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WEIGHTED WEAK–TYPE INEQUALITIES FOR SQUARE FUNCTIONS

ADAM OSȨKOWSKI

(Communicated by I. Pinelis)

Abstract. The paper is devoted to weighted weak-type inequalities for square functions of con-
tinuous-path martingales and identifies the optimal dependence of the weak norm on the charac-
teristic of the weight. The proof rests on Bellman function technique: the estimates are deduced
from the existence of special functions enjoying appropriate size conditions and concavity.

1. Introduction

In [2], the authors used the Bellman function approach to give new proofs of
weighted L2 -norm inequalities for martingales and Littlewood-Paley square functions
with the optimal dependence on the A2 characteristics [w]A2 of the weight w and fur-
ther explicit constants, and in [3] improved the results for the full range 1 < p < ∞ .
This paper is a continuation of these works and contains a complete description of the
corresponding weak-type estimates in the martingale setting.

Let us introduce the necessary probabilistic background and formulate our main
results. Assume that (Ω,F ,P) is a complete probability space, filtered by (Ft)t�0 ,
a nondecreasing right-continuous sequence of sub-σ -algebras of F . Suppose in ad-
dition that F0 contains all the events of probability 0 and all (Ft)t�0 -adapted mar-
tingales have continuous paths (for instance, this holds for Brownian filtration). As-
sume further that X = (Xt)t�0 is an adapted, uniformly integrable martingale (with
no risk of confusion, we will often identify X with its terminal variable X∞ ) and let
〈X〉 = (〈Xt〉)t�0 denote its quadratic covariance process (square function). See e.g.
Dellacherie and Meyer [5] for more information on the subject.

The inequalities between X and 〈X〉 are of fundamental importance to the theory
of stochastic integration, and the principal purpose of this paper is to study certain class
of such bounds in the weighted context. In what follows, the word ‘weight’ will refer
to a uniformly integrable martingale W = (Wt)t�0 ; as in the case of X , we will usually
identify W with W∞ . Any weight W gives rise to the corresponding Lp and weak Lp

spaces, 0 < p < ∞ , given by

Lp(W ) = { f : ‖ f‖Lp(W ) := (E| f |pW )1/p < ∞}
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and
Lp,∞(W ) =

{
f : ‖ f‖Lp,∞(W) := sup

λ>0

(
λ pW (| f | > λ )

)1/p
< ∞

}
,

where W (A) := E1AW . Let 1 < p < ∞ be fixed. Motivated by the classical Burkholder-
Davis-Gundy inequalities, one can ask about the characterization of weights W for
which the estimate

‖〈X〉1/2‖Lp(W ) � Cp,W‖X‖Lp(W ) (1)

holds true, with some finite constant Cp,W depending only on the parameters indicated.
The same question can be posed for the weak-type inequality

‖〈X〉1/2‖Lp,∞(W) � cp,W‖X‖Lp(W ). (2)

It can be shown that both (1) and (2) hold true if and only if W satisfies the so-called
Muckenhoupt’s condition Ap . The class Ap was originally introduced in the ana-
lytic setting by Muckenhoupt [12] during the study of maximal operators on weighted
spaces. In the probabilistic context, the appropriate definition was given by Izumisawa
and Kazamaki [9]: we say that W satisfies Muckenhoupt’s condition Ap , if there is a
deterministic constant c such that

E(W |Ft)E(W 1/(1−p)|Ft)p−1 � c (3)

almost surely for all t . The smallest c with the above property is denoted by [W ]Ap and
called the Ap characteristic of the weight. Passing with p → 1 or p → ∞ in the above
definition, one obtains the corresponding A1 and A∞ conditions. Namely, [W ]A1 is the
least constant c for which

sup
0�s�t

E(W |Fs) � cE(W |Ft )

almost surely for all t , while [W ]∞ is the smallest constant such that

E(W |Ft)exp(E(− logW |Ft)) � c

with probability 1 for all t . Roughly speaking, the number [W ]Ap measures the balance
of W : the bigger [W ]Ap , the more ‘unbalanced’ the weight is. Note that [W ]Ap � 1,
by Jensen’s inequality; in addition, [W ]Ap = 1 if and only if W∞ is a constant random
variable. As we have mentioned above, the condition Ap characterizes the boundedness
of square functions on the associated weighted spaces. It turns out that the classes Ap

arise in the study of analogous boundedness problems for other operators, such as maxi-
mal functions, martingale transforms (stochastic integrals) and fractional operators: see
[1, 10, 11, 17, 21] and cnsult references therein.

One can ask about the refinement of (1) and (2) which concerns the optimal depen-
dence of the constants Cp,W and cp,W on the characteristic [W ]Ap . The problem is the

following. Given 1 < p < ∞ , find the least exponents κp , βp such that Cp,W �Cp[W ]κp
Ap

and cp,W � cp[W ]βp
Ap

, where Cp and cp depend only on p . Similar question can be
asked also for other types of operators. Such problems, considered for various analytic
operators, have gained a lot of interest in the literature: consult e.g. [1, 4, 7, 10, 11, 21].
The following weighted Lp bound for square functions was obtained in [2].
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THEOREM 1. Suppose that W is an Ap weight. Then for any 1 < p < ∞ and any
X we have the estimate

||〈X〉1/2
∞ ||Lp(W) � Kp[W ]max{1/2,1/(p−1)}

Ap
||X ||Lp(W), (4)

where Kp = O((p− 1)−1) as p → 1 and Kp = O(p1/2) as p → ∞ . The exponent
max{1/2,1/(p−1)} is the best possible.

We will study the corresponding problem for weighted weak-type estimates. Here
is our main result.

