h0 (t)dt

)1/n

;

for another example, by the Scharwz inequality, we have

c2
1

c0d2
=

2ψ ′ (1)
4

(
∫ ∞
0 h0 (t)dt)2

(
∫ ∞
0 t−1h0 (t)dt)(

∫ ∞
0 th0 (t)dt)

<
π2

12
,

which is equivalent to

(
ln

Zn0 (a;w)
An0 (a;w)

)2

<
π2

12

(
M[2]

n0 (a;w)2

An0 (a;w)2 −1

)
ln

An0 (a;w)
Gn0 (a;w)

.

Applying the relations (23) with m = 0,1 to the integral representation (21), we
get another integral representation concerning lnR (x) .

THEOREM 2. Let x 	→ R (x) be defined on (0,∞) by (3). Then L(x) = lnR (x)
can also be expressed as

L(x) = lnR (x) =
1
2

∫ ∞

0

h0 (t)
t

(
1+ tx+ e−xt)dt, (25)

where h0 (t) is defined by (15).
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3.2. Asymptotic expansion

THEOREM 3. Let R (x) be defined on (0,∞) by (3). Then the asymptotic expan-
sion

L(x) = lnR (x) ∼
1
2
c0 + c1x+

∞

∑
k=1

d1−2kB2k

2k (2k−1)
1

x2k−1 as x → ∞ (26)

holds, where B2k is the Bernoulli number and dr is defined by (17).

Proof. Using the asymptotic expansion in [1]

lnΓ(x) ∼
1
2

ln(2π)+
(

x− 1
2

)
lnx− x+

∞

∑
k=1

B2k

2k (2k−1)x2k−1 , (27)

we have

lnR (x) =
n0

∑
j=1

wj lnΓ(a jx)− lnΓ(ax)

=
n0

∑
j=1

wj

[
1
2

ln(2π)+
(

a jx− 1
2

)
ln(a jx)−a jx+

∞

∑
k=1

B2k

2k (2k−1)(a jx)
2k−1

]

−
[

1
2

ln(2π)+
(

ax− 1
2

)
ln(ax)− ax+

∞

∑
k=1

B2k

2k (2k−1)(ax)2k−1

]

=
1
2

(
ln a−

n0

∑
j=1

wj lna j

)
+ x

(
n0

∑
j=1

wja j lna j − a ln a

)

+
∞

∑
k=1

(
n0

∑
j=1

wj

a2k−1
j

− 1

a2k−1

)
B2k

2k (2k−1)x2k−1

=
1
2
c0 + c1x+

∞

∑
j=1

d1−2kB2k

2k (2k−1)x2k−1 ,

which completes the proof.

3.3. Maclaurin series

THEOREM 4. Let R (x) be defined on [0,∞) by (3). Then lnR (x) can be ex-
pressed by the following Maclaurin series

L(x) = lnR (x) = c0 +
∞

∑
k=2

dkψ(k−1) (1)
k!

xk, (28)

where dk is defined by (17).
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Proof. Using the integral representation (25) and expanding e−xt in power series
yield

L(x) = lnR (x) =
1
2

∫ ∞

0

h0 (t)
t

(
1+ tx+ e−xt)dt

=
1
2

∫ ∞

0

h0 (t)
t

(
1+ tx+

∞

∑
k=0

(−1)k tk

k!
xk

)
dt

=
1
2

∫ ∞

0

h0 (t)
t

(
2+

∞

∑
k=2

(−1)k tk

k!
xk

)
dt

=
∫ ∞

0

h0 (t)
t

dt +
1
2

∞

∑
k=2

(∫ ∞

0
tk−1h0 (t)dt

)
(−1)k xk

k!
.

By the relation (23), the desired Maclaurin series expansion follows.

4. Complete monotonicity and inequalities

THEOREM 5. Let L(x) = lnR (x) , where R (x) is defined on (0,∞) by (3). Then
x 	→ L′′ (x) is a completely monotonic function on (0,∞) , while x 	→ L′ (x) is the Bern-
stein function on (0,∞) . Consequently, the inequalities

0 <
∑n0

j=1 wja jψ (xa j)

∑n0
j=1 a jwj

−ψ

(
x

n0

∑
j=1

wja j

)
< ln

Zn0 (a;w)
An0 (a;w)

(29)

hold for x > 0 .

