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REGULAR COSINE FAMILIES OF LINEAR SET–VALUED FUNCTIONS
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(Communicated by M. S. Moslehian)

Abstract. This paper is concerned with the properties of regular cosine families of continuous
linear set-valued functions defined on convex cones of normed spaces. We consider conditions
under which a regular cosine family of continuous linear set-valued functions is continuous and
then generalize some recent results on commutativity and Hukuhara’s derivative of regular cosine
families of continuous linear set-valued functions.

1. Introduction

Let X be a vector space. Throughout this paper all vector spaces are supposed to
be real. We denote by n(X) the family of all nonempty subsets of X with addition

A+B := {a+b : a ∈ A,b ∈ B}

and scalar multiplication
λA := {λa : a ∈ A}

for every A,B ∈ n(X) and λ ∈ R .

LEMMA 1. [9] For subsets A,B ⊆ X and real numbers s,t we have:

s(A+B) = sA+ sB, (s+ t)A ⊆ sA+ tA.

Also, if A is convex and s,t � 0 (or s,t � 0 ), then (s+ t)A = sA+ tA.

A set-valued function F : [a,b] → n(X) is said to be

• concave if F(λ t +(1− λ )s) ⊆ λF(t) + (1− λ )F(s) for every s,t ∈ [a,b] and
λ ∈ (0,1) ;

• increasing if F(s) ⊆ F(t) for every s,t ∈ [a,b] with s < t ;

• decreasing if F(t) ⊆ F(s) for every s,t ∈ [a,b] with s < t .
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A set-valued function F : R→ n(X) is said to be even if F(t) = F(−t) for every t ∈R .
A subset K of X is said to be a convex cone if x+y∈K and tx∈K for all x,y∈K

and t > 0. For two linear spaces X and Y and a convex cone K ⊆ X , the set-valued
function F : K → n(Y ) is said to be

• additive if F(x+ y) = F(x)+F(y)

• linear if F(x+ y) = F(x)+F(y) and F(tx) = tF(x)

for all x,y ∈ K and t > 0.
Assume that X is a normed space, K ⊆ X is a convex cone and cc(K) denotes the

family of all nonempty compact convex subsets of K . For A,B ∈ cc(K) , the difference
A−B is a set C ∈ cc(K) satisfying A = B +C . Uniqueness of this difference is a
conclusion of Lemma 2 in [14].

Let d(a,B) := infb∈B ‖a−b‖ for a ∈ A . Then,

h(A,B) := max{sup
a∈A

d(a,B),sup
b∈B

d(b,A)}, (A,B ∈ cc(X))

defines a metric on cc(X) , which is called Hausdorff metric.
We understand the continuity of a set-valued function with respect to the Hausdorff

metric h derived from the norm in X .

DEFINITION 1. [5] Assume that X is a normed space, K ⊆ X is a convex cone
and F : [0,+∞) → cc(K) is a set-valued function. If all the differences F(s)−F(t)
exist for t,s ∈ [0,+∞) with s > t , then the Hukuhara derivative of F at t is defined by
the formula

DF(t) = lim
s→t+

F(s)−F(t)
s− t

= lim
s→t−

F(t)−F(s)
t− s

whenever both limits exist with respect to the Hausdorff metric h in cc(K) derived
from the norm in X . Also,

DF(0) = lim
s→0+

F(s)−F(0)
s

.

Consider X ,Y and Z are nonempty sets. The superposition G ◦F of set-valued func-
tions F : X → n(Y ) and G :Y → n(Z) is defined by (G◦F)(x) =∪y∈F(x)G(y) for every
x ∈ X .

DEFINITION 2. Let X be a normed space and K ⊆ X be a convex cone.

• A family {Ft : K → n(K)}t�0 is called a cosine family if

Ft+s(x)+Ft−s(x) = 2Ft(Fs(x)), F0(x) = {x}

for every x ∈ K and 0 � s � t . A cosine family {Ft : t � 0} is said to be regular
if limt→0+ h(Ft(x),{x}) = 0 for every x ∈ K .
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• A family {Ft : K → n(K)}t∈R is called a cosine family if

Ft+s(x)+Ft−s(x) = 2Ft(Fs(x)), F0(x) = {x}
for every x ∈ K and t,s ∈ R . A cosine family {Ft : t ∈ R} is said to be regular if
limt→0 h(Ft(x),{x}) = 0 for every x ∈ K .

If X is a normed space, K is a convex cone in X and {Ft : t ∈ R} is a cosine family of
set-valued functions Ft : K → cc(K) , then

Fs(x)+F−s(x) = 2F0Fs(x) = 2Fs(x).

By Rȧdstr öm cancelation Lemma, Fs(x) = F−s(x) for all x ∈ K and s ∈ R . That is,
the set-valued functions t �→ Ft(x) are even.

The following Lemma is an immediate consequence of Lemma 1 in [15].

LEMMA 2. Let X and Y be two topological vector spaces, K be a convex cone in
X , F : K → cc(Y ) is an additive set-valued function and A,B∈ cc(K) . If the difference
A−B exists, then F(A)−F(B) exists and F(A)−F(B) = F(A−B) .

By Lemma 4 in [17] (see also Lemma 3 in [19]), we have the following lemma.

LEMMA 3. Let X and Y be two normed spaces and K be a convex cone in X .
If {Fi : K → n(Y )}i∈I is a family of continuous linear set-valued functions, K is of the
second category in K and for every x ∈ K , ∪i∈IFi(x) is bounded in Y, then there exists
a positive number M with

||Fi(x)|| := sup{||y|| : y ∈ Fi(x)} � M||x||
for every i ∈ I and x ∈ K .

And, by Lemma 2 in [17], we have the following result.

LEMMA 4. If X , Y and K have the same meaning as in Lemma 3, then the func-
tional

F �→ ||F || := sup{ ||F(x)||
||x|| : x ∈ K,x 	= 0}

is finite for every continuous linear set-valued function F : K → cc(Y ) .

LEMMA 5. [17] Let X and Y be two normed spaces, h be the Hausdorff distance
derived from the norm in Y and K be a convex cone in X with nonempty interior. Then,
there is a positive number M0 such that for every continuous linear set-valued function
F : K → cc(Y ) the inequality h(F(x),F(y)) � M0||F ||||x− y|| holds for all x,y ∈ K .

