
Mathematical
Inequalities

& Applications

Volume 23, Number 1 (2020), 201–215 doi:10.7153/mia-2020-23-16
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(Communicated by J. Pečarić)

Abstract. In this paper, we introduce generalized relaxed monotone mappings and relaxed invari-
ant pseudomonotone mappings for bi-functions. By using KKM technique, we establish certain
existence results for mixed invex equilibrium problems with the generalized relaxed monotone
mappings and some of the results for invex equilibrium problems with the relaxed invariant
pseudomonotone mappings in Banach spaces.

1. Introduction

The equilibrium problems (EP), which was first introduced by Blum and Oettli
[5] in 1994 has now found applications in various branches of mathematics. It is a
very important tool to solve many typical problems in mathematics like optimization,
variational inequalities and complementarity problems. It includes many mathematical
problems as special cases, such as mathematical programming problems, smooth and
non-smooth optimization problems, etc. see [5, 12, 14].

In recent years many researchers extended the concept of monotonicity in various
directions such as Verma defined P−monotonicity [17], Bianchi et al. discussed quasi-
monotonicity and strict pseudomonotonicity [4] in 2004, Bai et al. have talked about
the concept of relaxed η −α pseudomonotonicity [3] in 2006. These monotonicity
concepts were used to prove the equilibrium problems and variational inequalities prob-
lems in a number of directions [2, 6, 8, 15]. Liu [9] in 2016 studied invex equilibrium
problem under relaxed η −α pseudomonotonicity.

In 2014, Arunchai et al. [1] introduced relaxed η −α pseudomonotonicity: let X
be a real reflexive Banach space with its dual X ′ and 〈·, ·〉 be the pairing between X∗
and X . Let K be a nonempty subset of X and η : K×K → X and α : X → R be the
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mappings with limsupt→0+
α(tη(x,y))

t = 0, ∀(x,y) ∈ K×K . A mapping F : K → X∗ is
said to be relaxed η −α pseudomonotone if for every distinct points x,y ∈ K ,

〈Fy,η(x,y)〉 � 0 =⇒ 〈Fx,η(x,y)〉 � α(η(x,y)).

They have proved the following results for the variational-like inequality (VLI(K,F)):
find a vector x ∈ K such that

〈Fx,η(y,x)〉 � 0, ∀y ∈ K.

THEOREM A. [[1], Theorem 3.1] Let K be a nonempty closed and convex subset
of a real reflexive Banach space X . Let F : K → X∗ and η : K×K → X be mappings.
Assume that:
(i) F is η -hemicontinuous and relaxed η −α pseudomonotone;
(ii) η(x,x) = 0, ∀x ∈ K ;
(iii) η(tx+(1− t)z,y) = tη(x,y)+ (1− t)η(z,y), ∀x,y,z ∈ K, t ∈ [0,1] .
Then x ∈ K is a solution of VLI(K,F) if and only if

〈Fy,η(y,x)〉 � α(η(y,x)), ∀y ∈ K.

THEOREM B. [[1], Theorem 3.2] Let X be a real reflexive Banach space and K
be a nonempty closed convex subset of X . Let T : K → X∗ and η : K ×K → X be
mappings. Assume that
(i) T is relaxed η −α pseudomonotone and η−hemicontinuous;
(ii) η(x,x) = 0 , for all x ∈ K ;
(iii) η(tx+(1− t)z,y) = tη(x,y)+(1− t)η(z,y) , ∀x,y,z ∈ K, t ∈ [0,1] and η is lower
semicontinuous;
(iv) α : X → R is lower semicontinuous.
Then the following statements are equivalent:

(a) There exists a reference point xre f ∈ K such that the set

L<(T,xre f ) := {x ∈ K : 〈Tx,η(x,xre f )〉 < α(η(x,xre f ))},

is bounded.

(b) The variational-like inequality (VLI(K,T)) has a solution.

Moreover, if there exists a vector xre f ∈ K such that the set

L�(T,xre f ) := {x ∈ K : 〈Tx,η(x,xre f )〉 � α(η(x,xre f ))},

is bounded and η(x,y)+η(y,x) = 0, ∀x,y ∈K , then the solution set of variational-like
inequality (VLI(K,T)) is nonempty and bounded.

Mahato and Nahak [11] in 2012 consider (ρ −θ ) pseudomonotone operator with
respect to θ , which is defined as follows: A function f : K ×K → R is said to be
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(ρ − θ )- pseudomonotone with respect to θ if for any pair of distnct points x,y ∈ K ,
one has

f (x,y) � 0 implies f (y,x) � ρ‖θ (x,y)‖2.

They have used the above pseudomonotonicity and proved the following results for the
equilibrium problem (EP): Find a vector x∗ ∈ K such that

f (x∗,y) � 0, ∀y ∈ K.

THEOREM C. [[11], Theorem 4.8] Let K be a nonempty bounded convex subset
of a real reflexive Banach space X . Suppose f : K×K → R is (ρ −θ )- pseudomono-
tone with respect to θ and hemicontinuous in the first argument with the following
conditions:
(i) f (x,y) = 0 , for all x ∈ K ;
(ii) for fixed z ∈ K , the mapping x �→ f (z,x) is convex and lower semicontinuous;
(iii) θ (x,y)+ θ (y,x) = 0 , for all x,y ∈ K ;
(iv) θ is convex in first argument, concave in second argument and lower semicontinu-
ous in the first argument.
Then the equilibrium problem (EP) has a solution.