THEOREM 2. Suppose that W is an Ap weight. Then for any 1 � p < ∞ , p �= 2 ,
and any X we have the estimate

||〈X〉1/2
∞ ||Lp,∞(W) � Kp[W ]max{1/p,1/2}

Ap
||X ||Lp(W ), (5)

where Kp = O(p1/2) as p → ∞ . The exponent max{1/p,1/2} is the best possible.

Quite surprisingly, we do not know the appropriate sharp version of (5) for the case
p = 2. The same unexpected open problem arises in the context of square functions in
harmonic analysis [6, 8]. In what follows, we will focus on the case p > 1, the case
p = 1 has been already established by the author in [16].

The proof of Theorem 2 will exploit the so-called Bellman function method and
will rest on the construction of a special function enjoying certain majorization and
concavity-type properties. The precise description of our approach (i.e., the reduction
to the existence of an appropriate special function) is presented in the next section. In
Section 3 we present the proof of (5) in the case 1 < p < 2; for these values of p we
have found a very simple Bellman function. Section 4 is devoted to the study of the
case p > 2 and the final part of the paper addresses the optimality of the exponent
max{1/p,1/2} involved in (5).

2. On the method of proof

In this section we show how to reduce the proof of our main inequality (5) to the
construction of an appropriate special function of four variables. Given 1 < p < ∞ and
1 � c < ∞ , consider the domain

Dp,c = {(w,v) ∈ (0,∞)× (0,∞) : 1 � wvp−1 � c}.

Let K, κ � 1 and suppose that U : [−1,1]× [0,1]×Dp,c → R is a function satisfying
the following structural properties.

1◦ U is continuous and of class C2 in the interior of its domain.

2◦ We have U(x,x2,w,v) � 0 for all x ∈ [0,1] and (w,v) ∈ Dp,c .
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3◦ For all (x,y,w,v) ∈ [−1,1]× [0,1]×Dp,c we have

U(x,y,w,v) � w1{|x|∨y�1} −Kcκ |x|pv1−p. (6)

4◦ For any (x,y,w,v) lying in the interior of the domain of U , the matrix

D2U =

⎡
⎣Uxx +2Uy Uxw Uxv

Uwx Uww Uwv

Uvx Uvw Uvv

⎤
⎦ (7)

is nonpositive definite.

THEOREM 3. If U satisfies 1◦ , 2◦ , 3◦ and 4◦ , then for any martingale X and
any weight W satisfying [W ]Ap � c we have

λ pW (〈X〉1/2
∞ > λ ) � Kcκ

E|X |pW. (8)

Proof. By homogeneity, we may assume that λ = 1. The reasoning rests on Itô’s
formula and appropriate stopping time arguments. Let

τ = inf{t � 0 : |Xt | ∨ 〈X〉t � 1},
with the usual convention inf /0 = ∞ . On the set τ = 0 we have |X0|2 = 〈X〉0 � 1 and
hence

W (|Xτ | ∨ 〈X〉τ � 1, τ = 0) = W (τ = 0)
= E1{τ=0}W0

� cE|X0|pV 1−p
0 1{τ=0}

� cE|X |pV 1−p1{τ=0}
� Kcκ

E|X |pW1{τ=0},

(9)

where in the third passage we have used the inequality W0V
p−1
0 � c (guaranteed by

[W ]Ap � c), the fourth follows from the convexity of the function (x,v) 
→ |x|pv1−p on
R× (0,∞) , and the last inequality is due to the inequalities K, κ � 1 and the identity
W = V 1−p . On the other hand, on the set {τ > 0} , we apply Itô’s formula to the
composition of the C2 function U (see 1◦ ) and the process Zt = (Xt ,〈X〉t ,Wt ,Vt) to
obtain

U(Zτ∧t) = I0 + I1 + I2/2.

Here

I0 = U(Z0) = U(X0,X
2
0 ,W0,V0),

I1 =
∫ τ∧t

0+
Ux(Zs)dXs +

∫ τ∧t

0+
Uw(Zs)dWs +

∫ τ∧t

0+
Uv(Zs)dVs,

I2 =
∫ τ∧t

0+
D2U(Zs)d〈Z〉s
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and the integral defining I2 is the abbreviated sum of all second-order terms

I2 =
∫ τ∧t

0+
Uxx(Zs)d〈X〉s +2

∫ τ∧t

0+
Uxw(Zs)d〈X ,W 〉s +2

∫ τ∧t

0+
Uxv(Zs)d〈X ,V 〉s + . . .

together with the integral ∫ τ∧t

0+
2Uy(Zs)d〈X〉s.

Let us analyze the behavior of the terms I1 , I2 and I3 . By 2◦ , we have I0 � 0. The pro-
cess I1 is a mean-zero martingale as a function of t , and hence EI11{τ>0} = 0. Finally,
the assumption 4◦ implies that I2 � 0, which can be easily seen by approximating I2
by discrete sums. Putting all the above facts together, we obtain EU(Zτ∧t)1{τ>0} � 0,
so letting t → ∞ gives

EU(Zτ )1{τ>0} � 0,

by Lebesgue’s dominated convergence theorem (U is bounded and Z has continuous
paths). Consequently, by 3◦ ,

EWτ1{|Xτ |∨〈X〉τ�1}1{τ>0} � Kcκ
E|Xτ |pV 1−p

τ 1{τ>0} (10)

and hence, using the identity Wτ = E(W |Fτ) and the convexity of the function (x,v) 
→
|x|pv1−p , we get

W (|Xτ | ∨ 〈X〉τ � 1, τ > 0) � Kcκ
E|X |pV 1−p1{τ>0} = Kcκ

E|X |pW1{τ>0}.

Adding this to (9), we obtain

W (|Xτ | ∨ 〈X〉τ � 1) � Kcκ
E|X |pW.