LEMMA 6. [16] Consider two metric spaces (X ,d1) and (Y,d2) and let h1 and
h2 be the corresponding Hausdorff metrics. If F : X → n(Y ) is a set-valued function
and M is a positive number satisfying h2(F(x),F(y)) � Md1(x,y) for all x,y∈ X , then
h2(F(A),F(B)) � Mh1(A,B) for every A,B ∈ n(X) .



290 M. AGHAJANI

LEMMA 7. [16] Let D and Y be a nonempty set and a normed space, respectively.
If F0,Fn : D → c(Y ) are set-valued functions such that the sequence (Fn) uniformly
converges to F0 on D, then

lim
n→∞

Fn(D) = F0(D).

Since normed spaces and the cones are not supposed to be complete, so our main results
generalize some recent results on cosine families of linear set-valued functions.

2. Main results

For a normed space X , we use the notations X0 , intXK and clXK for the comple-
tion X , the interior of K in X and the closure of K in X , respectively. If the symbol ∼

denotes Rȧdstr öm’s equivalence relation in cc(X0) with (A,B) ∼ (D,E) ⇔ A+E =
B+D for all A,B,D,E ∈ cc(X0) and [A,B] is the equivalence class of (A,B) . Then,
the vector space Δ of all equivalence classes with operations

[A,B]+ [D,E] = [A+D,B+E],

λ [A,B] = [λA,λB], (λ � 0),

λ [A,B] = [−λB,−λA], (λ < 0)

is a normed space with the norm ‖[A,B]‖ := h(A,B) (see [14]). By Theorems 3.85 and
3.88 in [3], (cc(X0),h) is a complete metric space.

2.1. Continuity properties of regular cosine families

From now on, unless explicitly stated otherwise, X and Y are normed spaces and
K is a convex cone in X such that intXK 	= /0 . Note that (cc(clX0K),h) is a complete
metric space. If F : K → cc(K) is a continuous linear set-valued function, then by
Theorem 1 in [2], F has a unique continuous linear extension F̃ : clX0K → cc(clX0K)
such that ‖F̃‖= ‖F‖ . Identifying F̃ with the unique continuous linear extension of F ,
we have the following results.

LEMMA 8. If {Ft : t ∈ R} is a regular cosine family of continuous linear set-
valued functions Ft : K → cc(K) , then the function t �→ ‖Ft‖ is bounded on some
neighborhood of zero if and only if the set-valued function t �→ F̃t(x) is continuous
for every x ∈ clX0K .

Proof. Let the function t �→ ‖Ft‖ be bounded on some neighborhood of zero and
x ∈ K be arbitrary. Put Gt(x) := Ft(x) and Ht(x) := F−t(x) for every t � 0. It is easy
to see that {Gt : t � 0} and {Ht : t � 0} are regular cosine families. By Theorem 2
in [2], the set-valued function t �→ F̃t(x) is continuous on [0,∞) and (−∞,0] for every
x ∈ clX0K . Hence, the set-valued function t �→ F̃t(x) is continuous for all x ∈ clX0K .

Conversely, if the set-valued function t �→ F̃t(x) is continuous for every x∈ clX0K .
Then, putting E = [−1,1] , ∪t∈E F̃t(x) is compact for every x ∈ clX0K . By Lemmas 3
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and 4, there is a positive constant M such that ‖F̃t‖ = ‖Ft‖ � M for every t ∈ E . Thus,
t �→ ‖Ft‖ is bounded on some neighborhood of zero.
It is natural to ask whether the continuity of t �→Ft(x) for every x∈K , can be equivalent
to the boundedness of t �→ ‖Ft‖ on some neighborhood of zero. In the following, we
will list the results of this issue.

THEOREM 1. If {Ft : t ∈ R} is a regular cosine family of continuous linear set-
valued functions Ft : K → cc(K) , then the following statements are equivalent.

1. t �→ Ft(x) is continuous for every x ∈ K .

2. The function t �→ ‖Ft‖ is bounded on some neighborhood of zero.

3. For every x ∈ clX0K the set-valued function t �→ F̃t(x) is continuous.

Proof. (1) ⇒ (2) Assume by way of contradiction that there exists a sequence
(tn) in [0,∞) satisfying limn→∞ tn = 0 and ‖Ftn‖= ‖F̃tn‖� n for all n∈N . By Lemma
3, there exists x0 ∈ clX0K such that (‖F̃tn(x0)‖) is unbounded. Since x0 ∈ clX0K , so
there is (xn) in K such that limn→∞ xn = x0 . Define real functions fn : R → R by
fn(t) = ‖[Ft(xn),{0}]‖ for all t ∈ R and n ∈ N . Since t �→ Ft(x) is continuous for
every x∈K , so { fn : n∈N} is a family of continuous real functions. On the other hand,
x �→ Ft(x) is a continuous linear set-valued function for every t ∈ R , thus x �→ Ft(x) is
uniformly continuous for every t ∈ R and consequently (Ft(xn)) is a Cauchy sequence
in cc(K) and therefore bounded for every t ∈ R . Hence, ( fn(t)) is bounded for every
t ∈ R . Since R is a complete metric space, so by uniform boundedness principle (see
[8], pp. 299) there is an open neighborhood U0 of R on which the functions fn are
uniformly bounded, that is, there is L0 > 0 such that | fn(t)| < L0 for all t ∈ U0 and
n ∈ N . Thus, there are L0 > 0 and 0 � δ < η such that ‖Ft(xn)‖ < L0 for every
t ∈ [δ ,η ] ⊆U0 and n ∈ N . As n → ∞ , by Theorem 1 in [2] we have:

‖F̃t(x0)‖ � L0

for every t ∈ [δ ,η ] . Now, consider real functions fn : [2δ ,2η ] → R by fn(t) =
‖[Ft(xn),{0}]‖ for all t ∈ [2δ ,2η ] and n ∈ N . So as above, there is an open neighbor-
hood V0 of [2δ ,2η ] on which the functions fn are uniformly bounded, that is, there is
L′

0 > 0 such that ‖F̃t(x0)‖ < L′
0 for every t ∈V0 and n ∈ N .

