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ON STEVIC-SHARMA OPERATORS FROM
HARDY SPACES TO STEVIC WEIGHTED SPACES

ZHITAO GUO™ AND YONGLU SHU

(Communicated by J. Pecaric)

Abstract. In this paper, we investigate the boundedness and compactness of Stevi¢-Sharma op-

eraFor Ty, .y,.p from Hardy space H” to Stevi¢ weighted space WH(") on the unit disk, and
estimate the norm of 7y, y,,o When it is bounded.

1. Introduction

Let D denote the open unit disk in the complex plane C, 57 (D) the space of all
holomorphic functions on D, N the set of all positive integers.
The Hardy space H? = H?(D), 0 < p < oo, consists of all f € 77 (D) such that

= sup [ £ )2l <
0<r<1/0 2r

With this norm H? is a Banach space when 1 < p < oo, while for 0 < p < 1 it
is a topological vector space with the translation invariant metric d(f,g) = ||f — g5,
f,g € H? , which is not locally convex. For more information about the H? spaces, one
may consult [2].

A positive continuous function ¢ on [0,1) is called normal if there exist two posi-
tive numbers s and ¢ with 0 < s < ¢, and § € [0, 1) such that (see [15])

uir) . : Coop(r)
- is decreasing on [0, 1), 1{1} - =0;
uir) .. : Lou(r)
=y is increasing on [, 1), 11_13 (=
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Let 1 (z) = u(|z]) be a normal function. The Stevié¢ weighted space on D, denoted

by Wu(n) = %J(n)(ID), was introduced by Stevié in [16] (it was called the nth weighted
space there; see also [19, 22]) and consisted of all f € (D) such that

1fllu = supp()|f™ ()] <o, neN.
zeD

For n =0 the space becomes the weighted-type space H,;, for n =1 the Bloch-
type space %, and for n =2 the Zygmund-type space Z, (the notation was essentially
introduced in [6]). For some results on the space, their generalizations, and operators

on them see, for example, [5, 6, 7, 8, 9, 10, 17, 20, 24, 29]. Wu(") becomes a Banach
space normed by

n—1 .
11,0 = 2, 1F20) [+ 1]
u j=0

It is well known that the differentiation operator D is defined by

(Df)(2) = f(2), [feAD).

Let u € (D), then the multiplication operator M, is defined by

Mf)(2) =u(x)f(2), [feA D).

Recently there has been some interest in product-type operators (see, for example,
[5,7,8,10, 11, 13, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28] and the related references
therein).

Let ¢ be an analytic self-map of . The composition operator Cy, is defined by

(Co)(2) = f(9(2), feH (D).

In [14], Sharma defined six product-type operators as follows:

(M,CoDf)(2) = u(2)f (9(2)),

(MDCy f)(2) = u(2)¢'(2)f (¢(2))

(CoMuDf)(z) = u(9(2)) f (9(2)).

(DMCyf)(2) = u' (2)f (9(2) +u(2)¢'(@)f (¢(2)),
(CoDMuf)(z) =1 (9(2)) f(9(2)) +u((2) ' (9(2),
(DCpM.f)(2) = u (9(2) ¢ (2)/ (#(2) +u(0(2)) ¢ (2)f (9(2)

forzeD and f € (D).
Stevi¢ and Sharma introduced the following so-called Stevi¢-Sharma operator to
treat the operators above in a unified manner:

(Ty1y2.0./) (@) = w1 () f (0(2) +v2(2)f (0(2)), [ €A (D),
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where Y1, ¥, € (D) and ¢ is an analytic self-map of D (see, for example, [25] and
[26]).