THEOREM D. [[11], Theorem 4.9] Let K be a nonempty unbounded closed con-
vex subset of a real reflexive Banach space X . Suppose f : K ×K → R is (ρ − θ )-
pseudomonotone with respect to θ and hemicontinuous in the first argument and sat-
isfy the following assumptions:
(i) f (x,y) = 0 , for all x ∈ K ;
(ii) for fixed z ∈ K , the mapping x �→ f (z,x) is convex and lower semicontinuous;
(iii) θ (x,y)+ θ (y,x) = 0 , for all x,y ∈ K ;
(iv) θ is convex in first argument, concave in second argument and lower semicontinu-
ous in the first argument;
(v) f is weakly coercive, that is there exists x0 ∈ K such that f (x,x0) < 0 , whenever
‖x‖→ +∞ and x ∈ K .
Then the equilibrium problem (EP) has a solution.

Again in 2014, Mahato and Nahak [10] have defined generalized relaxed α -
monotonicity and proved some results on mixed equilibrium problems: Let K be a
nonempty closed convex subset of a real reflexive Banach space X and α : K×K → R

be a real valued function. The bi-function f : K ×K → R is said to be generalized
relaxed α -monotone if

f (x,y)+ f (y,x) � α(y,x), ∀x,y ∈ K,

where limt→0
α(ty+(1−t)x,x)

t = 0. The mixed equilibrium problem (MEP) considered by
Mahato and Nahak [10] is to find a vector x ∈ K such that

f (x ,y)+ φ(y)−φ(x) � 0, ∀y ∈ K,

where φ : K → R is a real valued function and f : K ×K → R is an equilibrium bi-
function. They proved the following existence results for the mixed equilibrium prob-
lem (MEP).
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THEOREM E. [[10], Theorem 3.2] Let K be a nonempty bounded closed convex
subset of a real reflexive Banach space X . Suppose f : K ×K → R with f (x,x) =
0, ∀x ∈ K is generalized relaxed α -monotone and hemicontinuous in the first argu-
ment. Let φ : K → R be a convex and lower semicontinuous function. Also assume
that:
(i) for fixed z ∈ K , the mapping x �→ f (z,x) is convex and lower semicontinuous;
(ii) α : X ×X → R is weakly upper semicontinuous in the second argument.
Then the mixed equilibrium problem (MEP) has a solution.

THEOREM F. [[10], Theorem 3.3] Let K be a nonempty unbounded closed con-
vex subset of a real reflexive Banach space X . Suppose f : K×K → R with f (x,x) =
0, ∀x ∈ K is generalized relaxed α -monotone and hemicontinuous in the first argu-
ment; let φ : K → R be a convex and lower semicontinuous function. Assume that:
(i) for fixed z ∈ K , the mapping x �→ f (z,x) is convex and lower semicontinuous;
(ii) α : X ×X → R is weakly upper semicontinuous in the second argument;
(iii) f satisfies the weakly coercivity condition: that is there exists a point x0 ∈ K such
that f (x,x0)+ φ(x0)−φ(x) < 0 , whenever ‖x‖→ +∞ and x ∈ K .
Then the mixed equilibrium problem (MEP) has a solution.

Verma [18] also defined the following strongly pseudomonotone operator and
proved the following result for nonlinear variational inequality problem. Let X be a
real non-reflexive Banach space with its dual X ′ and X ′′ be the dual of X ′ . A mapping
T from subset K of X ′′ into X ′ is said to be strongly pseudomonotone if there exists a
constant r > 0 such that

〈Ty,x− y〉 � 0 =⇒ 〈Tx,x− y〉� r‖x− y‖2, ∀x,y ∈ K.

THEOREM G. [[18], Theorem 2.2] Let K be a nonempty bounded closed and
convex subset of X ′′ and T : K → X ′ be a strongly pseudomonotone operator. If T is
continuous on finite dimensional space, then there exists a unique element x0 in K such
that

〈Tx0,x− x0〉 � 0, ∀x ∈ K,

Recently, Gayatri et al. [13] defined generalized weakly relaxed α - monotonicity:
Let K be a nonempty compact and convex subset of a real reflexive Banach space E
with the dual E∗ and α : E ×E → R be a function. The function φ : K×K×K → R

is said to be generalized weakly relaxed α - monotone if

φ(y,v,w)+ φ(y,w,v) � α(v,w),

with limt→0
d
dt α(tv+(1− t)w,w) = 0. They have used the generalized weakly relaxed

α−monotonicity and proved some existence results of the following mixed equilibrium
problem. Let N : E ×E → E∗ , b : E ×E → R and η : K ×K → E be the functions.
If φ : K ×K×K → R is a function defined by φ(y,v,w) = 〈N(v,y),η(w,v)〉 , then the
mixed equilibrium problem considered by Gayatri et al. [13] is to find a vector w , such
that

φ(y,v,w)+b(w,v)−b(w,w) � 0, ∀v ∈ K.
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Inspired and motivated by these works we proved the results of this paper assuming
that the published results and methods introduced by Arunchai [1] are correct. We
introduce generalized relaxed η −α monotone mappings and relaxed ρ −θ invariant
pseudomonotone mappings for bi-functions. We also introduce a class of equilibrium
problems named as mixed invex equilibrium problem (MIEP). We then prove some
existence results for MIEP with generalized relaxed η −α monotone mappings and
some results for IEP with relaxed ρ −θ invariant pseudomonotone mappings by using
KKM technique in reflexive Banach spaces. The results we establish here extend and
generalize the corresponding results in [1, 9, 11, 10, 16].