Put L = max{L0,L′
0,1} . For some 2t0 ∈ V0 , there exists an n ∈ N such that

[2t0,2t0 + t0
n ] ⊆ V0 and [t0,t0 + t0

2n ] ⊆ [δ ,η ] . We claim that ‖F̃t(x0)‖ is bounded on
[0, t0

2n ] . Without loss of generality we can assume that L � ‖Ft0‖ . Since [t0,t0 + t0
2n ] ⊆

[δ ,η ] , so for all t ∈ [t0,t0 + t0
2n ] we have:

‖F̃t−t0(x0)‖ � ‖F̃t+t0(x0)‖+2‖Ft0‖‖F̃t(x0)‖
� 3L2.

Hence, t �→ ‖F̃t(x0)‖ is bounded on some neighborhood [0, t0
2n ] which is a contradic-

tion. Thus, t �→ ‖Ft‖ is bounded on some neighborhood of zero.
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(2) ⇒ (3) The proof is an immediate consequence of Lemma 8.
(3) ⇒ (1) The proof is clear.

By the proof of Theorem 1, the corresponding result holds for a regular cosine family
{Ft : t � 0} . Hence, the answer to the considered question in Remark 1 in [2] is yes.
That is, the boundedness of the function t → ‖ϕt‖ on some neighborhood of zero in
Theorem 2 is essential.

Let {Ft : t ∈ R} be a regular cosine family of continuous linear set-valued func-
tions Ft : K → cc(K) . Since for all x ∈ K the set-valued functions t �→ Ft(x) are even,
so

2Ft(Fs(x)) = Ft+s(x)+Ft−s(x) = Fs+t(x)+Fs−t(x) = 2Fs(Ft(x))

for x ∈ K and s, t ∈ R . That is, Ft(Fs(x)) = Fs(Ft(x)) . For u,v ∈ R putting t = v+u
2

and s = v−u
2 in Ft+s(x)+Ft−s(x) = 2Ft(Fs(x)) , we have

Fv(x)+Fu(x) = 2Fu+v
2

(Fv−u
2

(x)).

If x ∈ Ft(x) for all x ∈ K and t ∈ R , then

Fu+v
2

(x) ⊆ Fu(x)+Fv(x)
2

.

By Theorem 4.2 in [9], t �→ Ft(x) is continuous and by Theorem 4.1 in [9], this set-
valued function is concave. For 0 � u � v , there exists λ ∈ [0,1] such that u = (1−
λ )0+ λv . Thus,

Fu(x) ⊆ (1−λ )F0(x)+ λFv(x)

= (1−λ )x+ λFv(x)

⊆ (1−λ )Fv(x)+ λFv(x) = Fv(x).

And, for v � u � 0 we have Fu(x)⊆ Fv(x) . Hence t �→ Ft(x) is increasing in [0,∞) and
decreasing in (−∞,0] . Conversely, if t �→ Ft(x) is increasing in [0,∞) or decreasing in
(−∞,0] , then x ∈ Ft(x) for all x ∈ K and t ∈ R .

The immediate consequence of the preceding theorem is:

COROLLARY 1. Let {Ft : t ∈ R} be a regular cosine family of continuous linear
set-valued functions Ft : K → cc(K) such that {Ft(x) : t ∈ R} is increasing in [0,∞)
for every x ∈ K . Then,

1. t �→ Ft(x) is continuous for every x ∈ K .

2. the function t �→ ‖Ft‖ is bounded on some neighborhood of zero.

3. for every x ∈ clX0K the set-valued function t �→ F̃t(x) is continuous.
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2.2. Commutativity and Hukuhara’s derivative of regular cosine families

Recall that if {Ft : t ∈R} is a regular cosine family of continuous linear set-valued
functions Ft : K → cc(K) such that x ∈ Ft(x) for every x ∈ K and t ∈ R , then for every
x ∈ K the set-valued function t �→ Ft(x) is concave, continuous, even, decreasing in
(−∞,0] and increasing in [0,+∞) . Also, Fs ◦Ft = Ft ◦Fs for every s,t ∈ R (see [18]).
For some more properties of sine and cosine equations, see also [4].

THEOREM 2. If {Ft : K → cc(K)}t�0 is a regular cosine family of continuous
linear set-valued functions such that t �→ ‖Ft‖ is bounded on some neighborhood of
zero, then

lim
t→s

h(Ft(D),Fs(D)) = 0

for every nonempty compact subset D of K .

Proof. Let (tn) be a sequence in [0,∞) such that tn → s . Putting φn(x) := F̃tn(x)
and φ(x) := F̃s(x) we have limn→∞ φn(x) = φ(x) for every x ∈ clX0K . By Lemma 7 in
[16], (φn) is uniformly convergent to φ on each nonempty compact subset D and by
Lemma 7, limn→∞ φn(D) = φ(D) . Therefore,

lim
t→s

h(Ft(D),Fs(D)) = 0

for every nonempty compact subset D of K .
The corresponding result (given in Theorem 2) holds for a regular cosine family {Ft :
K → cc(K)}t∈R of continuous linear set-valued functions.

LEMMA 9. If F : R → cc(X) is continuous, then the set-valued function

φ(t) =
∫ t

a
F(u)du, (t � a)

is continuous.

Proof. The proof is identical to the proof of Lemma 10 in [12]. Let h > 0 and
t � a . By Lemmas 7 and 8 in [1], we have

h(φ(t),φ(t +h)) = h(
∫ t
a F(u)du,

∫ t
a F(u)du+

∫ t+h
t F(u)du)

� h(
∫ t+h
t F(u)du,{0})

� hsupt�u�t+h ‖F(u)‖.
As h → 0, we have h(φ(t),φ(t +h))→ 0. That is, φ is continuous.

LEMMA 10. Let F : R → cc(X) be continuous, then for every t ∈ R ,

lim
h→0

1
h

∫ t+h

t
F(u)du = F(t).
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Proof. Consider t ∈ R , α = t − 1 and β = t + 1. Define H(s) =
∫ s

α F(u)du for
every s ∈ [α,β ] . Since F : [α,β ] → cc(X) is continuous, so by Lemma 9 in [1], H

is differentiable and limh→0
H(t+h)−H(t)

h = F(t) or limh→0
1
h

∫ t+h
t F(u)du = F(t) for all

t ∈ R .