It remains to note that {〈X〉∞ > 1} ⊆ {|Xτ | ∨ 〈X〉τ � 1} to get the claim.

REMARK 1. The above reasoning (see (9) and (10)) shows that under the assump-
tions of Theorem 3, we have the estimate

W (|Xτ | ∨ 〈X〉τ � 1) � Kcκ
E|Xτ |pV 1−p

τ .

The regularity condition 1◦ can be slightly relaxed: roughly speaking, if U is a
minimum of several smooth functions satisfying 1◦ -4◦ , then (8) remains valid. The
precise statement is as follows.

LEMMA 1. Assume that U1 , U2 , . . . , Un : D → R are C2 functions and define
U = min{U1,U2, . . . ,Un} . Suppose that U satisfies 2◦ , 3◦ and for each k we have
DUk � 0 on the set {U = Uk} . Then (8) holds true.

The proof rests on a simple mollification argument; see e.g. Wang [20] for a
similar reasoning. Alternatively, one can apply a variant of Itô’s formula which allows
the existence of non-differentiability points at the cost of certain local times: see [18].



272 A. OSȨKOWSKI

When verifying 4◦ , it will sometimes be convenient to use the notation

Q′′
U(x,y,w,v,d,r,s) =

〈
D2U(x,y,w,v)(d,r,s),(d,r,s)

〉
.

Of course, the concavity condition 4◦ is equivalent to saying that Q′′
U(x,y,w,v,d,r,s)

is nonpositive for all x , y , w , v , d , r and s . Usually, we will write Q′′
U instead of

Q′′
U(x,y,w,v,d,r,s) - in general, d , r , s will be arbitrary, and it will be clear from

the context what the variables x , y , w and v are. We will frequently use the linearity
Q′′

aU1+bU2
= aQ′′

U1
+bQ′′

U2
and the fact that Q′′

U � 0 if U is a concave function depending
only on x , w and v .

3. A special function, 1 < p < 2

In the range 1 < p < 2 the Bellman function is very easy: let

Up(x,y,w,v) = yw− pc
2− p

x2v1−p.

LEMMA 2. The function Up satisfies the conditions 1◦ -4◦ with κ = 1 and K =
2/(2− p) .

Proof. The regularity 1◦ is evident. Concerning 2◦ , we check that

Up(x,x2,w,v) = x2w− pc
2− p

x2v1−p � x2w− p
2− p

x2w � 0.

Let us show the majorization 3◦ . If |x| ∨ y < 1, then the estimate is trivial:

Up(x,y,w,v) � − pc
2− p

x2v1−p � −Kcxpv1−p.

If y = 1, then Up(x,y,w,v) = w− pc
2−px2v1−p � w−Kcxpv1−p. Finally, if |x| = 1 and

y < 1, then note that

2c
2− p

v1−p =
pc

2− p
v1−p + cv1−p � pc

2− p
v1−p +w,

which is precisely the desired majorization. It remains to verify the matrix condition
4◦ . We compute that

D2Up(x,y,w,v) =

⎡
⎢⎢⎢⎢⎢⎣

2

(
w− p

2− p
cv1−p

)
0

2p(p−1)c
2− p

xv−p

0 0 0

2p(p−1)c
2− p

xv−p 0 − p2(p−1)c
2− p

x2v−p−1

⎤
⎥⎥⎥⎥⎥⎦
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To check that this matrix is nonpositive definite, observe that the entry in the right-
lower corner is negative and the determinant of the 2×2 matrix obtained from D2Up

by removing the middle row and the middle column, equals

−2

(
w− p

2− p
cv1−p

)
· p2(p−1)c

2− p
x2v−p−1−

[
2p(p−1)c

2− p
xv−p

]2

� −2

(
cv1−p− p

2− p
cv1−p

)
· p2(p−1)c

2− p
x2v−p−1−

[
2p(p−1)c

2− p
xv−p

]2

= 0.

This completes the proof.

4. The case p > 2 , a small characteristic

We turn our attention to the case p > 2. We will consider two cases separately:
c � p and c > p . We would like to emphasize here that the proof presented in the
next section works for all c , however, for small characteristics the dependence of the
constants on p is not optimal. This is why we consider in this section the additional
case of ‘small c’: throughout this part of the paper, we assume that c � p . We will
need an additional parameter α = (4c)−1 .

We start with a technical lemma, which actually holds in both cases c � p , c > p .

LEMMA 3. Let F(w,v) = 2w1−αvα(1−p) − v1−p . If 1 � wvp−1 � c, then w �
F(w,v) � 2w and the Hessian matrix of F satisfies

D2F(w,v) �
[−(8cw)−1 0

0 0

]
.

Proof. Observe that F(w,v) � 2w(wvp−1)−α � 2w ; the inequality F(w,v) � w is
equivalent to 2t1−α � t +1, where t = wvp−1 ∈ [1,c] . The left-hand side of the latter
bound is a concave function of t , so it is enough to prove this estimate for t ∈ {1,c} .
For t = 1 both sides are equal, for t = c we must show that 2c1−1/(4c) � c+1, or

ξ (c) =
(

1− 1
4c

)
lnc− ln

(
c+1

2

)
� 0.