2. Preliminaries

In this section we first define the mixed invex equilibrium problem (MIEP) and
then describe how our problem contains some problems in the literature as special cases.
After doing that, we recall some definitions and results that will be required for the proof
of our results. Unless mentioned otherwise, we assume X to be a real reflexive Banach
space and K to be a nonempty subset of X .

DEFINITION 1. Let φ : K → R and η : K×K → X be the mappings. If f : K ×
K → R is an equilibrium bi-function, i.e., f (x,x) = 0, ∀x ∈ K . Then the mixed invex
equilibrium problem (MIEP) is to find a vector x∗ ∈ K such that

f (x∗,η(y,x∗))+ φ(y)−φ(x∗) � 0,∀y ∈ K. (1)

REMARK 1. Now we give some special cases below:

1. If we take φ ≡ 0, then the problem (1) reduces to invex equilibrium problems
(IEP) given by Liu [9] in 2016, that is find a vector x∗ ∈ K such that

f (x∗,η(y,x∗)) � 0, ∀y ∈ K. (2)

2. If we take η(y,x∗) = y , then the problem (1) reduces to mixed equilibrium prob-
lem (MEP) given by Mahato [10]: Find x∗ ∈ K such that

f (x∗,y)+ φ(y)−φ(x∗) � 0, ∀y ∈ K. (3)

3. If we consider η(y,x∗) = y and φ ≡ 0, then the mixed invex equilibrium problem
(1) reduces to classical equilibrium problem (EP) established by Blum and Oettli
[5], that is find a vector x∗ ∈ K such that

f (x∗,y) � 0, ∀y ∈ K. (4)

A real valued function f defined on a convex subset K of X is said to be hemi-
continuous if lim

t→0+
f (tx+(1− t)y) = f (y) for all x,y ∈ K and is said to be positively

homogeneous if f (λx) = λ f (x) for λ > 0. A mapping f : X → R is said to be up-
per semicontinuous at x ∈ X if for any sequence {xn} ∈ X converging to x , we have
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limsupn→∞ f (xn) � f (x) and is said to be weakly lower semicontinuous at x ∈ X if for
any sequence {xn} ∈ X converging weakly to x , we have f (x) � liminfn→∞ f (xn) . If
y1,y2, ...,yn are n elements of K , then the convex hull of y1,y2, ...,yn is denoted by
co{y1,y2, ...,yn} .

DEFINITION 2. [7] The set-valued mapping f : K → 2X is said to be a KKM map-
ping if for any finite subset {y1,y2, ...,yn} of K we have co{y1,y2, ...,yn}⊂⋃n

i=1 f (yi) .

LEMMA 1. ([7]) Let M be a nonempty subset of a Hausdorff topological vector
space X and f : K → 2X be a KKM mapping. If f (y) is closed in X for all y ∈ M and
compact for some y ∈ M, then ⋂

y∈M

f (y) �= φ .

3. MIEP with generalized relaxed η −α monotonicity

In this section we define generalized relaxed η −α monotone mappings for bi-
functions and establish some existence results for mixed invex equilibrium problems
(1) in reflexive Banach spaces by using KKM technique.

DEFINITION 3. A function f : K×K → R is said to be generalized relaxed η −α
monotone if there exists a function η : K×K → X and a function α : K×K → R with

lim
t→0+

α(tη(y,x),x)
t

= 0, ∀(y,x) ∈ K×K such that, for any x,y ∈ K , we have

f (y,η(y,x))− f (x,η(y,x)) � α(η(y,x),x). (5)

REMARK 2. If f (x,y) = 〈Fx,y〉 , η(y,x) = y− x and α(x,y) = β (x) , then the
generalized relaxed η −α monotone mapping f reduces to relaxed α monotone map-
ping F : K → X∗ , where X∗ is the dual of X .

We begin by proving our first result:

THEOREM 1. Let K be a nonempty closed and convex subset of a real reflex-
ive Banach space X and φ : K → R be a convex function. Suppose the mapping
f : K ×K → R with f (x,x) = 0, ∀x ∈ R is generalized relaxed η −α monotone and
hemicontinuous in the first argument. Assume the following conditions:
(i) for any fixed y, z, the mapping x → f (z,η(x,y)) is convex;
(ii) η(x,x) = 0, ∀x ∈ K ;
(iii) η(tx+(1− t)y,z) = tη(x,z)+ (1− t)η(y,z), ∀x,y,z ∈ K, t ∈ [0,1] .
Then the mixed invex equilibrium problem (1) and the following problem (6) are equiv-
alent: Find a vector x∗ ∈ K such that