LEMMA 11. If F : [0,∞) → cc(X) is continuous, then

∫ t

0
(
∫ s

0
F(u)du)ds =

∫ t

0
(t−u)F(u)du (t � 0). (1)

Proof. The proof is identical to that of Lemma 12 in [12]. For sake of convenience
we give the proof. Define

φ(t) := h(
∫ t

0
(
∫ s

0
F(u)du)ds,

∫ t

0
(t−u)F(u)du) (t � 0).

By Lemma 9, φ is continuous and by Lemma 8 in [1] we have

φ(t +h) = h(
∫ t+h
0 (

∫ s
0 F(u)du)ds,

∫ t+h
0 (t +h−u)F(u)du)

� h(
∫ t
0(

∫ s
0 F(u)du)ds,

∫ t
0(t−u)F(u)du)

+ h(
∫ t+h
t (

∫ s
0 F(u)du)ds,

∫ t+h
t (t +h−u)F(u)du+h

∫ t
0 F(u)du).

Thus,

φ(t +h)−φ(t)
h

� h(
1
h

∫ t+h

t
(
∫ s

0
F(u)du)ds,

1
h

∫ t+h

t
(t +h−u)F(u)du+

∫ t

0
F(u)du)

for all t � 0 and h > 0. Since F is continuous, so there is M > 0 such that ‖F(u)‖� M
for u ∈ [t, t +1] . By Lemma 7 in [1],

‖1
h

∫ t+h

t
(t +h−u)F(u)du‖ � 1

h

∫ t+h

t
(t +h−u)‖F(u)‖du � Mh

2

for every h ∈ [0,1] . Therefore,

lim
h→0+

1
h

∫ t+h

t
(t +h−u)F(u)du = {0}.

Consequently, by Lemmas 9 and 10 we have

liminfh→0+
φ(t+h)−φ(t)

h � limh→0+ h( 1
h

∫ t+h
t (

∫ s
0 F(u)du)ds,

∫ t
0 F(u)du)

+ limh→0+ ‖ 1
h

∫ t+h
t (t +h−u)F(u)du‖

= h(
∫ t
0 F(u)du,

∫ t
0 F(u)du)+0 = 0.

Hence, φ is nonincreasing. Then, φ(t) � φ(0) for every t � 0. This completes the
proof.
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LEMMA 12. Let F : [α,β ]→ cc(X) be continuous and a,b,A,B be real numbers
satisfying a < b, Aa+B = α and Ab+B = β . Then,

∫ β

α
F(t)dt = A

∫ b

a
F(Au+B)du.

Proof. Consider F : [α,β ]→ cc(X0) . By Lemma 3 in [11],
∫ β

α F(t)dt = A
∫ b
a F(Au+

B)du . And,
∫ β

α F(t)dt,
∫ b
a F(Au+B)du∈ cc(X) , which completes the proof.

LEMMA 13. Let F : R → cc(X) be continuous. Then,

∫ b

a
F(u)du =

∫ t−a

t−b
F(t−u)du

for every t ∈ R .

Proof. Consider F : R → cc(X0) . By Lemma 4 in [11],
∫ b
a F(u)du =

∫ t−a
t−b F(t −

u)du for every t ∈ R . And,
∫ b
a F(u)du,

∫ t−a
t−b F(t−u)du ∈ cc(X) , which completes the

proof.

LEMMA 14. If F : K → cc(X) is continuous linear and G : [a,b] → cc(K) is
continuous, then

∫ b
a F(G(t))dt = F(

∫ b
a G(t)dt) .

Proof. Consider F : clX0K → cc(X0) and G : [a,b] → cc(clX0K) . By Lemma 5 in
[11],

∫ b
a F(G(t))dt = F(

∫ b
a G(t)dt) .

We have
∫ b
a G(t)dt ∈ cc(K) and

∫ b
a F(G(t))dt,F(

∫ b
a G(t)dt)∈ cc(X) , which com-

plete the proof.

THEOREM 3. Let {Ft : t ∈ R} be a regular cosine family of continuous linear set-
valued functions Ft : K → cc(K) such that t �→ ‖Ft‖ is bounded on some neighborhood
of zero. For any set D ∈ cc(K) such that Ft+s(D) + Ft−s(D) = 2FtFs(D) for every
s,t ∈ R , the set-valued function φ : R → cc(K) satisfying

φ(s) =
∫ s

0
(s− v)Fv(D)dv, (s � 0)

φ(s) = φ(−s) (s � 0)

is a continuous even solution of

φ(t + s)+ φ(t− s) = 2Ft(φ(s))+2φ(t) (2)

with φ(0) = {0},Dφ(0) = {0} .
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Proof. By Theorem 2 (which also holds for a regular cosine family on all reals),
set-valued functions t �→ Ft(D) are continuous. Define

φ(s) =
∫ s

0
(s− v)Fv(D)dv, s � 0,

φ(s) = φ(−s), s � 0.

By Lemma 9, φ is continuous. By Lemmas 10 and 11, Dφ(t) = limh→0
φ(t+h)−φ(t)

h =∫ t
0 Fv(D)dv for every t � 0. It is easy to see that φ is even, φ(0) = {0} and Dφ(0) =

limh→0
φ(h)−φ(0)

h = {0} . If s ∈ [0,t] , then by Lemma 12,

∫ s

0
(s− v)Ft+v(D)dv =

∫ t+s

t
(t + s− v)Fv(D)dv. (3)

And, by Lemma 13,
∫ s

0
(s− v)Ft−v(D)dv =

∫ t

t−s
(s− t + v)Fv(D)dv. (4)

By Lemma 1, Lemma 8 in [1] and (3) we have

φ(t + s)+ φ(t− s) =
∫ t+s
0 (t + s− v)Fv(D)dv+

∫ t−s
0 (t− s− v)Fv(D)dv

=
∫ t−s
0 (t + s− v)Fv(D)dv+

∫ t
t−s(t + s− v)Fv(D)dv

+
∫ t+s
t (t + s− v)Fv(D)dv+

∫ t−s
0 (t− s− v)Fv(D)dv

= 2
∫ t−s
0 (t− v)Fv(D)dv+

∫ s
0 (s− v)Ft+v(D)dv

+
∫ t
t−s(t + s− v)Fv(D)dv.