By taking some specific choices of the involving symbols, we can obtain the above
mentioned six product-type operators:

MuC(PD =T, U, Q5 MuDC(p =T NTIONGR) C(pMuD =T JUOP, Q5

DMCy =Ty uy 05 CoDMy =Ty 4y 95 DCoMy= Ty 10p o/uop,o-

Quite recently, many authors considered Stevi¢-Sharma operator Ty, v, and
characterized the boundedness and compactness between various spaces. For instance,
Jiang in [3] studied the boundedness and compactness of Ty, y,,» from Zygmund space
to Bloch-Orlicz space. Liu and Yu in [12] completely described the boundedness
and compactness of Ty, y, ¢ from the Besov space B, (1 < p < eo) into the (little)
weighted-type space. Yu and Liu in [28] investigated the boundedness and compact-
ness of the operator Ty, v, from H* space to the logarithmic Bloch space. Zhang and
Zeng in [30] characterized the boundedness and compactness of the weighted differen-
tiation composition operator from weighted Bergman space to Stevi¢ weighted space.
Stevi¢ in [19] studied the composition operator from Hardy space to Stevi¢ weighted

space on the unit disk: Cy : HP — V/ﬂ(") is bounded if and only if

( ) zkll Ton |H ( )kj
sup I <oo, k=1,2,---,n,
(1l

where for each fixed k € {1,2,---,n}, the sum is over all non-negative integers ki,k,
-,k, such that k = k; +ky +---+k, and k; +2ky +--- +nk, = n. Zhang and Liu
in [29] studied the boundedness and compactness of Stevi¢-Sharma operator Ty, y, ¢
from Hardy space to Zygmund-type space on the unit disk. Recall that Zygmund-type
space is a special Stevi¢ weighted space for n = 2. It is of some interest to extend the
results for the case of Stevi¢ weighted space V/ﬂ("). For this purpose, we first present
a formula for the n-th-order derivative of Ty, y, ¢ f, which is a simple consequence of
a formula in [21] (see also [22]), and is based on the classical Faadi Bruno’s formula
(see, e.g., [4]). To prove our main results on the boundedness and compactness of the
operator from Hardy space to Stevi¢ weighted space, we follow the methods and ideas,
for example, in [16, 19, 21, 22].
In what follows, we use the letter C to denote a positive constant whose value may
change at each occurrence. The notation a < b means that there is a positive constant
C such that a < Cb. Moreover, if both a < b and b < a hold, then one says that a < b.

2. Preliminaries

In this section we formulate some auxiliary results which will be used in the proof
of the main results. The following two lemmas are folklore (see, for example, [19]).
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LEMMA 1. Assume that 0 < p <o, f € H and n € Ny. Then there is a positive
constant C independent of f such that

1S | 2

1" (2)] < c————,

zeD.

LEMMA 2. Let 0 < p <o, j&N. Fora fixed ® €D, set
(1-loP)’

h J\&) = i)
w,J( ) (1_62)%"'_/

zeD,

then there is a positive constant C; such that he j € HP and sup ||he,j||mr < C;.
weD

LEMMA 3. Let a > 0 and

1 1 1
a a+1 a+n+1
Dyi2(a) = . .

folat ) Mj—glatj+1) - Tjgla+j+n+1)
Then Dy»(a) = H?i%j!.
Proof. Replacing n by n+2 in [16, Lemma 2.3], the lemma easily follows. [

LEMMA 4. [21, Lemma4] Assume that n € N, u, f € 5 (D) and ¢ is an analytic
self-map of D. Then

W@ (0@)" = 3 1P (p(0)) 3. (2B (0 (2), 9" (@), 0 2)),
1=k

! () k;j
Blak((P/(z),(p”(Z)f"7¢(l_k+l)(z)) _ z kl‘l'kl' H <(P J (Z)) ,

! !
LSERR Jj=1 J:

and the sum is overall non-negative integers ky,---,k; satisfying ky +ky+---+k =k
and k1 +2ky + -+ 1k = 1.

By using Lemma 4, we can get the following lemma.

LEMMA 5. Assume that n € N, yy,yn, f € (D) and ¢ is an analytic self-map
of D. Then

n+1

(TW17W27<Pf(Z)) "= kzbf(k) (‘P(Z))Qk(z),
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where
v (2), k=0,
05— J TG B9 @), 9 (@)
+314 G ‘Vz(nil) (D)Bri-1(¢'(2),, 0" (2)), k=1,2,---.n,
V2 (2)9'(2)", k=n+1.