f (y,η(y,x∗))+ φ(y)−φ(x∗) � α(η(y,x∗),x∗), ∀y ∈ K. (6)
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Proof. Suppose the mixed invex equilibrium problem (1) has a solution, then
∃ x∗ ∈ K such that f (x∗,η(y,x∗))+ φ(y)−φ(x∗) � 0, ∀y ∈ K . Since f is generalized
relaxed η −α monotone, we have f (y,η(y,x∗)) + φ(y)− φ(x∗) � α(η(y,x∗),x∗) +
f (x∗,η(y,x∗))+ φ(y)−φ(x∗) � α(η(y,x∗),x∗) , for all y ∈ K . Thus x∗ ∈ K is a solu-
tion of the problem (6).
Conversely, suppose the problem (6) has a solution. Then, let y ∈ K be any point and
xt = ty+(1− t)x∗, t ∈ (0,1] . Since K is convex, xt ∈ K and hence f (xt ,η(xt ,x∗))+
φ(xt)− φ(x∗) � α(η(xt ,x∗),x∗) . Which gives t f (xt ,η(y,x∗)) + t(φ(y)− φ(x∗)) �
α(tη(y,x∗),x∗), ∀y ∈ K . Thus f (xt ,η(y,x∗))+ φ(y)− φ(x∗) � α(tη(y,x∗),x∗)

t ,∀y ∈ K .
Since f is hemicontinuous in the first argument, we have f (x∗,η(y,x∗)) + φ(y) −
φ(x∗) � 0, ∀y ∈ K .

COROLLARY 1. Theorem 1 generalizes Theorem A of variational-like inequality
problems to equilibrium problems.

THEOREM 2. Let K be a nonempty closed, convex and bounded subset of a real
reflexive Banach space X and φ : K → R be a convex and lower semicontinuous map-
ping. Suppose the mapping f : K ×K → R with f (x,x) = 0, ∀x ∈ R is generalized
relaxed η −α monotone, hemicontinuous in first argument and positively homoge-
neous in second argument. Assume the following conditions:
(i) for any fixed y, z, the mapping x → f (z,η(x,y)) is convex;
(ii) for any fixed y, z, the mapping x → f (z,η(y,x)) is upper semicontinuous;
(iii) for each y ∈ X , the function x → α(η(y,x),x) is weakly lower semicontinuous;
(iv) η(x,x) = 0, ∀x ∈ K ;
(v) η(tx+(1− t)y,z) = tη(x,z)+ (1− t)η(y,z), ∀x,y,z ∈ K, t ∈ [0,1] .
Then the mixed invex equilibrium problem (1) has a solution.

Proof. Consider the set valued mapping F : K → 2X defined by

F(y) = {x ∈ K : f (x,η(y,x))+ φ(y)−φ(x) � 0}, ∀y ∈ K.

We claim that F is a KKM mapping. Suppose F is not a KKM mapping, then there
exists a subset {x1,x2, ...,xn} of K , such that co{x1,x2, ...,xn} �⊆ ⋃n

i=1 F(xi) . That is
there exists x0 ∈ co{x1,x2, ...,xn}, x0 = ∑n

i=1 tixi , where ti � 0, i = 1,2, ...,n , ∑n
i=1 ti =

1, but x0 /∈ ⋃n
i=1 F(xi) . From the definition of F , we have f (x0,η(xi,x0))+ φ(xi)−

φ(x0) < 0, ∀i = 1,2, ...,n . Since ∑n
i=1 ti = 1, for ti � 0, i = 1,2, ...,n , we have

n

∑
i=1

ti( f (x0,η(xi,x0))+ φ(xi)−φ(x0)) < 0. (7)

Since f is positively homogeneous, by using convexity of φ , we get 0 = f (x0,0) =
f (x0,η(x0,x0)) = f (x0,η(∑n

i=1 tixi,x0)) � ∑n
i=1 ti f (x0,η(xi,x0))

< ∑n
i=1 ti(φ(x0)− φ(xi)) = φ(x0)−∑n

i=1 tiφ(xi) � φ(x0)− φ(x0) = 0, which is a con-
tradiction. Thus F is a KKM mapping. If G : K → 2X is another set valued mapping
such that

G(y) = {x ∈ K : f (y,η(y,x))+ φ(y)−φ(x) � α(η(y,x),x), ∀y ∈ K},
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then F(y) ⊆ G(y), ∀y ∈ K . For given y ∈ K , let x ∈ F(y) , then f (x,η(y,x)) +
φ(y)− φ(x) � 0. As f is generalized relaxed η −α monotone mapping, we have
f (y,η(y,x))+φ(y)−φ(x) � α(η(y,x),x)+ f (x,η(y,x))+φ(y)−φ(x) � α(η(y,x),x) .
Hence x ∈ G(y) =⇒ F(y) ⊆ G(y), ∀y ∈ K . As F is a KKM mapping, so is G .

From the definition of G , it is clear that G(y) is weakly closed for all y ∈ K and
since K is closed, bounded and convex, we get G(y) is weakly compact in K for each
y ∈ K . Therefore from Lemma 1 and Theorem 1 we have

⋂

y∈K

F(y) =
⋂

y∈K

G(y) �= φ .

Thus there exists x∗ ∈ K such that f (x∗,η(y,x∗))+ φ(y)−φ(x∗) � 0, ∀y ∈ K . Hence
x∗ is a solution of mixed invex equilibrium problem (1).

COROLLARY 2. If we take η(y,x∗) = y, then we get the solution of MEP, which
was proved by Mahato and Nahak in Theorem E and Sintunavarat in Theorem 14 of
[16].