By the equality
∫ t

t−s
(t + s− v)Fv(D)dv =

∫ t

t−s
(s− t + v)Fv(D)dv+2

∫ t

t−s
(t− v)Fv(D)dv,

Lemma 14 and (4) we have

φ(t + s)+ φ(t− s) =
∫ s
0 (s− v)Ft+v(D)dv+

∫ s
0 (s− v)Ft−v(D)dv

+ 2
∫ t
0(t − v)Fv(D)dv

= 2Ft(
∫ s
0 (s− v)Fv(D)dv)+2

∫ t
0(t− v)Fv(D)dv

= 2Ft(φ(s))+2φ(t).

That is, φ is a solution of equation (2) for 0 � s � t . Now we prove that Ft(φ(s))+
φ(t) = Fs(φ(t))+φ(s) for all s,t ∈R . If 0 � s � t , then by Lemmas 12, 13 and Lemma
8 in [1], ∫ t

0
(t − v)Fs+v(D)dv =

∫ t+s

s
(t + s− v)Fv(D)dv

and
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∫ t
0(t− v)Fs−v(D)dv =

∫ s
0 (t − v)Fs−v(D)dv+

∫ t
s (t − v)Fv−s(D)dv

=
∫ s
0 (t − s+ v)Fv(D)dv+

∫ t−s
0 (t − s− v)Fv(D)dv.

Consequently, by Lemma 14 we have

2Fs(φ(t))+2φ(s) = 2Fs(
∫ t
0(t − v)Fv(D)dv)+2

∫ s
0 (s− v)Fv(D)dv

=
∫ t
0(t− v)Fs+v(D)dv+

∫ t
0(t − v)Fs−v(D)dv

+ 2
∫ s
0 (s− v)Fv(D)dv

=
∫ t+s
s (t + s− v)Fv(D)dv+

∫ s
0 (t − s+ v)Fv(D)dv

+
∫ t−s
0 (t− s− v)Fv(D)dv+2

∫ s
0 (s− v)Fv(D)dv.

Also, by Lemma 1,

∫ s

0
(t − s+ v)Fv(D)dv+2

∫ s

0
(s− v)Fv(D)dv =

∫ s

0
(t + s− v)Fv(D)dv

and by Lemma 8 in [1],

∫ t+s

s
(t + s− v)Fv(D)dv =

∫ t

s
(t + s− v)Fv(D)dv+

∫ t+s

t
(t + s− v)Fv(D)dv.

Therefore,

2Fs(φ(t)) + 2φ(s)

=
∫ t+s
t (t + s− v)Fv(D)dv+

∫ t
0(t + s− v)Fv(D)dv

+
∫ t−s
0 (t− s− v)Fv(D)dv.

From
∫ t
0(t + s− v)Fv(D)dv +

∫ t−s
0 (t − s− v)Fv(D)dv

=
∫ t
t−s(t + s− v)Fv(D)dv+

∫ t−s
0 (2t−2v)Fv(D)dv

=
∫ t
t−s(s− t + v)Fv(D)dv+2

∫ t
t−s(t− v)Fv(D)dv

+ 2
∫ t−s
0 (t− v)Fv(D)dv

=
∫ t
t−s(s− t + v)Fv(D)dv+2

∫ t
0(t− v)Fv(D)dv,

we have:

2Fs(φ(t)) + 2φ(s)

=
∫ t+s
t (t + s− v)Fv(D)dv+

∫ t
t−s(s− t + v)Fv(D)dv

+ 2
∫ t
0(t− v)Fv(D)dv.

According to (3), (4) and Lemma 14,
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2Fs(φ(t)) + 2φ(s)

=
∫ s
0 (s− v)Ft+v(D)dv+

∫ s
0 (s− v)Ft−v(D)dv

+ 2
∫ t
0(t− v)Fv(D)dv

= 2Ft(
∫ s
0 (s− v)Fv(D)dv)+2φ(t)

= 2Ft(φ(s))+2φ(t).

Hence, Ft(φ(s)) + φ(t) = Fs(φ(t)) + φ(s) for every s,t ∈ R . Since for all x ∈ K ,
t �→ Ft(x) and φ are even, so φ satisfies (2) for all s,t ∈ R .

EXAMPLE 1. Let {Ft : t ∈ R} be a regular cosine family of continuous linear set-
valued functions Ft : K → cc(K) and x ∈ Ft(x) for every x ∈ K and t ∈ R . Then, for
every set D ∈ cc(K) satisfying 0 ∈ D and Ft+s(D)+Ft−s(D) = 2Ft(Fs(D)) for every
s,t ∈ R , the set-valued function φ : R → cc(K) via

φ(s) =
∫ s

0
(s−u)Fu(D)du, (s � 0)

and

φ(s) = φ(−s), (s � 0)

is a continuous even solution of (2) with φ(0) = {0} , Dφ(0) = {0} and 0 ∈ φ(s) for
all s ∈ R .

LEMMA 15. Let (An) and (Bn) be two sequences in cc(X) such that An → A
and Bn → B. If there exist the Hukuhara differences An−Bn in cc(X) for every n∈ N ,
then there exists the Hukuhara difference A−B and An−Bn → A−B.

Proof. There is no loss of generality in supposing that (An) and (Bn) are two
sequences in cc(X0) such that An → A and Bn → B in cc(X0) . By Lemma 1 in [13],
there exists Hukuhara difference A−B in cc(X0) and An −Bn → A−B . Now, put
C := A− B and Cn := An −Bn for n ∈ N , by definition of the Hukuhara difference
A = B+C and An = Bn +Cn for n ∈ N . Since for all n ∈ N , An,Bn,A,B are compact
subsets in cc(X) , so Bn +Cn,B+C ∈ cc(X) for n∈N and consequently Cn,C ∈ cc(X)
for all n ∈ N .
The next Lemma is the normed space version of Lemma 11 in [11] which can be easily
obtained via a similar argument if we just replace Lemma 1 in [13] with Lemma 15.