Proof. Using the integral representation (25) and Lemma 5 we have

L′ (x) =
1
2

∫ ∞

0
h0 (t)

(
1− e−xt)dt > 0, (30)

(−1)m L(m+2) (x) =
1
2

∫ ∞

0
tm+1h0 (t)e−xtdt > 0 (31)

for x > 0 and m = 0,1, ... . By Lemma 5 and Bernstein theorem, the function L′′ is a
completely monotonic function, and L′ is a Bernstein function. Using the increasing
property of L′ (x) on (0,∞) with L′ (0) = 0 and

L′ (∞) =
1
2

∫ ∞

0
h0 (t)dt = c1,

we derive that

0 < L′ (x) =
n0

∑
j=1

wja jψ (a jx)−
(

n0

∑
j=1

a jwj

)
ψ

(
x

n0

∑
j=1

a jwj

)
< c1,

which is equivalent to (29). This completes the proof.
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THEOREM 6. Let m � 0 be an integer. Then the function

Fm (x) =

⎧⎨
⎩

lnR (x)− 1
2c0− c1x if m = 0,

lnR (x)− 1
2c0− c1x−∑m

k=1
d1−2kB2k

2k (2k−1)
1

x2k−1 if m � 1
(32)

is completely monotonic on (0,∞) if m is even, and so is −Fm (x) if m is odd.

Proof. We first write Fm (x) in the following form

Fm (x) =
1
2

∫ ∞

0

hm (t)
t

e−xtdt,

where hm (t) is defined by (16). Using the integral representation (21) and the following
formula

1
xs =

1
Γ(s)

∫ ∞

0
ts−1e−xtdt,

we obtain that for m � 1,

Fm (x) =
1
2

∫ ∞

0

h0 (t)
t

e−xtdt−
m

∑
k=1

d1−2kB2k

2k (2k−1)
1

(2k−2)!

∫ ∞

0
t2k−2e−xtdt

=
1
2

∫ ∞

0

h0 (t)
t

e−xtdt−
∫ ∞

0

(
m

∑
k=1

d1−2kB2k

(2k)!
t2k−2

)
e−xtdt.

Since d1 = 0, we see that ∑m
k=1 (·) = ∑m

k=0 (·) in the second integrand above. This in
combination with (16) yields

Fm (x) =
1
2

∫ ∞

0

(
h0 (t)

t
−

m

∑
k=0

2d1−2kB2k

(2k)!
t2k−2

)
e−xtdt =

1
2

∫ ∞

0

hm (t)
t

e−xtdt.

Evidently, it is also true for m = 0. By Lemma 5 and Bernstein theorem the desired
result follows.

As a direct consequence of Theorem 6 we immediately get the following

COROLLARY 1. For n ∈ N , the following inequalities

1
2
c0 + c1x < lnR (x) < c0 + c1x, (33)

2n

∑
k=1

d1−2kB2k

2k (2k−1)
1

x2k−1 < lnR (x)−
(

1
2
c0 + c1x

)
<

2n−1

∑
k=1

d1−2kB2k

2k (2k−1)
1

x2k−1 (34)

hold for x > 0 .
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Proof. The double inequality (33) follows from the monotonicity of

F0 (x) =
1
2

∫ ∞

0

h0 (t)
t

e−xtdt

with F0 (0)= c0/2 and F0 (∞) = 0. The double inequality (34) follows from F2n (x) > 0
and −F2n−1 (x) > 0.

REMARK 4. Note that Fm (x) is in fact the remainder of the asymptotic expansion
(26). By Theorem 6 and Corollary 1 we see that the remainder satisfies (−1)m Fm (x) ∈
C [(0,∞)] and

|Fm (x)| < d−2m−1B2m+2

(2m+1)(2m+2)
1

x2m+1 .