THEOREM 3. Let K be a nonempty closed, convex and unbounded subset of a
real reflexive Banach space X and φ : K → R be a convex and lower semicontinuous
function. Suppose the mapping f : K×K → R with f (x,x) = 0, ∀x ∈ R is generalized
relaxed η −α monotone, hemicontinuous in first argument and positively homoge-
neous in second argument. Assume the following conditions:
(i) for any fixed y, z, the mapping x → f (z,η(x,y)) is convex;
(ii) for any fixed y, z, the mapping x → f (z,η(y,x)) is upper semicontinuous;
(iii) for each y ∈ X , the function x → α(η(y,x),x) is weakly lower semicontinuous;
(iv) η(x,x) = 0, ∀x ∈ K ;
(v) η(tx+(1− t)y,z) = tη(x,z)+ (1− t)η(y,z), ∀x,y,z ∈ K, t ∈ [0,1];
(vi) f is weakly coercive, that is there exists x0 ∈ K such that f (x,η(x0,x))+ φ(x0)−
φ(x) < 0 , whenever ‖x‖→ +∞ and x ∈ K .
Then MIEP (1) has a solution.

Proof. For r > 0, let Br = {y ∈ K : ‖y‖ � r} . Consider the problem: find xr ∈
K∩Br such that

f (xr,η(y,xr))+ φ(y)−φ(xr) � 0, ∀y ∈ K ∩Br. (8)

By Theorem 2, the problem (8) has at least one solution xr ∈ K∩Br . Choose ‖x0‖ < r
with x0 as in condition (vi). Then x0 ∈ K∩Br and

f (xr,η(x0,xr))+ φ(x0)−φ(xr) � 0. (9)

If ‖xr‖ = r, ∀r , we may choose r large enough, so that f (xr,η(x0,xr)) + φ(x0)−
φ(xr) < 0, which contradicts (9). Therefore there exists an r , such that ||xr|| < r . For
any y ∈ K , we can choose 0 < t < 1 small enough such that xr + t(y− xr) ∈ K ∩Br .
From equation (8), we have 0 � f (xr ,η(xr +t(y−xr),xr))+φ(xr +t(y−xr))−φ(xr) =
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f (xr,tη(y,xr)) + φ(xr + t(y− xr))− φ(xr) � f (xr ,tη(y,xr))+ tφ(y) + (1− t)φ(xr)−
φ(xr) = t f (xr,η(y,xr))+ tφ(y)− tφ(xr) = t[ f (xr,η(y,xr))+ φ(y)−φ(xr)] . Therefore
f (xr,η(y,xr))+ φ(y)−φ(xr) � 0, ∀y ∈ K . Hence MIEP (1) has a solution.

COROLLARY 3. By taking η(y,x∗) = y, we get the solution of MEP, that Mahato
and Nahak proved in Theorem F and Sintunavarat proved in Theorem 16 of [16].

THEOREM 4. Let K be a nonempty closed and convex subset of a real reflexive
Banach space X and φ : K → R be a convex and lower semicontinuous function. Sup-
pose the function f : K ×K → R with f (x,x) = 0, ∀x ∈ R is a generalized relaxed
η −α monotone, hemicontinuous in first argument and positively homogeneous in sec-
ond argument. Assume the following conditions:
(i) for any fixed y, z, the mapping x → f (z,η(x,y)) is convex;
(ii) for any fixed y, z, the mapping x → f (z,η(y,x)) is upper semicontinuous;
(iii) for each y ∈ X , the function x → α(η(y,x),x) is weakly lower semicontinuous;
(iv) η(x,x) = 0, ∀x ∈ K ;
(v) η(tx+(1− t)y,z) = tη(x,z)+ (1− t)η(y,z), ∀x,y,z ∈ K, t ∈ [0,1] .
Then MIEP (1) and the following problem (10) are equivalent:
Find a vector x∗ ∈ K such that the set

B0
x∗ = {y ∈ K : f (y,η(y,x∗))+ φ(y)−φ(x∗) < α(η(y,x∗),x∗)}, (10)

is bounded.

Proof. Suppose the mixed invex equilibrium problem (1) has a solution, then
∃x∗ ∈ K such that f (x∗,η(y,x∗))+ φ(y)−φ(x∗) � 0, ∀ y ∈ K . Since f is generalized
relaxed η −α monotone, we have f (y,η(y,x∗)) + φ(y)− φ(x∗) � α(η(y,x∗),x∗) +
f (x∗,η(y,x∗))+φ(y)−φ(x∗) � α(η(y,x∗),x∗) , for all y ∈ K . Thus, B0

x∗ is empty and
hence bounded.
Conversely, suppose B0

x∗ is bounded, then there is an open ball Ω such that B0
x∗ ∪{x∗}⊂

Ω . But as ∂Ω∩B0
x∗ = φ , we get f (y,η(y,x∗))+ φ(y)−φ(x∗) � α(η(y,x∗),x∗), ∀y ∈

K∩∂Ω . Define the set valued mapping F : K → 2X by

F(y) = {x ∈ K∩Ω : f (x,η(y,x))+ φ(y)−φ(x) � 0}, ∀y ∈ K.