But ξ (1) = 0, and for c � 1 we have

ξ ′(c) =
1

4c2 lnc+
1
c

(
1− 1

4c

)
− 1

c+1
� 1

c

(
1− 1

4c

)
− 1

c+1
� 0,

the last passage is equivalent to 3c � 1.
We turn our attention to the bound for D2F . First we will show that

D2F(w,v) �
[−α(1−α)w−1t−α 0

0 0

]
. (11)
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To do this, note that the Hessian matrix of F equals (for brevity, write t = wvp−1 )[ −2α(1−α)w−1t−α 2(1−α)α(1− p)t−αv−1

2(1−α)α(1− p)t−αv−1 2α(1− p)(α(1− p)−1)wv−2t−α − p(p−1)v−1−p

]

and hence (11) is equivalent to saying that the matrix[ −α(1−α)w−1t−α 2(1−α)α(1− p)t−αv−1

2(1−α)α(1− p)t−αv−1 2α(1− p)(α(1− p)−1)wv−2t−α − p(p−1)v−1−p

]

is nonpositive definite. The entry in the left-upper corner is negative, so we will be done
if we show that the determinant of the matrix is nonnegative. A little calculation reveals
that this determinant is equal to

α(1−α)(p−1)t−2αv−2[−2α
(
2p−1−α(p−1)

)
+ ptα−1]

and it remains to note that ptα−1 � pt−1 � p/c and −2α(2p− 1 − α(p − 1)) �
−4α p = −p/c . This yields (11). Now, we have 1−α = 1− (4c)−1 � 3/4 and c−1 �
5−c � (2/3)4c , which, in turn, give that t−α � c−α � 2/3. Thus (1−α)t−α � 1/2
and hence (11) gives the desired claim.

The corresponding Bellman function Up : D → R is given by

Up(x,y,w,v) = 2
{

yp/2+1F(w,v)−3px2yp/2w− pc(144pc)p/2|x|p+2v1−p
}

.

For the sake of convenience, we will also distinguish the function

u1(x,y,w,v) = yp/2+1F(w,v)−3px2yp/2w,

which can be considered as a main ‘building block’ of Up .

LEMMA 4. The function Up satisfies the conditions 1◦ -4◦ with κ = p/2 and
K = (9 ·144p)p/2 = 36ppp/2 .

Proof. The regularity condition 1◦ is obvious, the property 2◦ is also evident
(simply use the fact that F(w,v) � 2w , guaranteed by previous lemma). To show the
majorization 3◦ , recall the estimates F(w,v) � w , |x| � 1 and note that 2pc � 2p2 �
3p− p/2 (here is the only place where we use the assumption c � p ). Hence

Up(x,y,w,v) � 2yp/2+1w−6px2yp/2w− (3p− p/2)(144pc)p/2|x|p+2v1−p,

so it is enough to prove that

2yp/2+1w−6px2yp/2w+
p
2
(144pc)p/2|x|p+2v1−p � 1{|x|∨y�1}w. (12)

If 6px2 � y , then the left-hand side is not smaller than yp/2+1w � 1{|x|∨y�1}w, so the
desired estimate holds. On the other hand, if y < 6px2 < 6p , then the left-hand side of
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(12) is bigger or equal to

yp/2+1w− (6px2)p/2+1w+
p
2
(144pc)p/2|x|p+2v1−p

� 1{|x|∨y�1}w− (6px2)p/2+1
(

w− 1
12

· (24c)p/2v1−p
)

� 1{|x|∨y�1}w,

where in the last line we have exploited the estimates p � 2 and cv1−p � w . Finally, if
|x| = 1, then (12) is trivial: the term p

2 (144pc)p/2|x|p+2v1−p � 144p/2w has an over-
whelming size.

It remains to verify 4◦ . Recall the definition of Q′′
U given at the very end of Section

2. We first look at the building block u1 . By Lemma 3,

Q′′
u1

� −yp/2+1(8cw)−1r2 +(p+2)yp/2F(w,v)d2

−6pyp/2wd2−12pxyp/2dr−3p2x2yp/2−1wd2

� −yp/2+1(8cw)−1r2 −12pxyp/2dr−2pyp/2wd2 −3p2x2yp/2−1wd2.

(13)

Now we consider two cases. If y � 144pcx2 , then we skip the last term in the above
expression and note that the discriminant of the remaining quadratic function

r 
→ −yp/2+1(8cw)−1r2 −12pxyp/2dr−2pyp/2wd2

is equal to pypc−1d2(144pcx2 − y) � 0. Consequently, Q′′
u1

� 0; since the function
(x,v) 
→ |x|p+2v1−p is convex, we have Q′′

Up
� 2Q′′

u1
� 0.

In the remaining case y < 144pcx2 , we repeat the above calculation to obtain

Q′′
u1

� −yp/2+1(8cw)−1r2 −12pxyp/2dr.

Furthermore, the Hessian of the function f (x,v) = |x|p+2v1−p equals[
(p+1)(p+2)|x|pv1−p (p+2)(1− p)|x|p+1xv−p

(p+2)(1− p)|x|p+1xv−p p(p−1)|x|p+2v−1−p

]
�

[
2|x|pv1−p 0

0 0

]
,

as one verifies easily. Therefore,

1
2
Q′′

Up
� −yp/2+1(8cw)−1r2−12pxyp/2dr− pc(144pc)p/2 ·2|x|2p−2v1−pd2. (14)

The discriminant of the right-hand side of (14), considered as a quadratic function of r ,
is equal to

144p2x2yp/2+1d2
(
yp/2−1−

( c
wvp−1

)
· (144pcx2)p/2−1

)
� 0.

This gives Q′′
Up

� 0 and completes the proof.

REMARK 2. From the viewpoint of the concavity condition 4◦ , the function u1 is
the main part of Up , in the following sense. Namely, this ingredient itself satisfies the
inequality Q′′

u1
� 0 on the set {y � 144pcx2} , and on the compliment of this set we ap-

ply the concave ‘compensator’ (x,v) 
→ −|x|p+2v1−p (with an appropriate coefficient).
In the next section we will encounter a similar phenomenon.
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5. A special function, p > 2 , large characteristic

Here the analysis will be more involved. We will need the parameters α = (4c)−1 ,
β = 2/p+ (p− 2)/p3 and q = p + (p− 2)/p . For the sake of clarity, we split this
section into two parts.