LEMMA 16. If a continuous set-valued function φ : R → cc(K) fulfills (2) and
φ(0) = {0} , then for all 0 � s � t Hukuhara differences φ(t)−φ(s) exist.

THEOREM 4. Let {Ft : t ∈ R} be a regular cosine family of continuous linear set-
valued functions Ft : K → cc(K) such that t �→ ‖Ft‖ is bounded on some neighborhood
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of zero. If a Hukuhara differentiable set-valued function φ : R → cc(K) is an even so-

lution of (2) such that Dφ is continuous, φ(0) = {0} , Dφ(0) = {0} and limt→0+
Dφ(t)

t
exists, then there is a set D ∈ cc(K) satisfying

Ft+s(D)+Ft−s(D) = 2Ft(Fs(D)), (s,t ∈ R)

φ(s) =
∫ s

0
(s−u)Fv(D)dv, (s � 0)

φ(s) = φ(−s), (s � 0).

Proof. Since by assumption φ is even, so

φ(t + s)+ φ(t− s) = 2Fs(φ(t))+2φ(s), (s,t ∈ R). (5)

Consider 0 � s � t , and replace t by t + v in (5). Then,

φ(t + s+ v)+ φ(t− s+ v) = 2Fs(φ(t + v))+2φ(s) (6)

where v > 0. By (5), (6) and Lemma 16 we obtain

φ(t + s+ v)−φ(t + s)
v

+
φ(t − s+ v)−φ(t− s)

v
= 2Fs(

φ(t + v)−φ(t)
v

).

As v → 0+ , we get
Dφ(t + s)+Dφ(t− s) = 2Fs(Dφ(t)) (7)

for 0 � s � t . By Lemma 16, the Hukuhara differences φ(t)−φ(s) exist for 0 � s � t .
Consider 0 � s < t and 0 < v � t− s and replace s by s+ v in (2). Then,

φ(t + s+ v)+ φ(t− s− v) = 2Ft(φ(s+ v))+2φ(t). (8)

Adding both sides of (2) and (8) yields

φ(t + s+ v) + φ(t − s− v)+2Ft(φ(s))+2φ(t)

= φ(t + s)+ φ(t− s)+2Ft(φ(s+ v))+2φ(t).

Hence,

φ(t + s+ v)−φ(t + s) = 2Ft(φ(s+ v)−φ(s))+ φ(t− s)−φ(t− s− v).

Dividing by v and letting v → 0+ we have

Dφ(t + s) = 2Ft(Dφ(s))+Dφ(t − s) (9)

for 0 � s < t . From (9) we have

Fv(Dφ(t + s)) = 2Fv(Ft(Dφ(s)))+Fv(Dφ(t − s))
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and replacing in (7) t by t + s and s by v and next t by t− s and s by v , we have

1
2
Dφ(t +s+v)+

1
2
Dφ(t +s−v)= 2Fv(Ft(Dφ(s)))+

1
2
Dφ(t−s+v)+

1
2
Dφ(t−s−v).

By (9), we get
Ft+v(Dφ(s))+Ft−v(Dφ(s)) = 2Fv(Ft(Dφ(s)))

for 0 � v � t− s . Dividing by s and letting s → 0+ , we have

Ft+v(D)+Ft−v(D) = 2Fv(Ft(D)), (10)

where D := limt→0+
Dφ(t)

t . Define

ψ(t) =
∫ t

0
(t− v)Fv(D)dv, (t � 0)

and
ψ(t) = ψ(−t), (t � 0).

By Theorem 3, ψ is continuous, holds in (2) and Dψ(t) =
∫ t
0 Fv(D)dv . Moreover, by

Lemma 10 we have

lim
t→0+

Dψ(t)
t

= lim
t→0+

1
t

∫ t

0
Fv(D)dv = F0(D) = D.

To end the proof it suffices to show that φ = ψ . Define h(t) = h(Dφ(t),Dψ(t)) for
every t � 0. Then,

h(t + s) − h(t)

= h(Dφ(t + s
2 + s

2 ),Dψ(t + s
2 + s

2 ))−h(Dφ(t),Dψ(t))

= h(2Ft+ s
2
(Dφ( s

2 ))+Dφ(t),2Ft+ s
2
(Dψ( s

2 ))+Dψ(t))−h(Dφ(t),Dψ(t))

� 2h(Ft+ s
2
(Dφ( s

2 )),Ft+ s
2
(Dψ( s

2 ))).

By Lemmas 5 and 6, there is M0 � 0 with

h(t + s)−h(t)
s

� h(Ft+ s
2
(
Dφ( s

2 )
s
2

),Ft+ s
2
(
Dψ( s

2)
s
2

)) � M0‖Ft+ s
2
‖h(

Dφ( s
2 )

s
2

,
Dψ( s

2 )
s
2

).

By Theorem 1, t �→ F̃t(x) is continuous for every x∈ clX0K , consequently ∪s∈[0,1]F̃t+ s
2
(x)

is bounded for every x∈ clX0K . By Lemma 3, there exists M > 0 such that ‖Ft+ s
2
‖� M

for s ∈ [0,1] . Thus,

h(t + s)−h(t)
s

� MM0h(
Dφ( s

2 )
s
2

,
Dψ( s

2)
s
2

).

Hence, liminfs→0+
h(t+s)−h(t)

s � 0. By Zygmund’s Lemma (see [6], p. 174) h is non-
increasing. So, h(t) � h(0) for all t � 0. That is, Dφ = Dψ . Since Dφ = Dψ ,
φ(0) = ψ(0) and φ ,ψ are even, so φ = ψ .
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EXAMPLE 2. Let {Ft : t ∈ R} is a regular cosine family of continuous linear set-
valued functions Ft : K → cc(K) and x ∈ Ft(x) for every x ∈ K and t ∈ R . If a set-
valued function φ : R→ cc(k) is a concave continuous even solution of (2) with φ(0) =
{0} , Dφ(0) = {0} and 0∈ φ(t) for all t ∈R , then by Corollary 1, t �→ ‖Ft‖ is bounded
on some neighborhood of zero. By Lemma 16, the differences φ(t)−φ(s) exist for all
0 � s � t . And, by Theorem 3.2 in [10], there exists

lim
h→0+

φ(t +h)−φ(t)
h

:= D+φ(t), (t > 0)

and

lim
h→0+

φ(t)−φ(t−h)
h

:= D−φ(t), (t > 0).