Proof. By a direct calculation, we have

(Tu/w/zxpf (Z)) &

=@ (9) " + (wa(2)f (9(2))) "

=3 9 (p) X " @B (0 (2), 9" (@), 0 ()
k=0 1=k

£ 3 14 () 3 DB (¢ (2,97 (2,01 (2))
k=0 1=k

D1 (0) + 3 0 (00) 3 "D @Bi (¢ 2). 0! F V()
k=1 1=k
n+1
+ i f90@) Y Ayl @B (0:),, 0! (2))

»
Il
I
-
Il

M= +Ps
L

9 (0) 3y DB (¢ @), 0 (@)
1=k

w-
Il
-

" @Brx1 (02, 0 (2))

M=

+3 9 (p(2))
k=1 1

+ " (0(2)) ya(2) @' ()"

Therefore, the lemma is established. [
The following lemma characterizes the compactness in terms of sequential con-
vergence.

1
T
L

LEMMA 6. Suppose that 0 < p < e, W1,y € (D), ¢ is an analytic self-map

of D. Then Ty, y,,p : H® — V/ﬂ(") is compact if and only if Ty, vy, : HP — %n)

is bounded and for any bounded sequence {fi}icny in HP which converges to zero

uniformly on compact subsets of D as i — oo, we have H Ty p.0fi H«//(") — 0 asi— oo.
u

Proof. The proof is inspired by the classical argument as in [1, Proposition 3.11].
Here we outline the proof for completeness. Since p(z) is a normal function on D,
similar to the inequality (2.6) in [20], we have that

l2l ¢
V@I < UL <l+/o Wtw)
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for every z € D. If K is compact, then it belongs to a closed disk McDh, re [0,1),
so that

(n—1) <C
I§1€E}?|f (2)] < KHf||%<n)7

where Cx = C(1 +f0’%)

From this and since

@ <20+ [ 16
for every z € D, it follows that
lglea}gi\f("_z)(zﬂ < A+ClIfL, -
By repeating use of the procedure we get that there is a constant C such that
If ) <C}(||fH%(n> (D

forall z€ K.
Now we suppose that Ty, y,.¢ : HP — V/ﬂ(m is compact, then it is clear that

Ty, o0  HP — 7/“(") is bounded. Let {f;}icny be a bounded sequence which con-
verges to zero uniformly on compact subsets of D as i — co. We need to show that
||Tu/1,u/z,<pfiH%(n> — 0 as i — oo. If the conclusion is false, then there exists an € >0

and a subsequence i; < ip < --- such that

forall j=1,2,---. Since {fi} is a bounded sequence and Ty, y,.p iS a compact oper-
ator we can find a further subsequence i; <i;, <--- and f € V/ﬂ(") such that

1Ty1.v.0fi, —fH%(m —0 3)
as k — oo, By (1),
|TW171I/27(P.fijk (2) = f(2)| < CHTwl.,u/zxpﬁ,k —f”%(n% “)
From (3) and (4) it follows that

Ty yn.0fi, (2) = f(z) = 0 ®)

uniformly on compact subsets of ). Moreover, since f,-jk — 0 uniformly on compact

subsets of D, by Cauchy’s estimate, fl// — 0 uniformly on compact subsets of D.
k

Since {¢(z)} is a compact set,

Ty v, (2) = W25, (02) + ¥2(@)f, (9(2) =0
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foreach z € D. Thus by (5), f =0. Hence (3) yields || Ty, y,.¢fi), Il — 0 as k— oo,
u

which contradicts (2). Therefore, we must have ||Ty,,yy ¢ fil| , w — 0 asi— .
u

Conversely, suppose that Ty, y, ¢ : H” — 7/“(") is bounded. Let {g;} be a bounded
sequence in H?. We can suppose without loss of generality that {g;} belongs to the
unit ball B of H”, then by Lemma 1 we have

lgiller C . LeD,

lgi(z)| <C T < T
(L=1[z)r  (1—z?)?

where C is a positive constant independent of g;. Thus {g;} is uniformly bounded on
compacts of I and consequently normal by Montel’s theorem. Hence, we may extract
a subsequence {g,-j} that converges uniformly on the compact subsets of D to some
g € #(D). By using Fatou’s lemma we can obtain

o4
P i0y|p
gl = sup g(re —
lelf = sup [ s
2 0. dO
= su lim g;, (re'®)|P =
O<rI<)1 0 |J‘H°°glj( )‘ 2n
2 0. dO
< liminf sup |gij(re’e)\’7— <1,
J7 0<r<17/0 2n

whence g € H” and ||g||n» < 1. Therefore, {g;;, — g} is a bounded sequence in H” and
converges to zero on the compact subsets of D as j — co. By the hypotheses we have

that Ty, yy,08i; — Ty, yr.08 in V/ﬂ(m as j — oo. Thus the set Ty, y,,o(B) is relatively
compact, which finishes the proof. [J

3. Main Results

In this section, we characterize the boundedness and compactness of Ty, y,.¢ :
HP — V/ﬂ(n) .

