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THE OPTIMAL CONSTANT IN GENERALIZED HARDY’S INEQUALITY

YING L1 AND YONG-HUA MAO*

(Communicated by S. Varosanec)

Abstract. We obtain the sharp factor of the two-sides estimates of the optimal constant in gener-
alized Hardy’s inequality with two general Borel measures on R, which generalizes and unifies
the known continuous and discrete cases.

1. Introduction

Hardy’s inequality is a powerful technical tool not only in advanced theoretical
studies of the spectrum of non-negative self-adjoint differential operators such as ellip-
tic operators [6, 20], but also in the study of probability such as the stability of diffusion
processes or birth-death processes [4, Chapter 6]. Our motivation is to study the sta-
bility of generalized diffusion processes. However, we shall deal with this problem in
separate papers.

For p > 1 and any non-negative number sequence {a, },>1 such that ¥ '~ af <
+eo, Hardy’s inequality was given by

- ar| < (—) al (H
n=1 \"" k=1 p—1) =
P
in [8], the optimal constant (;%1) was fixed by Landau, Schur and Hardy in [12].
The continuous analogue of Hardy’s inequality (1) was introduced in [8] as

WLl aes G ) [owrae o

for p>1 and f > 0 such that f € LP(R"), the optimal constant (ﬁ)p was fixed
by Hardy in [9].

Afterwards, Hardy’s inequality has been generalized in various direction. In [19],
Prokhorov gave necessary and sufficient conditions for validity of Hardy’s inequality
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with three measures. He also claimed that the Hardy’s inequality with three measures
can be reduced to the following case with two measures. Let 1 < p < g < oo, U,V
be o -finite Borel measures on R, consider

[/R (/(_N’x)fdvydu(x)} oy (/]prdv>l/p' N

A two-sided estimate for the best constant A can be given as
B<A<k(q,p)B, )

where the constant k(g, p) can be taken as p'/4(p*)'/P" and B is defined in (6) below.
This findings generalize many existing estimates. For example, please refer to [3, 17]
for both 1 and v absolutely continuous with respect to Lebesgue measure and refer to
[14, 16] for both u and v discrete measures.

When u and v are both absolutely continuous with respect to Lebesgue measure,
Maz’ya ([15]) presented the factor k(g,p) as (¢*)"/7"¢'/4 for 1 < p < g < +oo, Opic
and Kufner ([18]) improved it to (14¢/p*)"4 (14 p*/q)"/?" for 1 < p < g < +oo.
When p = g, the factor p'/4(p*)'/?", (g")/7"q'/4 and (1+q/p*)"? (14 p*/q)"/""
are the same and [10, Theorem 326 and 327] indicates the factor is sharp. For 1 < p <
g < +oo, Chen ([5]) obtained a sharp factor as

, 1/p—1/q
b = (B(l/r, E 1>/r>> ’ )

where B(a,b) = [y x*'(1 —x)’"'dx and r=g/p— 1.

When u and v are both discrete measures, Liao ([13]) gave the factor k(q, p) as
kgpin (5) for 1 < p < g < +oo.

A natural question is whether one can also improve the factor (g, p) to the sharp
kq,p for the above Hardy’s inequality (3) concerning two general o -finite Borel mea-
sure? In the present paper, we will give an affirmative answer to this question as follows.

THEOREM 1. Let 1 < p < q < +oo, U and v be two © -finite Borel measures on
R. Set

B = supv((—eo,2)/7 ([r, +o)) /4. ©)

xeR

If A is the optimal constant such that for all f: R — R,

I

1/p

wao] " <alfrepve) o)

q

| Jov@)
then
B<A<ky,B

with kg, defined in (5).
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REMARK 1. (1) Theorem I does not include Liao’s result ([13]) since the Hardy
operator with integral over (—eo,x) is different from the Hardy operator with integral
over (—eoo,x], when the inner measure has atoms. In fact, (7) is weaker than the classi-
cal Hardy’s inequalities when both 1 and v are discrete.

(2) According to [13, p.809], when p — ¢, the factor k, , = p!/Pp*l/P" which
is consistent with the result in [5, 13, 14, 16, 17, 18, 19].