REMARK 5. Letting w = (w1,w2) with w1 +w2 = 1 and a = (a1,a2) with a1 �=
a2 in inequalities (33) we arrive at√

w1a1 +w2a2

aw1
1 aw2

2

(
aw1a1

1 aw2a2
2

(w1a1 +w2a2)
(w1a1+w2a2)

)x

<
Γ(a1x)

w1 Γ(a2x)
w2

Γ(w1a1x+w2a2x)
<

w1a1 +w2a2

aw1
1 aw2

2

(
aw1a1

1 aw2a2
2

(w1a1 +w2a2)
w1a1+w2a2

)x

for x > 0. In particular, putting (w1,w2) = (1/2,1/2) and x = 1 we have

aa1−1/2
1 aa2−1/2

2

((a1 +a2)/2)a1+a2−1 < T (a1,a2) <
aa1−1

1 aa2−1
2

((a1 +a2)/2)a1+a2−2 . (35)

Multiplying the second inequality of (35) by 4a1a2/(a1 +a2)
2 yields

T (a1 +1,a2 +1) <
aa1

1 aa2
2

((a1 +a2)/2)a1+a2
,

which was established by Kečkić and Vasić [13]. The first inequality of (35) was proved
in [17, Theorem 1] by Merkle. Furthermore, taking n = 1 and x = 1 in the right hand
side inequality of (34) yields

lnR (1) <
1
2
c0 + c1 +

d−1

12
,

which is equivalent to

T (a1,a2) <
aa1−1/2

1 aa2−1/2
2

((a1 +a2)/2)a1+a2−1 exp
(a1−a2)

2

12a1a2 (a1 +a2)
.

This is due to Merkle [17, Theorem 1].
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THEOREM 7. Let n ∈ N . The double inequality

c0 +
2n+1

∑
k=2

dkψ(k−1) (1)
k!

xk < lnR (x) < c0 +
2n

∑
k=2

dkψ(k−1) (1)
k!

xk (36)

holds for all x > 0 .

Proof. By the double inequality (20), we have

2+
2n+1

∑
k=2

(−1)k tk

k!
xk < 1+ tx+ e−tx < 2+

2n

∑
k=2

(−1)k tk

k!xk .

Applying the second inequality of the above double inequality to the integral represen-
tation (25) yields

lnR (x) =
1
2

∫ ∞

0

h0 (t)
t

(
1+ tx+ e−tx)dt <

1
2

∫ ∞

0

h0 (t)
t

(
2+

2n

∑
k=2

(−1)k tk

k!
xk

)
dt

=
∫ ∞

0

h0 (t)
t

dt +
1
2

2n

∑
k=2

(−1)k
(∫ ∞

0
tk−1h0 (t)dt

)
xk

k!
,

which, by means of Proposition 1, gives the right hand side inequality of (36). The left
hand side one of (36) can be proved in a similar way.

REMARK 6. Theorem 7 tells us that the remainder of the Maclaurin series (28)
satisfies

|Rm (x)| =
∣∣∣∣∣lnR (x)− c0−

m

∑
k=2

dkψ(k−1) (1)
xk

k!

∣∣∣∣∣<
dm+1

∣∣∣ψ(m) (1)
∣∣∣

(m+1)!
xm+1.

Letting w = (1/2,1/2), a = (a1,a2) = 1 and n,x = 1 in Theorem 7 we have

c0 +
1
2
d2ψ ′ (1)+

1
6
d3ψ ′′ (1) < lnR (1) < c0 +

1
2
d2ψ ′ (1)

with

d2 =
(a1−a2)

2

4
,d3 =

3
8

(a1 +a2)(a1−a2)
2 .

From this we derive the following corollary.

COROLLARY 2. The double inequality

(a1 +a2)
2

4a1a2
exp

(
π2

24
(a1−a2)

2− 1
4

ζ (3)(a1 +a2)(a1−a2)
2
)

<

T (a1,a2) <
(a1 +a2)

2

4a1a2
exp

(
π2

24
(a1−a2)

2
) (37)

holds for a1,a2 > 0 with a1 �= a2 .
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REMARK 7. Inequalities (37) seem to offer a new type of bound for the Gurland
ratio T (a1,a2) , which cannot be compared with corresponding bounds given in (35).
Moreover, after replacing (a1,a2) by (a1 +1,a2 +1) , inequalities (37) can be written
as

exp

(
π2

24
(a1−a2)

2− 1
4

ζ (3)(a1 +a2 +2)(a1−a2)
2
)

<

T (a1,a2) < exp

(
π2

24
(a1−a2)

2
)

for a1,a2 > 1 with a1 �= a2 .