We claim that F is a KKM mapping. Suppose F is not a KKM mapping, then there
exists a subset {x1,x2, ...,xn} of K , such that co{x1,x2, ...,xn} �⊆ ⋃n

i=1 F(xi) . That is
there exists x0 ∈ co{x1,x2, ...,xn}, x0 = ∑n

i=1 tixi , where ti � 0, i = 1,2, ...,n , ∑n
i=1 ti =

1, but x0 /∈ ⋃n
i=1 F(xi) . From the definition of F , we have f (x0,η(xi,x0))+ φ(xi)−

φ(x0) < 0, ∀i = 1,2, ...,n . Since ∑n
i=1 ti = 1, for ti � 0, i = 1,2, ...,n , we have

n

∑
i=1

ti( f (x0,η(xi,x0))+ φ(xi)−φ(x0)) < 0. (11)

Since f is positively homogeneous, by using convexity of φ , we get 0 = f (x0,0) =
f (x0,η(x0,x0))= f (x0,η(∑n

i=1 tixi,x0))� ∑n
i=1 ti f (x0,η(xi,x0))< ∑n

i=1 ti(φ(x0)−φ(xi))
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= φ(x0)−∑n
i=1 tiφ(xi) � φ(x0)−φ(x0) = 0, which is a contradiction. Thus F is a KKM

mapping. If G : K → 2X is another set valued mapping such that

G(y) = {x ∈ K∩Ω : f (y,η(y,x))+ φ(y)−φ(x) � α(η(y,x),x), ∀y ∈ K,

then F(y) ⊆ G(y), ∀y ∈ K . For given y ∈ K , let x ∈ F(y) , then f (x,η(y,x)) +
φ(y)− φ(x) � 0. As f is generalized relaxed η −α monotone mapping, we have
f (y,η(y,x))+φ(y)−φ(x) � α(η(y,x),x)+ f (x,η(y,x))+φ(y)−φ(x) � α(η(y,x),x) .
Hence x ∈ G(y) =⇒ F(y) ⊆ G(y), ∀y ∈ K . As F is a KKM mapping, so is G .
From the definition of G , it is clear that G(y) is weakly closed for all y ∈ K∩Ω . Since
K is closed and convex, K ∩Ω is weakly compact and hence G(y) is weakly compact
in K ∩Ω for each y ∈ K . Therefore from Lemma 1 and Theorem 1 we have

⋂

y∈K

F(y) =
⋂

y∈K

G(y) �= φ .

Thus there exists x∗ ∈ K ∩ Ω such that f (x∗,η(y,x∗)) + φ(y)− φ(x∗) � 0, ∀y ∈ K .
Hence x∗ is a solution of MIEP (1).

COROLLARY 4. Theorem 4 generalizes the Theorem B of Arunchai [1] for vari-
ational inequality problem to the equilibrium problems in case of generalized relaxed
η −α monotone mapping.

4. IEP with relaxed ρ −θ invariant pseudomonotone mapping with respect to η

In this section we define relaxed ρ − θ invariant pseudomonotone mappings for
bi-functions and prove some existence results of invex equilibrium problem (IEP) in
reflexive Banach spaces by using a KKM technique.

DEFINITION 4. Let X be a real reflexive Banach space and K be a nonempty
subset of X . Assume η : K×K → R and θ : K×K → R are the functions and ρ ∈ R
is a constant. A function f : K ×K → R is said to be relaxed ρ − θ invariant pseu-
domonotone mapping with respect to η if for any x,y ∈ K , we have

f (x,η(y,x)) � 0 =⇒ f (y,η(y,x)) � ρ |θ (y,x)|2. (12)

REMARK 3. If f (x,y) = 〈F(x),y〉 , η(y,x) = y− x and ρ = 0, then the relaxed
ρ −θ invariant pseudomonotone mapping f reduces to pseudomonotone mapping F :
K → X∗ , where X∗ is the dual of X .

THEOREM 5. Let K be a nonempty closed and convex subset of a real reflexive
Banach space X . Suppose the mapping f : K ×K → R with f (x,x) = 0, ∀x ∈ R is
relaxed ρ −θ invariant pseudomonotone with respect to η and hemicontinuous in first
argument. Assume the following conditions:
(i) for any fixed y, z, the mapping x → f (z,η(x,y)) is convex;
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(ii) θ (x,y)+ θ (y,x) = 0, ∀x,y ∈ K ;
(iii) θ (x,y) is convex in second argument and concave in first argument.
Then IEP (2) and the following problem (13) are equivalent: Find a vector x∗ ∈K such
that

f (y,η(y,x∗)) � ρ |θ (y,x∗)|2, ∀y ∈ K. (13)

Proof. Suppose the invex equilibrium problem (2) has a solution, then ∃x∗ ∈ K
such that f (x∗,η(y,x∗)) � 0, ∀y ∈ K . Since f is relaxed ρ −θ invariant pseudomono-
tone, we have f (y,η(y,x∗)) � ρ |θ (y,x∗)|2 , for all y ∈ K . Thus x∗ ∈ K is a solution of
problem (13).
Conversely, suppose the problem (13) has a solution. Let y ∈ K be any point and
xt = ty+(1− t)x∗, t ∈ (0,1] . Since K is convex, xt ∈ K and hence f (xt ,η(xt ,x∗)) �
ρ |θ (xt ,x∗)|2 . Thus t f (xt ,η(y,x∗)) � ρ |θ (xt ,x∗)|2 . Now we have the following cases
Case I. For ρ = 0.
f (xt ,η(y,x∗)) � 0. Since f is hemicontinuous in the first argument, we get
f (x∗,η(y,x∗)) � 0, ∀y ∈ K .
Case II. For ρ � 0, let ρ = −k2 .
By convexity of θ in the second argument, we get t f (xt ,η(y,x∗)) � −k2t2|θ (y,x∗)|2
=⇒ f (xt ,η(y,x∗)) � −k2t|θ (y,x∗)|2 . Since f is hemicontinuous in the first argument,
we get f (x∗,η(y,x∗)) � 0, ∀y ∈ K .
Case III. For ρ � 0, let ρ = k2 .
By concavity of θ in the first argument, we get t f (xt ,η(y,x∗)) � k2t2|θ (y,x∗)|2 . Which
gives f (xt ,η(y,x∗)) � k2t|θ (y,x∗)|2 . As f is hemicontinuous in the first argument, we
have f (x∗,η(y,x∗)) � 0, ∀y ∈ K . Combining the results of all the cases, the theorem
is proved.