(3) By substituting the interval (x,4o0) to (—eo,x) in the left side of (7), we can
get a dual form of Theorem 1.

(4) We can also present the sharp factor of the two-side estimate of the optimal
constant in the Hardy’s inequality with three measures just as in [19].

To obtain the sharp factor in (5), we use the integral transform theorem to explore
a new version of Bliss’s lemma (see Lemma 2). Both this new version of Bliss’s lemma
and its proof are novel as far as we know.

Now, we give some typical examples as applications of the generalized Hardy’s
inequality in Theorem 1. In these applications, (t and v can be discrete measures,
continuous measures (absolutely continuous w.r.t. Lebesgue measure), and even Cantor
measures which are neither continuous nor discrete (see section 3). Additionally, we
give the analogue forms as in (1) and (2) when p =gq.

COROLLARY 1. Let A denote the standard Bernoulli measure on the Cantor set
in [0,+o0). For any non-negative function f and p > 1, we have

/()+o° (A([é,xn /oxf W(d”)p“dx) < (,%)p O+wf(x>”7t(dx>. )

P
Additionally, the factor <L> is sharp. However, neither the inequality

p—1

7 o [ rontan) aga)

for 1 < p < g < +oco nor the inequality

(o)

for 1 < p < g < oo holds for any finite A.

1/q Foo I/p
<A[O fuvxmn} ©)

1/q +oo

1/p
<A[ f@VM] (10)

0

Observing the proof of Corollary 1, we have that (8) holds for any o -finite Borel mea-
sures, while (9) fails to hold for any o -finite Borel measures such that A(x) := A ([0,x])
being a continuous increasing function.

By taking one measure discrete and another one absolutely continuous with respect
to Lebesgue measure, we have the two following mixed forms of Hardy’s inequalities.
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COROLLARY 2. For any non-negative function f and p > 1, we have
+oo 1 n P p P oo
S (5[ r0a) < (G2) [T rwe (an
n=1 nJi p_l 1

Andfor 1 < p < g < oo,

)

X 1<n<x

too 1/p
D f”(n)] (12)
n=1

holds with (q—1)""1 <A < kyp(qg—1)"9.

2. Proof of Theorem 1

In [5, 13], a key step in improving the factor to sharp is using the following Bliss
lemma [2] directly or extending it to the case of discrete measures.

LEMMA 1. Let 1 < p < g < +o0 and f be a non-negative function on [0,+co).
Then we have

[ /O+md(—x*q/1’*) ( /0 xf(y)dy> 1 v <kgp [ 0+°° f(x)l’dx] Y "

Moreover, the optimal constant is attained when
S(x) = y(8x" 1) I
with r=¢q/p—1 and vy, 8 being non-negative constants.

We will extend Bliss lemma to deal with general Borel measures on R. First, let
us recall some basic facts about any Borel measure v on R. Define its ‘cumulative
distribution function’ and ‘inverse cumulative distribution function’ as:

S(x) :=v((—e0,x]), S~(y) :=inf{x: S(x) > y}.
Since S is right-continuous and increasing, it is well known that
{y:s7' ) <xp={ry<S@}, sl >t ={y:y>S®},  13)
SN =y ST <y (14)

In particular, if S is continuous, then S(S~!(y)) = y.
Let m denote the Lebesgue measure, for any —eo < a < b < +oo, we have from
(13) that

mg1((a,b]) :=m({t: 57\ (t) € (a,b]}) = m({1 :1 € (S(a),S(D)]})

S(b)
:/ dt = S(b) — S(a) = v((a,b]).
S(a)
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Then the measure extension theorem implies that mg1 = v.

According to the integral transform theorem (see for example [7, Theorem 39.C.]),
for any Borel set I' and measurable function f, it follows that

_ o -1 .
J.fav= /{y;sfuy)er}f s~ (v)dy (15)

Now, we state our generalized Bliss lemma.

LEMMA 2. Suppose S(+e0) = +oo, the Borel measure V is defined by
V((x,4e0)) := S(x) """ Vx € R.