By (2), we have

φ(t + s)−φ(t) = 2Ft(φ(s))+ φ(t)−φ(t− s)

for all 0 < s � t . Divide by s and let s → 0+ , then D+φ(t) = D−φ(t) =: Dφ(t) for all
t > 0. That is, φ is Hukuhara differentiable at every t > 0. Since by assumption φ is
even, so

φ(t + s)+ φ(t− s) = 2Fs(φ(t))+2φ(s), (s,t ∈ R). (11)

Consider 0 � s � t and replace t by t + v in (11), then

φ(t + s+ v)+ φ(t− s+ v) = 2Fs(φ(t + v))+2φ(s) (12)

where v > 0. By (11) and (12), we get

φ(t + s+ v)−φ(t + s)
v

+
φ(t − s+ v)−φ(t− s)

v
= 2Fs(

φ(t + v)−φ(t)
v

).

As v → 0+ , we get Dφ(t + s) + Dφ(t − s) = 2Fs(Dφ(t)) for all 0 � s � t . Putting
t = u+v

2 and s = v−u
2 we have

Dφ(v)+Dφ(u) = 2Fv−u
2

(Dφ(
v+u

2
))

where 0 � u � v . By assumption x ∈ Ft(x) , we have Dφ( u+v
2 ) ⊆ Dφ(v)+Dφ(u)

2 . Let
[a,b] ⊆ [0,∞) and fix it. By Theorem 3.2 in [10], Dφ is increasing and for t ∈ [a,b] ,
Dφ(t) ⊆ Dφ(b) . Thus, Dφ is bounded on [a,b] and by Theorem 4.4 in [9], Dφ is
continuous on (0,∞) and by Theorem 4.1 in [9], is concave. Therefore, there exists

lim
t→0+

Dφ(t)
t

∈ cc(K).

Since Dφ(0) = {0} , Dφ is increasing and 0 ∈ Dφ(t) for t � 0. Hence by Theorem 4,
there is a set D ∈ cc(K) with 0 ∈ D and

Ft+s(D)+Ft−s(D) = 2Ft(Fs(D)), (s,t ∈ R)

φ(s) =
∫ s

0
(s−u)Fu(D)du, (s � 0)

φ(s) = φ(−s), (s � 0).
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LEMMA 17. If set-valued functions F,G,H : K → cc(K) are continuous and lin-
ear, then there exists at most one continuous linear set-valued function ϕ : [0,∞)×K →
cc(K) which is twice differentiable with respect to the first variable and it satisfies the
following differentiable problem

D2
t ϕ(t,x) = ϕ(t,H(x)),ϕ(0,x) = F(x),Dtϕ(t,x)|t=0 = G(x). (13)

Proof. Let φ ,ψ : [0,∞)×K → cc(K) be two solutions of problem (13). By Lem-
mas 9 and 10, we have

Dφ(t,x) = G(x)+
∫ t

0
φ(u,H(x))du

and

φ(t,x) = F(x)+ tG(x)+
∫ t

0
(
∫ s

0
φ(u,H(x))du)ds.

Also,

Dψ(t,x) = G(x)+
∫ t

0
ψ(u,H(x))du

and

ψ(t,x) = F(x)+ tG(x)+
∫ t

0
(
∫ s

0
ψ(u,H(x))du)ds.

By Theorem 1 in [2], F,G,H and φ ,ψ have continuous linear extensions F̃,G̃,H̃ :
clX0K → cc(clX0K) and φ̃ , ψ̃ : [0,∞)× clX0K → cc(clX0K) , respectively. By Lemma 7
in [1], we obtain φ̃ (t,x) = F̃(x)+ tG̃(x)+

∫ t
0(

∫ s
0 φ̃ (u,H̃(x))du)ds and ψ̃(t,x) = F̃(x)+

tG̃(x)+
∫ t
0(

∫ s
0 ψ̃(u,H̃(x))du)ds . Thus, φ̃ (t,x) and ψ̃(t,x) are two solutions of problem

(13). By Theorem 2 in [7], φ̃ (t,x) = ψ̃(t,x) and consequently φ(t,x) = ψ(t,x) for
every (t,x) ∈ [0,∞)× cc(K) .
From now, we use the abbreviation Gt(x) for limh→0

Ft+h(x)−Ft(x)
h .

THEOREM 5. Let {Ft : t � 0} be a regular cosine family of continuous linear set-
valued functions Ft : K → cc(K) such that t �→ ‖Ft‖ is bounded on some neighborhood

of zero. If limh→0+
Ft+h(x)−Ft(x)

h exists, then {Ft : t � 0} is differentiable. Moreover, if

limh→0+
Gh(x)

h := H(x) exists, then

Ft(Fs(x)) = Fs(Ft(x))

for x ∈ K and s, t � 0 .

Proof. Since Ft+s(x) + Ft−s(x) = 2Ft(Fs(x)) for all x ∈ K and 0 � s � t , so
F2t(x)−x

2t = Ft(
Ft(x)−x

t )+ Ft(x)−x
t . Let t → 0+ , then

lim
t→0+

Ft(
Ft(x)− x

t
) = {0}. (14)

By Lemmas 5 and 6, there exists M0 > 0 such that
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h(Ft(Ct(x)),C(x)) � h(Ft(Ct(x)),Ft (C(x)))+h(Ft(C(x)),C(x))

� M0‖Ft‖h(Ct(x),C(x))+h(Ft(C(x)),C(x)),

where Ct(x) := Ft(x)−x
t and C(x) := limt→0+

Ft(x)−x
t . Since t �→ ‖Ft‖ is bounded on

some neighborhood of zero, so there exist positive constants δ and M such that ‖Ft‖�
M for t ∈ [0,δ ] . Moreover, by Theorem 3 in [1],

lim
t→0+

h(Ft(D),D) = 0

for every nonempty compact subset D of K . Therefore,

lim
t→0+

h(Ft(Ct (x)),C(x)) = 0. (15)

From (14) and (15) we have C(x) = limt→0+
Ft(x)−x

t = {0} for every x∈ K . By Lemma
2, we obtain Ft+h(x)−Ft(x) = 2Ft(Fh(x)−x)+Ft (x)−Ft−h(x) for 0 < h � t . Dividing
this equality by h we get

Ft+h(x)−Ft(x)
h

= 2Ft(
Fh(x)− x

h
)+

Ft(x)−Ft−h(x)
h

.