THEOREM 1. Assume that 0 < p <o, Wi, yp € S (D), @ is an analytic self-map
of D. Then Ty, y,,p : HP — V/ﬂ(n) is bounded if and only if
Q
o i sup M%)

SR A i k=0,1,---,n+1. (6)
1
€D (1 |o(z))2) 7™

Moreover, if the operator Ty, y,.o : HP — V/ﬂ(") is nonzero and bounded, then

n+1
1Ty ol oy = Y I. (7)
K k=0
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Proof. Suppose that (6) holds. For each f € H”, by Lemmas 1 and 5, we have

n+1

.U()’(Tlmwwf) | ZV( ))||Qk(z)|

| (2]
1
=0 (1= o)) ™
n+1

<C Y L\ fllar-
k=0

<Cu(z)

We also have that

n—1 —1j+1
3 TNV O)] < 3, 3 179 (0(0)][2(0)
j=0 j=0k=0

n—1j+1 Hf”HI”Qk |

< Cr
fngo (1-|pO)p)7*

itfollows that [Ty, y, o], < C] Fllae S 1. Thus Ty, y, o - HP — #,") is bounded
and

n+l
1Ty, ¢||H,,HW Z Iy ®)

On the other hand, suppose that Ty, y, o : H? — 7/,}") is bounded. For a fixed

o € D, and constants cg,cy,---,Cpt1, Set
n+1 1 ‘(D|2 Jjt+l1
9= e )+ H ®
=0 (1-az)r™
By Lemma 2, we have that f, € H?, sup || fp]| < C, and
weD
l n+1
fol®) = ———1 Y ¢, (10)
(1—|o)7 j=0
" o ntl =1
(@)= ———= X [[C+j+1+n, =12+l (D)
(1-lop)r™ 0P
We claim that for each k € {0,1,---,n+ 1}, there are constants cq,ci,++,Cnt1
such that
(0) o )
fw (60):77 fw ((0)207 t6{07177n+1}\{k} (12)

(l . |w‘2)%+k
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In fact, from (10) and (11) it follows that (12) is equivalent to the following system of
liner equations

co+ci+--+cepr1 =0,
co(%+1)+ei(3+2) 4+ +cua(5 +n+2)=0,

OIl_o(5+ 14+ Tl_g(3+ 2471+ +ellg(L +n+2+r)=0.

(13)

Applying Lemma 3 with a = % + 1, we have that the determinant of system (13)
is different from zero, from which the claim follows. For each k € {0,1,---,n+ 1}, we
choose the corresponding family of functions that satisfies (12) and denote it by fi, .
Thus, by using Lemma 5 and the boundedness of Ty, y,,¢ : H? — 7/“("), for o e D
such that [p(w)| > 1,

()[4 (w)|

su :
1+k

lo(@)>4 (1—lo(®)]?)

< C||Tu/1.,u/z.,qof<p(w),k\%n> < [Ty, ys,0 \Hh%w (14)

Taking the test functions /;(z) =z € H?, k=0,1,---,n+ 1, and applying Lemma 5
to ho(z) = 1, we can get

(T amohn(2) ™ = Qo) = v (2),
which along with the boundedness of Ty, y,,¢ : HX — ”‘//ﬂ(n) implies that
supu(z)|§20(z)’ < CHTWMI/LKPHHPHW(")' (15)
zeD u