5.1. Technical lemmas

We start with the following statement.

LEMMA 5. Consider the matrix A given by

⎡
⎢⎣ 2−25p(p−1)+

p−2
4p2 2(1−β ) (p−1)(25p−2β )

2(1−β ) −β (1−β ) β (1−β )(1− p)
(p−1)(25p−2β ) β (1−β )(1− p) (p−1)(β (β (p−1)+1)−25p)

⎤
⎥⎦ .

Then for any |γ| � (5p)−1 we have

A �

⎡
⎣ 0 γ(1−β ) 0

γ(1−β ) 0 0
0 0 0

⎤
⎦ .

Proof. We must show that for any γ as in the statement, the matrix

⎡
⎢⎣ 2−25p(p−1)+

p−2
4p2 (2− γ)(1−β ) (p−1)(25p−2β )

(2− γ)(1−β ) −β (1−β ) β (1−β )(1− p)
(p−1)(25p−2β ) β (1−β )(1− p) (p−1)(β (β (p−1)+1)−25p)

⎤
⎥⎦

is nonpositive-definite. We will use Sylvester’s criterion and check the signs of the
principal minors. Let us perform some operations on the rows and columns to make the
calculations simpler. First we add, to the third column, the second column multiplied
by 1− p ; then we add, to the third row, the second row multiplied by 1− p . Finally,
we divide the second column by 1−β and the third column by p− 1. The obtained
matrix is equal to

⎡
⎢⎣ 2−25p(p−1)+

p−2
4p2 2− γ 25p−2

(2− γ)(1−β ) −β 0
(p−1)(25p−2) 0 p(β −25)

⎤
⎥⎦ ,

and the signs of the principal minors are preserved. Note that it suffices to show that
the full determinant is nonpositive. Indeed, using the special form of the above matrix
(zeros in appropriate places) and the inequality 0 < β < 25, this will imply that the
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remaining minors have determinants of alternating signs. A little calculation shows
that the determinant is equal to I1 + I2 , where

I1 = 25

[
(pβ −2)((p−1)(pβ −2)−2)+ p(1−β)γ

(
γ +2β (p−1)−4

)]
,

I2 = 2β (pβ −2)− (p−2)β 2

4p
+4β (1−β )γ− γ2β (1−β )(1+ β (p−1)).

Now, by the formula for β , we get pβ − 2 = (p− 2)/p2 and 1− β = (p− 2)(p2 −
1)/p3 . Let us first handle I1 . We have

I1 = 25 · p−2
p2

[
(p−1)(p−2)

p2 −2+(p2−1)γ
(

γ − 2(p2 +3p−2)
p3

)]

� 25 · p−2
p2

[
−1+(p2−1)|γ|

(
|γ|+ 4

p

)]

� 25 · p−2
p2

[
−1+(p2−1) · 21

25p2

]
� −4(p−2)

p2 .

Next, discarding the fourth summand in I2 , we see that

I2 � 2β (pβ −2)− p−2
p3 +4β (1−β )|γ|� 8(p−2)/p3.

Since p > 2, this implies I1 + I2 � 0 and completes the proof.
Finally, we will need the following fact.

LEMMA 6. The matrix[ −β (1−β )w−2/3 β (1−β )(p−1)w−1v−1

β (1−β )(p−1)w−1v−1
[
β (p−1)(β (p−1)+1)−6p−6

]
v−2

]

is nonpositive-definite.

Proof. Since β (p−1) � 2, we have β (p−1)(β (p−1)+1) � 6 and it is enough
to show that [ −β (1−β )w−2/3 β (1−β )(p−1)w−1v−1

β (1−β )(p−1)w−1v−1 −6pv−2

]
� 0.

However, this matrix has a negative entry in its left-upper corner and has positive de-
terminant w−2v−2(1− β )

(
2β p− (β (p − 1))2(1− β )

)
: indeed, we have 2β p > 4,

β (p−1) � 2 and 1−β � 1.

5.2. The Bellman function

This time the Bellman function Up : D → R it is built from four pieces:

Up = 2u1−2u4 +2min{0,u2,u3} = 2min
{
u1−u4,u1 +u2−u4,u1 +u3−u4

}
,
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where

u1(x,y,w,v) = yp/2+1F(w,v)−3px2yp/2w,

u2(x,y,w,v) =
120p4

p−2

{
cβ x2yq/2−1w1−β vβ (1−p)−25 · (144p)p/2−1cp/2|x|pv1−p

}
,

u3(x,y,w,v) =
120p4

p−2

{
cβ yq/2w1−β vβ (1−p)

8p2 −25 · (144p)p/2−1cp/2|x|pv1−p

}
,

u4(x,y,w,v) = 300p
(

p
p−2

)2

(pc)p/2|x|p+2v1−p.

We see some similarities to the function used in the previous section: actually, the
function used there was precisely 2u1−2u4 , modulo the different coefficient appearing
in front of u4 . Let us verify that Up satisfies all the relevant conditions. Clearly, the
property 1◦ is not true, but its relaxed version described in Lemma 1 holds: Up is
obviously a minimum of C2 functions. Next, we will show the following.

LEMMA 7. The function Up satisfies the conditions 2◦ and 3◦ with κ = p/2 and

K = 4 ·300p
(

p
p−2

)2
pp/2 .