THEOREM 6. Let K be a nonempty closed, convex and bounded subset of a real
reflexive Banach space X . Suppose the mapping f : K×K →R with f (x,x) = 0, ∀x∈R
is relaxed ρ − θ invariant pseudomonotone with respect to η , hemicontinuous in the
first argument and positively homogeneous in the second argument. Assume the follow-
ing conditions:
(i) for any fixed y, z, the mapping x → f (z,η(x,y)) is convex;
(ii) for any fixed y, z, the mapping x → f (z,η(y,x)) is upper semicontinuous;
(iii) θ (x,y)+ θ (y,x) = 0, ∀x,y ∈ K ;
(iv) θ (x,y) is convex in second argument, concave in first argument and lower semi-
continuous with respect to second argument;
(v) η(x,x) = 0, ∀x ∈ K .
Then IEP (2) has a solution.

Proof. Consider the set valued mapping F : K → 2X defined by

F(y) = {x ∈ K : f (x,η(y,x)) � 0}, ∀y ∈ K.

We claim that F is a KKM mapping. Suppose F is not a KKM mapping, then there
exists a subset {x1,x2, ...,xn} of K , such that co{x1,x2, ...,xn} �⊆ ⋃n

i=1 F(xi) . That is
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there exists x0 ∈ co{x1,x2, ...,xn}, x0 = ∑n
i=1 tixi , where ti � 0, i = 1,2, ...,n , ∑n

i=1 ti =
1, but x0 /∈ ⋃n

i=1 F(xi) . From the definition of F , we have f (x0,η(xi,x0)) < 0, ∀i =
1,2, ...,n . Since ∑n

i=1 ti = 1, for ti � 0, i = 1,2, ...,n , we have

n

∑
i=1

ti f (x0,η(xi,x0)) < 0. (14)

Since f is positively homogeneous, we get 0 = f (x0,0) = f (x0,η(x0,x0))
= f (x0,η(∑n

i=1 tixi,x0)) � ∑n
i=1 ti f (x0,η(xi,x0)) < 0, which is a contradiction. Thus F

is a KKM mapping. If G : K → 2X is another set valued mapping such that

G(y) = {x ∈ K : f (y,η(y,x)) � ρ |θ (y,x)|2, ∀y ∈ K,

then F(y)⊆G(y), ∀y ∈ K . For given y∈ K , let x ∈ F(y) , then f (x,η(y,x)) � 0. As f
is relaxed ρ −θ invariant pseudomonotone, we have f (y,η(y,x)) � ρ |θ (y,x)|2, ∀y ∈
K . Hence x ∈ G(y) =⇒ F(y) ⊆ G(y), ∀y ∈ K . As F is a KKM mapping, so is G .
From the definition of G , it is clear that G(y) is weakly closed for all y∈K and since K
is closed bounded and convex, G(y) is weakly compact in K for each y∈K . Therefore
from Lemma 1 and Theorem 5, we have

⋂

y∈K

F(y) =
⋂

y∈K

G(y) �= φ .

Thus there exists x∗ ∈ K such that f (x∗,η(y,x∗)) � 0, ∀y ∈ K . Hence x∗ is a solution
of IEP (2).

COROLLARY 5. Theorem 6 is a proper generalization the Theorem C from equi-
librium problem (EP) to invex equilibrium problem (IEP).

THEOREM 7. Let K be a nonempty closed, convex and unbounded subset of a
real reflexive Banach space X . Suppose f : K×K → R with f (x,x) = 0, ∀x ∈ R is a
relaxed ρ −θ invariant pseudomonotone mapping with respect to η , hemicontinuous
in the first argument and positively homogeneous in the second argument. Assume the
following conditions:
(i) for any fixed y, z, the mapping x → f (z,η(x,y)) is convex;
(ii) for any fixed y, z, the mapping x → f (z,η(y,x)) is upper semicontinuous;
(iii) θ (x,y)+ θ (y,x) = 0, ∀x,y ∈ K ;
(iv) θ (x,y) is convex in second argument, concave in first argument and lower semi-
continuous with respect to second argument;
(v) η(x,x) = 0, ∀x ∈ K ;
(vi) f is weakly coercive, that is there exists x0 ∈ K such that f (x,η(x0,x)) < 0 , when-
ever ‖x‖→ +∞ and x ∈ K .
Then IEP (2) has a solution.