Letting h → 0+ , we have

lim
t→0+

Ft+h(x)−Ft(x)
h

= lim
t→0+

Ft(x)−Ft−h(x)
h

= Gt(x) (t > 0).

This implies that the family {Ft : t � 0} is differentiable.
Let s � 0, define ϕ(t,x) := Fs(Ft+s(x)) and ψ(t,x) := Ft+s(Fs(x)) for all x ∈ K

and t � 0. We have

ϕ(0,x) = Fs(Fs(x)) = ψ(0,x), (x ∈ K).

By Lemma 2, we have

D+
t ϕ(t,x) = limh→0+

Fs(Ft+h+s)(x)−Fs(Ft+s)(x)
h

= Fs(limh→0+
Ft+s+h(x)−Ft+s(x)

h )

= Fs(Gt+s(x))

for x ∈ K and t � 0. And, similarly D−
t ϕ(t,x) = Fs(Gt+s(x)) for t > 0 and x ∈ K .

Moreover, we obtain

D+
t ψ(t,x) = limh→0+

Ft+s+h(Fs(x))−Ft+s(Fs(x))
h )

= 1
2 limh→0+[Ft+2s+h(x)−Ft+2s(x)

h + Ft+h(x)−Ft(x)
h ]

= 1
2 [Gt+2s(x)+Gt(x)] = D−

t ψ(t,x).

Also, for 0 < s < t we obtain
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2Ft(Gs(x)) = 2Ft(limh→0+
Fs+h(x)−Fs(x)

h )

= limh→0+
2Ft(Fs+h(x))−2Ft(Fs(x))

h

= limh→0+
Ft+s+h(x)+Ft−s−h(x)−(Ft+s(x)+Ft−s(x))

h

= limh→0+[Ft+s+h(x)−Ft+s(x)
h − Ft−s(x)−Ft−s−h(x)

h ]

= Gt+s(x)−Gt−s(x).

And,

h(2Fs(Gs(x)),G2s(x)) � h(F2s(x)−F2s−h(x)
h ),G2s(x))

+ h( (F2s(x)+x)−(F2s−h(x)+Fh(x))
h + Fh(x)−x

h ,2Fs(Gs(x))

� h(F2s(x)−F2s−h(x)
h ,G2s(x))

+ h( 2Fs(Fs(x))−2Fs(Fs−h(x))
h ,2Fs(Gs(x)))

+ h(Fh(x)−x
h ,{0})

� h(G2s(x),
F2s(x)−F2s−h(x)

h )

+ 2M0‖Fs‖h(Fs(x)−Fs−h(x)
h ,Gs(x))+h(Fh(x)−x

h ,{0}).
Therefore,

Gt+s(x) = Gt−s(x)+2Ft(Gs(x)), (x ∈ K,0 � s � t). (16)

By equation (16), Dtϕ(t,x) = Fs(Gt+s(x)) and Dtψ(t,x) = 1
2 (Gt+2s(x) + Gt(x)) we

have Dtϕ(t,x)|t=0 = Fs(Gs(x)) = Dtψ(t,x)|t=0 for x ∈ K . Putting

Ht(x) := lim
h→0+

Gt+h(x)−Gt(x)
h

,

we have

lim
s→0+

Gt+2s(x)−Gt(x)
2s

= lim
s→0+

Ft+s(
Gs(x)

s
) = Ft(H(x))

for x ∈ K, t � 0 and

lim
s→0+

Gt(x)−Gt−2s(x)
2s

= lim
s→0+

Ft−s(
Gs(x)

s
) = Ft(H(x))

for x ∈ K, t > 0.

D+
t Dtϕ(t,x) = D+

t Fs(Gt+s(x))

= limh→0+ Fs(
Gt+s+h(x)−Gt+s(x)

h )

= Fs(Ht+s(x)) = ϕ(t,H(x)) = D−
t Dtϕ(t,x),

and
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D+
t Dtψ(t,x) = 1

2D+
t (Gt+2s(x)+Gt(x))

= 1
2 limh→0+(Gt+2s+h(x)−Gt+2s(x)

h + Gt+h(x)−Gt(x)
h )

= 1
2 (Ht+2s(x)+Ht(x)) = D−

t Dtψ(t,x)

where Ht(x) = Ft(H(x)) .
Hence, we have

D2
t ψ(t,x) = Ft+s(Hs(x)) = Ft+s(Fs(H(x))) = ψ(t,H(x)).

Therefore, the set-valued functions ϕ and ψ are solutions of problem

D2
t ϕ(t,x) = ϕ(t,H(x)), ϕ(0,x) = F(x), Dtϕ(t,x)|t=0 = G(x)

with F(x) := Fs(Fs(x)),G(x) := Fs(Gs(x)) and H(x) := D2
t Ft(x)|t=0 . By Lemma 17,

ϕ(t,x) = ψ(t,x) . Thus, Fs(Ft+s(x)) = Ft+s(Ft(x)) for s,t � 0,x ∈ K . This completes
the proof.
Theorem 5 shows that a regular cosine family {Ft : t � 0} of continuous linear set-
valued functions can be extended to a regular cosine family {Ft : t ∈ R} .

EXAMPLE 3. Let {Ft : t � 0} be a regular cosine family of continuous linear set-
valued functions Ft : K → cc(K) such that x ∈ Ft(x) for all x ∈ K and t � 0. By
Corollary 1, t �→ ‖Ft‖ is bounded on some neighborhood of zero and by Theorem 2
in [2], {F̃t : t � 0} is a regular cosine family of continuous linear set-valued functions
F̃t : clX0K → cc(clX0K) such that x ∈ F̃t(x) for all x ∈ clX0K and t � 0. By Theorem
4.2 in [18], F̃t(F̃s(x)) = F̃s(F̃t(x)) and consequently Ft(Fs(x)) = Fs(Ft(x)) for all x ∈ K
and t � 0.
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