Then for any non-negative real function f and 1 < p < g < +oo, we have

[y ([ rown) ]

Different from Liao’s case ([13]), here we take V((x,+eo0)) = v((—o0,x])"9/?" instead
of V([x,+o0)) = v((—oo,x])~9/P" since V([x,+o0)) is left-continuous with respect to x
while v((—eo,x])~9/P" is right-continuous with respect to x, which lead to the integral
over (—eo,x) in (7).

Now, let us prove Lemma 2.

1/q

<t [ [rorvan]

Proof. In the case of p = ¢, the assertion holds as a result of Remark 1 (2) and
[19, Theorem 1].

In the case of p < g, set @ (dx) = d(—x"9/7"). Since S(+o0) = oo, we have that
forany x € R,

g1 ((x,+00)) :=m({t: (1) € (x,+o0)}) = m({t : 1 € (S(x), +0)})

oo * * ~
= | A=) =S(@) I = V((x, +)).
S(x)
Then we have mg 1 = vV by measure extension theorem. Moreover, the integral trans-

form formula implies that for any measurable function g,
~ oo ®
/g(X)V(dX) = goS™ ! (x)d(—x~17"). (16)
R 0

By (13), (15) and note that f is non-negative

J o =] fos7'()dy

{y:S71 () (o)}

< / FoS(y)dy.
(0,8(u—)]
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Furthermore, substituting g(x) = ( f(_.x,,x) fdv)q into (16), we obtain from (14) that

[ (f _N’x)f(yw(dy))q = [Caeen ([ soman)’
-

q
< [ a(exar / sL(y)d )
(x97") ( o o570

0
oo [ rorvian)

The next technical lemma shows that if one measure is dominated by another mea-
sure, then so are certain of their integrals.

LEMMA 3. Let 1y and Uy be two © -finite Borel measures. If

.ul((x7+°°)) <“2((x7+°°))7 VXER,

then for any non-negative increasing function f, we have

/f x) i (dx /f x) o (dx

Proof. According to Fubini’s theorem, for any non-negative increasing function f
and o -finite measures g; (i = 1,2),

Jrom@=[ - reom(a)

f(x)
- 1i(d) / dr
{x:f(x)>0} 0

o0
:/Rl{x:f(x)>0}l~ti(dx)/0 Ly >eydt

:/+Ndl/1{x:fx>t}”i(dx)
_/ wi({x: f(x) > 1})de.

Since f is an increasing function, it is easy to check that for any given 7 > 0, the set
{x: f(x) >t} have the form of (a,+e<) or [a,+e). Thus, it suffices to show that

.LLI([x? +°°)) < ,llz([x, +°°))’ xeR. (17)
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Without loss of generality, suppose for any given x € R, py((x,+e0)) < +oo. Since
Uy is Radon, namely locally finite, we have pp((x —1/n,x]) < 4o for any n > 1.
Furthermore,

1 ((x=1/n,400)) < pia((x = 1/n,+e0)) = i ((x — 1/n,x]) + pa((x, +00)) < o0,
Then (17) holds by the upper continuity of u;(i =1,2).

Proof. [Proof of Theorem 1:] We divide the proof into two steps:
(i) First, we prove the first assertion provided v(R) = +eo. Note that B = e
implies A = +oo by [19]. Assume B < 4. Let

S(x) = v((—e0,x]), V((x,+e0)) =S(x) 17",
By the definition of B, we have that for any x € R,
1 ((x,+e0)) < ([, +e0)) < BIV((—o0,x]) 97" = BIS(x)"9/P" = BIV((x,+e0)).

According to Lemma 3 and Lemma 2, for any non-negative function f, we have

@i ([ sowan) <o [v@ ([ sowe)

i

<KI B ( /. f(x)”v(dx))

Thus, A < k;,B. In addition, we have B < A according to [19, Theorem 1]. Hence,
B<A<kypB.

(ii) The next step is to remove the condition v(R) = +-eo. This is easy to overcome
by [5, Lemma 4.2].