Proof. For r > 0, let Br = {y ∈ K : ‖y‖ � r} . Consider the problem: find xr ∈
K∩Br such that

f (xr,η(y,xr)) � 0, ∀y ∈ K ∩Br. (15)
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By Theorem 6, problem (15) has at least one solution xr ∈ K ∩Br . Choose ‖x0‖ < r
with x0 as in condition (vi). Then x0 ∈ K∩Br and

f (xr,η(x0,xr)) � 0. (16)

If ‖xr‖= r, ∀r , we may choose r large enough, so that f (xr,η(x0,xr)) < 0, which con-
tradicts (16). Thus there exists an r such that ||xr|| < r . For any y ∈ K , we can choose
0 < t < 1 small enough such that xr + t(y− xr) ∈ K ∩Br . From equation (15), we
get f (xr,η(xr + t(y− xr),xr)) � 0 =⇒ 0 � t f (xr,η(y,xr))+(1− t) f (xr,η(xr,xr)) =
t[ f (xr,η(y,xr))] . Therefore f (xr,η(y,xr)) � 0, ∀y ∈ K and hence IEP (2) has a solu-
tion.

COROLLARY 6. Theorem 7 generalizes Theorem D from equilibrium problem (EP)
to invex equilibrium problem (IEP).

THEOREM 8. Let K be a nonempty closed convex subset of a real reflexive Ba-
nach space X . Suppose f : K ×K → R with f (x,x) = 0, ∀x ∈ R is a relaxed ρ − θ
invariant pseudomonotone mapping with respect to η , hemicontinuous in the first ar-
gument and positively homogeneous in the second argument. Assume the following
conditions:
(i) for any fixed y, z, the mapping x → f (z,η(x,y)) is convex;
(ii) for any fixed y, z, the mapping x → f (z,η(y,x)) is upper semicontinuous;
(iii) θ (x,y)+ θ (y,x) = 0, ∀x,y ∈ K ;
(iv) θ (x,y) is convex in second argument, concave in first argument and lower semi-
continuous with respect to second argument;
(v) η(x,x) = 0, ∀x ∈ K .
Then IEP (2) and the following problem (17) are equivalent:
Find a vector x∗ ∈ K , such that the set

B0
x∗ = {y ∈ K : f (y,η(y,x∗)) < ρ |θ (y,x∗)|2}, (17)

is bounded.

Proof. Suppose the invex equilibrium problem (2) has a solution, then ∃x∗ ∈ K
such that f (x∗,η(y,x∗)) � 0, ∀y ∈ K . Since f is relaxed ρ −θ invariant pseudomono-
tone, we have f (y,η(y,x∗)) � ρ |θ (y,x∗)|2, ∀y ∈ K . Thus B0

x∗ is empty and hence
bounded.
Conversely, suppose the set B0

x∗ is bounded, then there is an open ball Ω such that
B0

x∗ ∪{x∗} ⊂ Ω . As ∂Ω∩B0
x∗ = φ , we get f (y,η(y,x∗)) � ρ |θ (y,x∗)|2, ∀y ∈ K ∩∂Ω .

Consider the set valued mapping F : K → 2X defined by

F(y) = {x ∈ K ∩Ω : f (x,η(y,x)) � 0}, ∀y ∈ K.

We claim that F is a KKM mapping. Suppose F is not a KKM mapping, then there
exists a subset {x1,x2, ...,xn} of K , such that co{x1,x2, ...,xn} �⊆ ⋃n

i=1 F(xi) . That is
there exists x0 ∈ co{x1,x2, ...,xn}, x0 = ∑n

i=1 tixi , where ti � 0, i = 1,2, ...,n , ∑n
i=1 ti =
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1, but x0 /∈ ⋃n
i=1 F(xi) . From the definition of F , we have f (x0,η(xi,x0)) < 0, ∀i =

1,2, ...,n . Since ∑n
i=1 ti = 1, for ti � 0, i = 1,2, ...,n , we have

n

∑
i=1

ti f (x0,η(xi,x0)) < 0. (18)

Since f is positively homogeneous in the second argument, we get 0 = f (x0,0) =
f (x0,η(x0,x0)) = f (x0,η(∑n

i=1 tixi,x0)) � ∑n
i=1 ti f (x0,η(xi,x0)) < 0, which is a con-

tradiction. Thus F is a KKM mapping. If G : K → 2X is another set valued mapping
such that

G(y) = {x ∈ K : f (y,η(y,x)) � ρ |θ (y,x)|2, ∀y ∈ K,

then F(y)⊆G(y), ∀y ∈ K . For given y∈ K , let x ∈ F(y) , then f (x,η(y,x)) � 0. As f
is relaxed ρ −θ invariant pseudomonotone, we have f (y,η(y,x)) � ρ |θ (y,x)|2, ∀y ∈
K . Hence x ∈ G(y) =⇒ F(y) ⊆ G(y), ∀y ∈ K . As F is a KKM mapping, so is G .
From the definition of G , it is clear that G(y) is weakly closed for all y ∈ K∩Ω . Since
K is closed and convex, we have K ∩Ω is weakly compact and hence G(y) is weakly
compact in K ∩Ω for each y ∈ K . Therefore from Lemma 1 and Theorem 5 we have

⋂

y∈K

F(y) =
⋂

y∈K

G(y) �= φ .

Thus there exists x∗ ∈ K ∩Ω , such that f (x∗,η(y,x∗)) � 0, ∀y ∈ K . Hence x∗ is a
solution of IEP (2).

REMARK 4. Theorem 8 is a generalization of Theorem B from variational in-
equality problem to the equilibrium problems in case of relaxed ρ −θ invariant pseu-
domonotone mapping with respect to η .
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