Proof. Observe that

Up(x,x2,w,v) � 2u1(x,x2,w,v)−2u4(x,x2,w,v) � 2u1(x,x2,w,v)

= 2|x|p+2 (F(w,v)−3pw) � 0,

where the last inequality is due to bound F(w,v) � 2w established in Lemma 3. To
prove the condition 3◦ , observe first that for each x∈ [−1,1] , the function y 
→Up(x,y)
is increasing. Indeed, u2 , u3 have this monotonicity property, u4 does not depend on
y , and it will be shown below (see Lemma 8) that if Up = 2u1−2u4 , then y � 144pcx2

(and hence u1y(x,y,w,v) � 0). Therefore, it is enough to show the majorization under
the additional assumption y ∈ {0,1} . We have

Up(x,0,w,v)

= −6000p4

p−2
· (144p)p/2−1cp/2|x|pv1−p−2 ·300p

(
p

p−2

)2

(pc)p/2|x|p+2v1−p

� 1{|x|�1}w−4 ·300p
(

p
p−2

)2

(pc)p/2|x|pv1−p
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and

Up(x,1,w,v) �2F(w,v)−6px2w− 6000p4

p−2
· (144p)p/2−1cp/2|x|pv1−p

−2 ·300p
(

p
p−2

)2

(pc)p/2|x|p+2v1−p

� w−4 ·300p
(

p
p−2

)2

(pc)p/2|x|pv1−p,

as one verifies easily (consider the cases 6px2 � 1 and 6px2 � 1 separately).
We turn our attention to the concavity condition 4◦ ; we will exploit Lemma 1. Be-

fore we proceed, we make a comment similar to that in Remark 2 above. As previously,
‘the main ingredient’ of Up is the function u1 and the remaining pieces u2 , u3 and u4

can be regarded as appropriate compensators guaranteeing the concavity condition. To
be more specific, let us first observe that the inequality (13) remains valid. Roughly
speaking, all our considerations below aim at making Q′′

u1
nonpositive. The main prob-

lematic term is the summand −12pxyp/2dr , which can be positive, and the way of
handling it will be different on each of the sets {Up = u1−u4} , {Up = u1 +u2−u4} ,
{Up = u1 +u3−u4} .

LEMMA 8. We have Q′′
u1−u4

� 0 on the set {Up = 2u1−2u4} .

Proof. Let (x,y,w,v) be a point for which Up and 2u1− 2u4 coincide. Then we
necessarily have u2(x,y,w,v) � 0 and the formula for this function yields

cβ x2yq/2−1w1−β vβ (1−p) � 25 · (144p)p/2−1cp/2|x|pv1−p.

This in turn, combined with the estimate y ∈ [0,1] , gives

yp/2−1 � yq/2−1 � 25 · (144pcx2)p/2−1 ·
( c

wvp−1

)1−β
� (144pcx2)p/2−1.

This implies Q′′
u1

� 0, as we have shown in Lemma 4 above. It remains to note that u4

is a convex function, so Q′′
u1−u4

� Q′′
u1

.

LEMMA 9. We have Q′′
u1+u2−u4

� 0 on the set {Up = 2u1 +2u2−2u4} .

Proof. If (x,y,w,v) ∈ {Up = 2u1 + 2u2 − 2u4} , then u2(x,y,w,v) � u3(x,y,w,v)
and u2(x,y,w,v) � 0, which is equivalent to saying that

y � 8p2x2 and cβ x2yq/2−1w1−β vβ (1−p) � 25 · (144p)p/2−1cp/2|x|pv1−p, (15)

respectively. The function u4 is convex, so (13) gives

Q′′
u1+u2−u4

� Q′′
u1

+Q′′
u2

� 12p|x|yp/2|dr|+Q′′
u2

. (16)
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To show that Q′′
u2

‘overpowers’ the term 12p|x|yp/2|dr| , we compute that

p−2
10p4 Q′′

u2
= cβ x2yq/2−1w1−β vβ (1−p)〈A1(D,R,S),(D,R,S)〉

+(q−2)cβx2yq/2−1w1−β vβ (1−p) d
2

y

−25 · (144p)p/2−1cp/2xpv1−p〈A2(D,R,S),(D,R,S)〉,
where D = d/x , R = r/w , S = s/v ,

A1 =

⎡
⎣ 2 2(1−β ) 2β (1− p)

2(1−β ) −β (1−β ) β (1−β )(1− p)
2β (1− p) β (1−β )(1− p) β (p−1)(β (p−1)+1)

⎤
⎦

and

A2 =

⎡
⎣ p(p−1) 0 p(1− p)

0 0 0
p(1− p) 0 p(p−1)

⎤
⎦ .

It is easy to see that A2 � 0 and hence the second inequality in (15) gives

cβ x2yq/2−1w1−β vβ (1−p)A2 � 25 · (144p)p/2−1cp/2xpv1−pA2.

Moreover, the first inequality in (15) and the bound q−2 � 2(p−2) imply

(q−2)cβx2yq/2−1w1−β vβ (1−p)d
2

y
� p−2

4p2 cβ x2yp−2w1−β vβ (1−p)D2.

Putting the above facts together, we obtain

p−2
120p4 Q′′

u2
� cβ x2yq/2−1w1−β vβ (1−p)〈A(D,R,S),(D,R,S)〉,

where A is the matrix from Lemma 5. Using this lemma and the estimate wvp−1 � c ,
we get

p−2
120p4 Q′′

u2
� −cβ x2yq/2−1w1−β vβ (1−p) · 1−β

5p
|DR|

� −|x|yq/2−1 · 1−β
5p

|dr| � − p−2
10p2 |x|yq/2−1|dr|,

so Q′′
u2

� −12p2|x|yq/2−1|dr| � −12p|x|yp/2|dr| and the claim follows by (16).

LEMMA 10. We have Q′′
u1+u3−u4

� 0 on the set {Up = 2u1 +2u3−2u4} .