3. Proof of Corollaries 1 and 2

First, we recall the standard Bernoulli measure on the Cantor set in R. Let Q; =
{0,1},i=0,1,---, and p,, be the uniform probability measure on Q™" := T[], €;, that
is pu({x}) =21 forany (xo,x1,---, %) € Q". Consider the map J : Q" — [0, 1],

Vx = (x0,X1,+,Xm) € Q", J(x) :=agxo+al'x;+ -+ dpxm,

where a' =37"by, by =1, by =231

Let K, = J(Q™). Then the closure of U;:OKm is Cantor set in [0, 1], denoted by
K. Let Ay = ppnoJ ', then A,({p}) =2""+D V pc K,,.

Following [11], we know that there exists a unique probability measure A on K
such that A,, = 4, thatis, V f € C(K), limy— e [ fdAu = [ fdA, thus A is called

the standard Bernoulli (probability) measure on K. Let K = U5 (n+K) be Cantor

set on [0,+o0) and denote again by A the extended Bernoulli measure on K.
Under our settings, we can have an analogue of Hardy’s inequality on Cantor set,
see Corollary 1 in section 1. Now, we give the proof of these results.
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Proof. [Proof of Corollary 1:] (i) (8) follows by adapting [19, Theorem 1] or [21,
Theorem 1.1].

From [19, Theorem 1] or Theorem 1 in this paper, if we can prove B = +oo, then
(9) and (10) fail to hold.

(ii) Let A(x) = A([0,x]), x € [0,+o0). Then A is an increasing continuous function
and A(4-e0) = 4oo. Define A~!(y) = inf{x: A(x) >y}, then A(A"'(y)) =y. The
integral transform formula implies that for any Borel measurable function g

[ s = [ s e = [Cewa as)

A(x) A(x)
For (9), set v =2 and p(dx) = A([0,x]) A (dx) on [0,+o0). Clearly,
(e Aldn) Ve
B= sup A([0,x I/p ( 7> .
el MO T

Take g(¢r) =t~ 7 in (18), we get

| / A(r)"9A(dr) /)t 9de
= (g—1)7'A@) = (g—1)7'A([0,x))!~

Since p < g, we have p* > ¢g*. Hence,

B=(q—1)"" sup A([0.)"/P" Y = fee.

X€[0,+e0)

(iii) For (10), let u(dx) =x"9A(dx) and v be the Lebesgue measure on [0, +eo).
It is obvious that

B +oo 1/q B +oo 1/q
B= sup x'/7 (/ t‘%(dt)) = supx!/? (/ t“UL(dt)) .
X€[0,50) x K x

xeK

Take x,, =2 -3 to derive

1/q . 1/q

2 (2 . 3—m) 1/p* |:(2 . 3—m) —-q 2—(1ﬂ+1)] 1/a

/P
—o-1/p-1/q,

Since 1 < p < g < 4o, we have 3!/7 > 31/4 > 21/4_ Then we get

1/p\"
Zil/pil/ﬂt (%) — Foo, if m — Hoo.
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Consequently, we have B = +oo.

Proof. [Proof of Corollary 2:] To prove (11), let  be the measure on N with
Un =n"P and v(dx) = dx on [1,+o0). Clearly,

1/p 1/p
B=sup(x—1)"/7" Nk =sup(n—1)1/7" >k

x>1 k>x n=2 k>=n
For any n € Z™, on the one hand,
k — Dl
Ekﬁ?zz kPdx < 2/ de_u_
k>n k>n k=1 k>n p_l

Then we have

B< (p—1) Psup(n—1)"/7" 7 = (p—1)"1/r.

n=2
On the other hand,
k+1 nl=r
Ser=3 [ Ktz [ v e
k>n k>n k k>n k p_l

Then we have

Consequently,
B=(p—1)"Y/r.

Then we have &, ,B = -~

p—1-
To prove (12) let v be the counting measure on N and dut(x) =x~9dx on [1,+oeo),
we get

* oo l/q * *
B = suplx]'/? (/ t_th) = (g—1)"Yasup[x]/P'x~ VT = (q—1)"1a.

x>1 x>1
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