5. Approximations for the inverse of the function x 	→ lnR (1/x)

Let

L (x) = L

(
1
x

)
= lnR

(
1
x

)
, x ∈ (0,∞) .

By (30) we see that

L ′ (x) = − 1
x2 L′

(
1
x

)
< 0 for x ∈ (0,∞) ,

and

lim
x→0+

L (x) = lim
x→0+

lnR

(
1
x

)
= lim

x→∞
lnR (x) = ∞,

lim
x→∞

L (x) = lim
x→∞

lnR

(
1
x

)
= lim

x→0+
lnR (x) = d0.

Therefore, the inverse of L exists and is decreasing from (d0,∞) onto (0,∞) . In this
section, we are devote to present some approximations for L −1 by simple elementary
functions, as applications of our results.

First, from the double inequality (33) we immediately get

1
2
c0 +

c1

x
< L (x) = lnR

(
1
x

)
< c0 +

c1

x
,

which, by replacing (x,L (x)) with
(
L −1 (x) ,x

)
, yields

c1

x− c0/2
< L −1 (x) <

c1

x− c0
(38)

for x > c0 . This implies that some combinations of c1/(x−λi) with λi ∈ [c0/2,c0] ( i =
1, 2, ...) are better approximations for L −1 (x) than c1/(x− c0/2) and c1/(x− c0) ,
for example,

1
2

(
c1

x− c0/2
+

c1

x− c0

)
,

c1√
(x− c0/2)(x− c0)

.
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Second, replacing x by 1/x and letting n = 1 in the double inequality (34), we
obtain

1
2
c0 +

c1

x
+

d−1

12
x− d−3

360
x3 < L (x) = lnR

(
1
x

)
<

1
2
c0 +

c1

x
+

d−1

12
x.

This gives a better approximation for L (x) :

L (x) ≈ 1
2
c0 +

c1

x
+

d−1

12
x,

whose absolute error is less than d−3x3/360. Clearly, it is suitable for the case of
x ∈ (0,1) . Solving the approximate equation above for x gives

x ≈ 6
d−1

(
L − c0/2±

√
(L − c0/2)2 −d−1c1/3

)

if (L − c0/2)2−d−1c1/3 � 0, that is, L > c0/2+
√

d−1c1/3. Since
(
L −1 (x)

)′
< 0

and

d−1

6
d
dx

(
x− c0/2−

√
(x− c0/2)2−d−1c1/3

)
= 1− x− c0/2√

(x− c0/2)2−d−1c1/3
< 0,

we choose the smaller root as an approximation for L −1 (x) .

THEOREM 8. Let c0 , c1 and d−1 be given by (18), (22) and (17), respectively.
Then the inequality

L −1 (x) � 6
d−1

(
x− c0/2−

√
(x− c0/2)2−d−1c1/3

)
= A1 (x) (39)

holds for x � c0/2+
√

d−1c1/3 .

Now let (w1,w2) = (1/2,1/2), (a1,a2) = (1,3) . Simple calculations yield

c0 = ln
a1 +a2

2
− 1

2
ln(a1a2) =

1
2

ln
4
3
≈ 0.14384,

c1 =
1
2

(a1 lna1 +a2 lna2)− a1 +a2

2
ln

a1 +a2

2
=

1
2

ln
27
16

≈ 0.26162,

d−1 =
1/a1 +1/a2

2
− 2

a1 +a2
=

1
6
.

Then we derive a concrete approximation formula for L −1 (x) :

L −1 (x) � A1 (x) = 36

⎛
⎝x− 1

4
ln

4
3
−
√(

x− 1
4

ln
4
3

)2

− 1
36

ln
27
16

⎞
⎠ (40)

for x � ln(4/3)/4+
√

ln(27/16)/6 ≈ 0.19248, where

x = L(y) =
1
2

lnΓ(y)+
1
2

lnΓ(3y)− lnΓ(2y) .
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REMARK 8. From Table 1, we find that the maximum absolute error of the ap-
proximation formula (40) is less 0.04 for x � 0.24895. Clearly, it is suitable for the
case of L −1 (x) � 5/3, that is, the shape parameter in a generalized Gaussian distribute
is not greater than 5/3.