Now assume that we have proved the following inequalities

sup(2)|Qi(z)| < oo, i€ {12, k—1}, 2<k<n+1. (16)
zeD

Applying Lemma 5 to 7 (z) = z*, we have
(Tl!/ulllzﬂl)hk(z))

k—1
=(0(2) Qo(2) + 3 k(k—1)-- (k—s+ 1) (9(2) 7 Q(2) + k! (2),
s=1

(n)

from which, along with the boundedness of Ty, y, .o : H” — V/ﬂ(") , the fact that || @||e <
1, the triangle inequality, (15), and using hypothesis (16) we can obtain

SUHI:;,U(Z)}Q]C(Z” <C||TW17W27(P||HP_>W(% kE{O,l,,n+1} (17)
IS

n
u
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Then
p (o) (w)
sup } J+k < Csup ,u(a))}Qk(a))} < C|| Ty, .0 ‘Hp—w//(”)' (18)
o@l<h (1—|p(w)?)? <D g

By using (14) and (18), we can get (6) and
n+1
2 e <ClTy il 0 19
k=0 H

From (8) and (19) it follows that the asymptotic expression (7) holds. [

THEOREM 2. Assume that 0 < p < oo, yi,yn € (D), ¢ is an analytic self-
map of D. Then Ty, y,.p : H — V/ﬂ(") is compact if and only if Ty, y,.¢ : H' — 7/“(")
is bounded and for each k € {0,1,---,n+ 1},

M)

S N 20
PRI (1 - p(z)2) 7t e

Proof. Suppose that Ty, y,.p : HP — V/ﬂ(") is compact. It is clear that Ty, y,.¢ :

HP — Wﬁ(n) is bounded. Let {z;};,eny be a sequence in D such that |@(z;)] — 1 as
i— oo Let foik k€ {0,1,---,n+ 1} be as defined in the proof of Theorem 1 that
satisfies (12). Then the sequence { f(p(zi),k}iGN is bounded in H” and converges to zero

uniformly on compact subsets of D as i — oo. Since Ty, y,, : H’ — 7/“(") is compact,
by Lemma 6, we have that for each k € {0,1,---,n+ 1},

I-ILIE)HTW17W27(Pf(p(zi)7k||Wu(n) =0. (21)
Then

K1) 9 (@) [ | % ()]
(1-loG)]2)? ™

which along with |@(z;)| — 1 as i — oo and (21) implies that

< HT‘I/17‘I/27(Pf(P(Zi),k||7/H(")7

i _A@IE] i@

1 i I
P (1 - o)) (1-lop@)R)""*

foreach k € {0,1,---,n+ 1}, from which (20) holds.

On the other hand, assume that Ty, y, ¢ : H? — ”‘//ﬂ(n) is bounded and (20) holds.

Let {fi}ieny be a sequence in H? such that sup| fi|lw» < L and f; converges to 0
ieN

=0
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uniformly on compact subsets of D as i — co. By the assumption, for any € > 0, there
existsa 8 € (0,1) such that whenever § < |p(z)] <1,

Q(z
Z>|—"(2)Lk<»s k=0,1,.n+1. 22)
(1-lo@)P)"
Then we have
||Tw1,wz,<pﬁH%(n)
n—1
= |(Tu/1,u/z<pfz |+SUPI~L()|(TW17Wz,<pﬁ)(">(Z)’
j=0
n—1|j+1
<3S b))
n+1 ) n+1 ®)
+ sup pu(z)| X i (0R@) %R+ sup w2 Y57 (0)u(2)
lo(2)|<6 k=0 5<|p(z)|<1 k=0
=+ + s

Now we estimate J, J, and J3, by Cauchy’s estimate we have

£2(p0) ~0 and  sup £ (p(2) 0.
lo()|<8é

By using (23) and (17) in Theorem 1, we can easily get that

-3

j=0

(23)

j+1

3 Qk(O)' —0, (24)

k=0

and

n+1

Y 19 (p(2) ()

k=0

Jy= sup u(z)
lp(2)|<5

— 0. (25)
By Lemma 1 and (22), we have

n+1

Zf( 7)) Qi(2)

Ji= sup u(z
5<|o(z)|<1

n+1
1(z)| (2
<Clily, s MDA
k=08<le@)I<1 (1 —|o(z)|?)”
<CL(n+2)e.

(26)
From (24), (25) and (26) it follows that lim ||y, v, ¢ fill

o = 0. Applying Lemma 6
the implication follows. [l
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