Proof. If (x,y,w,v) ∈ {Up = 2u1 +2u3−2u4} , then in particular we have u3 � u2 ,
so

y � 8p2x2. (17)
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Observe that by (13),

Q′′
u1+u3−u4

� −12pxyp/2dr−3p2x2yp/2−1wd2 +Q′′
u3
−Q′′

u4
. (18)

To handle Q′′
u3

, note that the function (x,v) 
→ |x|pv1−p is convex, so Q′′
u3

� 120p4

p−2 ·
(8p2)−1Q′′

u5
= 15p2

p−2 Q′′
u5

, where u5(x,y,w,v) = cβ yq/2w1−β vβ (1−p) . Using the estimate

wvp−1 � c , we obtain

2u5y(x,y,w,v) = qcβ yq/2−1w1−β vβ (1−p)

(u5y is the partial derivative of u5 with respect to y). Furthermore, we have[
u5ww(x,y,w,v) u5wv(x,y,w,v)
u5wv(x,y,w,v) u5vv(x,y,w,v)

]

= cβ yq/2w1−β vβ (1−p)
[ −β (1−β )w−2 β (1−β )(p−1)w−1v−1

β (1−β )(p−1)w−1v−1 β (p−1)(β (p−1)+1)v−2

]

and by Lemma 6, the latter matrix is less than[−2β (1−β )w−2/3 0
0 (6p+6)v−2

]
.

Consequently, we have shown that Q′′
u5

does not exceed

cβ yq/2w1−β vβ (1−p)
[
qd2

y
+

(6p+6)s2

v2

]
− 2β (1−β )

3
cβ yq/2w−1−β vβ (1−p)r2

and using (17), we get the final bound for Q′′
u3

:

Q′′
u3

� 15p2

p−2

{
cβ (8p2x2)q/2w1−β vβ (1−p)

[
qd2

8p2x2 +
(6p+6)s2

v2

]

− 2β (1−β )
3

cβ yq/2w−1−β vβ (1−p)r2
}

.

(19)

Now, the first term on the right will be overpowered by Q′′
u4

. To see this, note that the
Hessian matrix of the function u6(x,v) = |x|qv1−p is equal to[

q(q−1)|x|q−2v1−p q(1− p)|x|q−2xv−p

q(1− p)|x|q−2xv−p p(p−1)|x|qv−1−p

]
,

which is easily shown to be bigger than each of the matrices⎡
⎣ q(p−2)

p2 |x|q−2v1−p 0

0 0

⎤
⎦ ,

⎡
⎣ 0 0

0
p−2
2p

|x|qv−1−p

⎤
⎦ .
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Consequently, we can handle the first term in (19) as follows:

15p2

p−2
· cβ (8p2x2)q/2w1−β vβ (1−p)

[
qd2

8p2x2 +
(6p+6)s2

v2

]

� 15p2

p−2
· (8p2x2)q/2cv1−p

[
qd2

8p2x2 +
(6p+6)s2

v2

]

=
15p2

(p−2)2 (8p2)q/2c

[
1
8
· q(p−2)

p2 |x|q−2v1−pd2 +2p(6p+6) · p−2
2p

|x|qv−1−ps2
]

� −Q′′
u4

,

since, due to the assumption c � p ,

15p2(8p2)q/2c ·
(

1
8

+2p(6p+6)
)

� 15p2(8p2)(p+1)/2c ·13p2 � 300pp2(pc)p/2.

Combining this with (18) and (19), we get that Q′′
u1+u3−u4

does not exceed

−12pxyp/2dr−3p2x2yp/2−1wd2 − 15p2

p−2
· 2β (1−β )

3
cβ yq/2w−1−β vβ (1−p)r2

� −12pxyp/2dr−3p2x2yp/2−1wd2− 20(p2−1)
p2 yp/2+1w−1r2,

where in the last passage we have used the equality 1−β = (p− 2)(p2 − 1)/p3 and
the estimates wvp−1 � c , yq/2 � yp/2+1 and β � 2/p . It remains to compute that the
discriminant of the above expression, considered as a quadratic function of r , is equal
to x2ypd2

(
240−96p2

)
� 0.

6. Sharpness of the exponent in (5)

Now we will address the optimality of the exponent max{1/p,1/2} in (5). We
consider two natural cases.

6.1. The case 1 < p < 2

We will show that in this range, the best exponent κp in the estimate

||〈X〉1/2
∞ ||Lp,∞(W) � Kp[W ]κp

Ap
||X ||Lp(W ),

cannot be smaller than 1/p . We construct an appropriate example. For a given c > 1,
consider the region Dp,c and let PQ ⊂ Dp,c be the line segment with endpoints P ,
Q lying on the lower boundary of Dp,c , tangent to the upper boundary of this set at
(1,c1/(p−1)) . This line segment is contained in a line of the form w = av + b for
some a, b ∈ R . Consider the process (B,aB + b) , where B be a Brownian motion
starting from 1. This two-dimensional process starts from (1,c1/(p−1)) and, for suffi-
ciently small times, takes values in the segment PQ . Let us stop this process when it
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reaches P or Q and denote the obtained pair by (W,X) . We have (W∞,X∞)∈ {P,Q} , so
W∞X p−1

∞ = 1. Note that W is an Ap weight with [W ]Ap = c : indeed, for any stopping
time τ we have

E(W |Fτ)E(W 1/(1−p)|Fτ )p−1 = E(W∞|Fτ)E(X∞|Fτ)p−1 = WτX
p−1
τ ∈ [1,c],

since the range of (X ,W ) is contained in PQ (and hence, in particular, in the region
Dp,c ). This implies [W ]Ap � c , and to see that we actually have equality here, put
τ = 0: then we have

E(W |Fτ )E(W 1/(1−p)|Fτ)p−1 = W0X
p−1
0 = c.