Table 1: The absolute error estimating L −1 (x) by A1 (x)
y L −1 (x) = 1/y x = L(y) A1 (x) A1 (x)−L −1 (x)

7/20 20/7 0.19300 3.95550 1.09840
2/5 5/2 0.20359 2.83440 0.33440
1/2 2 0.22579 2.09740 0.09740
4/7 7/4 0.23856 1.80018 0.05018
3/5 5/3 0.24895 1.70630 0.03963
3/4 4/3 0.28486 1.34700 0.01367
4/5 5/4 0.29705 1.26010 0.01010
9/10 10/9 0.32168 1.11690 0.00579

1 1 0.34657 1.00350 0.00350
4/3 3/4 0.43077 0.75089 0.00089
3/2 2/3 0.47333 0.66716 0.00049

Third, replacing x by 1/x and letting n = 1 in the double inequality (36), we
obtain

c0 +
π2d2

12
1
x2 − d3ζ (3)

3
1
x3 < L (x) = lnR

(
1
x

)
< c0 +

π2d2

12
1
x2 .

This gives another better approximation for L (x) :

L (x) � c0 +
π2d2

12
1
x2 , (41)

whose absolute error is less than d3ζ (3)x−3/3. Clearly, it is suitable for the case of
x ∈ (1,∞) .

THEOREM 9. Let c0 and dr be given by (18) and (17), respectively. Then the
inequality

L −1 (x) � π
√

3d2

6
1√

x− c0
(42)

holds for all x > c0 . Moreover, we have

lim
x→c+

0

(
L −1 (x)− π

√
3d2

6
1√

x− c0

)
= −2ζ (3)

π2

d3

d2
.

Proof. Replacing (x,L (x)) with
(
L −1 (x) ,x

)
in the inequality (41) gives (42).

To obtain the desired limit value, we let L −1 (x)= 1/y , y∈ (0,∞) . Then x = L (1/y)=
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L(y) , and then, by (30), y′ = 1/L′ (y) > 0 for y > 0. Using the Maclaurin series (28)
yields

L −1 (x)− π
√

3d2

6
1√

x− c0
=

1
y
− π

√
3d2

6
1√

L(y)− c0

∼
1
y
−

√
c2√

c2y2 + c3y3 + c4y4
=

1
y

√
c2 + c3y+ c4y2−√

c2√
c2 + c3y+ c4y2

=
1
y

c2 + c3y+ c4y2− c2(√
c2 + c3y+ c4y2 +

√
c2

)√
c2 + c3y+ c4y2

→ c3

2c2
as y → 0,

where ck = dkψ(k−1) (1)/k! for k � 2. This ends the proof.

REMARK 9. Theorem 9 reminds us that

L −1 (x) ≈ π
√

3d2

6
1√

x− c0
− 2ζ (3)

π2

d3

d2
= A2 (x)

as x is near to c0 . Unfortunately, numeric computations show that this approximation
formula A2 (x) is not accurate enough. This way for an improvement of accuracy is to
extend A2 (x) as

A∗
2 (x) = A2 (x)+

n

∑
k=1

βk (x− c0)
pk

with pk > 0 and βk ∈ R , which is still an open problem.

6. Conclusions

This paper is devoted to investigating properties of generalized Gaussian ratio
R (x) defined by (3). By means of some lemmas, we established an integral, asymp-
totic expansion and Maclaurin series representations of the logarithm of generalized
Gaussian ratio lnR (x) , and found that (lnR (x))′ and (lnR (x))′′ are Bernstein and
completely monotonic functions, respectively. More importantly, we showed a validity
of Theorems 6 and 7. The former asserts that the function (−1)m Fm (x) defined by (32)
is completely monotonic on (0,∞) , which not only yields two interesting inequalities
(33) and (34) for the function lnR (x) , but also provides an estimation of remainder of
an asymptotic expansion for lnR (x) . While the latter gives a new double inequality
(37) for the Gurland ratio and offers an estimation of remainder of the Maclaurin series
for lnR (x) . Consequently, several approximate formulas for the inverse of lnR (1/x)
are obtained, which leads to an estimation of shape parameter for generalized Gaussian
distribution.
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