Now, take λ = EX = c1/(p−1) . We have 〈X〉 � X2
0 = λ 2 almost surely, so

‖〈X〉1/2‖Lp,∞(W )

‖X‖Lp(W )
� λ (EW )1/p

(EW 1/(1−p))1/p
=

λ
λ 1/p

= c1/p = [W ]1/p
Ap

.

Since the parameter c > 1 was arbitrary, the optimality of the exponent 1/p is estab-
lished.

6.2. The case p > 2

Now we will prove that for these p , the smallest κp permitted in the estimate

||〈X〉1/2
∞ ||Lp,∞(W ) � Kp[W ]κp

A1
||X ||Lp(W) (20)

must be at least 1/2 (note that the A1 characteristic of W is used). Since [W ]A1 �
[W ]Ap , this will give the desired sharpness. Note that if (20) holds, then for any mean-
one A1 weight W and any martingale X bounded by 2 we have

E〈X〉W = 2
∫ ∞

0
λW (〈X〉1/2 � λ )dλ

= 2
∫ [W ]

κp
A1

0
λW (〈X〉1/2 � λ )dλ +2

∫ ∞

[W ]
κp
A1

λW (〈X〉1/2 � λ )dλ

� [W ]2κp
A1

EW +2
∫ ∞

[W ]
κp
A1

λ 1−p ·Kp
p [W ]pκp

A1
‖X‖p

Lp(W )dλ

= [W ]2κp
A1

{
EW +

2p+1Kp
p

p−2
EW

}
= [W ]2κp

A1

{
1+

2p+1Kp
p

p−2

}
.

(21)

Now we will construct an example related to the above inequality. Pick a large positive
integer N . Consider a one-dimensional Brownian motion started at 1/2 and introduce
the nondecreasing family τ0, τ1, τ2, . . . , τ2N of stopping times given recursively by

τ2n+1 = inf{t � τ2n : Bt � 3/2 or Bt � −1/2},
τ2n+2 = inf{t � τ2n+1 : Bt � −3/2 or Bt � 1/2}
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for n = 0, 1, 2, . . . , N − 1. The stopped process X = Bτ2N = (Bτ2N∧t)t�0 enjoys the
following behavior. It starts from 1/2; then, on the interval [τ0,τ1] , it evolves until it
reaches 3/2 or −1/2. If the first possibility occurs, the evolution is over; in the second
case, the process continues its move, on the time interval [τ1,τ2] , until it gets to −3/2
or to 1/2. Again, if the first scenario occurs, then the process terminates; otherwise,
the pattern is repeated. Note that Xτ2N = 1/2 with probability 4−N (indeed: Xτ2N = 1/2
means that Xτn = (−1/2)n for all n ). Furthermore, X is bounded in absolute value by
2 (actually, it is even bounded by 3/2).

Next, fix c > 1 and consider the weight W = (Wt)t�0 given as follows:

Wt =

{
(2− c−1)2n

[
1− (1− c−1)(Bt −1/2)

]
for t ∈ [τ2n,τ2n+1],

(2− c−1)2n+1
[
1+(1− c−1)(Bt +1/2)

]
for t ∈ [τ2n+1,τ2n+2]

for n = 0, 1, 2, . . . , N − 1, and Wt = Wτ2N for t � τ2N . It is easy to see that W is a
continuous-path martingale. Furthermore, we know from the above construction that if
t ∈ (τ2n,τ2n+1] , then Bt ∈ [−1/2,3/2] ; for t ∈ (τ2n+1,τ2n+2] we have Bt ∈ [−3/2,1/2] .
This implies that if t ∈ (τn,τn+1] , then we have the inclusion Wt ∈ [(2−c−1)nc−1,(2−
c−1)n+1] . In particular, this implies that for t ∈ (τn,τn+1] we have

Wt � (2− c−1)nc−1 = (2c−1)−1 · (2− c−1)n+1 � (2c−1)−1 sup
s�t

Ws,

so W is an A1 weight with [W ]A1 � 2c− 1. Observe that on the set Xτ2N = 1/2 we
have Wτ2N = (2− c−1)2N .

Let us look at both sides of (21). The above considerations imply that the right-
hand side of (21) is not bigger than

(2c−1)2κp

{
1+

2p+1Kp
p

p−2

}
.

On the other hand, we may write

E〈X〉W � E〈X〉W1{Xτ2N =1/2}

= E〈X〉(2− c−1)2N1{Xτ2N =1/2}

=
2N−1

∑
n=0

E
(〈X〉τn+1 −〈X〉τn

)
(2− c−1)2N1{Xτ2N =1/2}.

(22)

Recall that {Xτ2N = 1/2} is equivalent to saying that Bτn+1 −Bτn = (−1)n+1 for all n .
It follows from the independence and the symmetry of increments of Brownian motion
that

E

(
〈X〉τn+1 −〈X〉τn

∣∣∣∣Xτ2N = 1/2

)
= E

(〈X〉τ1 −〈X〉τ0

)
= EX2

τ1
= 1,

which implies

E
(〈X〉τn+1 −〈X〉τn

)
(2− c−1)2N1{Xτ2N =1/2} = (2− c−1)2N ·P(Xτ2N = 1/2)

=
(
1− (2c)−1)2N

.
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Coming back to (22), we see that

E〈X〉W � 2N
(
1− (2c)−1)2N

.

Plugging all the above observations into (21), we obtain

2N
(
1− (2c)−1)2N � (2c−1)2κp

{
1+

2p+1Kp
p

p−2

}
.

Now put N = �c� and let c → ∞ . Then the left-hand side increases linearly with c and
hence 2κp � 1. This shows that κp � 1/2 and completes the proof.
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[1] R. BAÑUELOS AND A. OSȨKOWSKI, Weighted norm inequalities for fractional maximal operators -
a Bellman function approach, Indiana Math. J. 64 (2015), 957–972.
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