REGULAR COSINE FAMILIES OF LINEAR SET-VALUED FUNCTIONS

Masoumeh Aghajani

(Communicated by M. S. Moslehian)

Abstract

This paper is concerned with the properties of regular cosine families of continuous linear set-valued functions defined on convex cones of normed spaces. We consider conditions under which a regular cosine family of continuous linear set-valued functions is continuous and then generalize some recent results on commutativity and Hukuhara's derivative of regular cosine families of continuous linear set-valued functions.

1. Introduction

Let X be a vector space. Throughout this paper all vector spaces are supposed to be real. We denote by $n(X)$ the family of all nonempty subsets of X with addition

$$
A+B:=\{a+b: a \in A, b \in B\}
$$

and scalar multiplication

$$
\lambda A:=\{\lambda a: a \in A\}
$$

for every $A, B \in n(X)$ and $\lambda \in \mathbb{R}$.

Lemma 1. [9] For subsets $A, B \subseteq X$ and real numbers s, t we have:

$$
s(A+B)=s A+s B, \quad(s+t) A \subseteq s A+t A
$$

Also, if A is convex and $s, t \geqslant 0$ (or $s, t \leqslant 0$), then $(s+t) A=s A+t A$.
A set-valued function $F:[a, b] \rightarrow n(X)$ is said to be

- concave if $F(\lambda t+(1-\lambda) s) \subseteq \lambda F(t)+(1-\lambda) F(s)$ for every $s, t \in[a, b]$ and $\lambda \in(0,1)$;
- increasing if $F(s) \subseteq F(t)$ for every $s, t \in[a, b]$ with $s<t$;
- decreasing if $F(t) \subseteq F(s)$ for every $s, t \in[a, b]$ with $s<t$.

Mathematics subject classification (2010): 54C60, 28B20, 47D09.
Keywords and phrases: Riemann integral of set-valued functions, cosine families, Hukuhara's derivative, linear set-valued functions.

A set-valued function $F: \mathbb{R} \rightarrow n(X)$ is said to be even if $F(t)=F(-t)$ for every $t \in \mathbb{R}$.
A subset K of X is said to be a convex cone if $x+y \in K$ and $t x \in K$ for all $x, y \in K$ and $t>0$. For two linear spaces X and Y and a convex cone $K \subseteq X$, the set-valued function $F: K \rightarrow n(Y)$ is said to be

- additive if $F(x+y)=F(x)+F(y)$
- linear if $F(x+y)=F(x)+F(y)$ and $F(t x)=t F(x)$
for all $x, y \in K$ and $t>0$.
Assume that X is a normed space, $K \subseteq X$ is a convex cone and $c c(K)$ denotes the family of all nonempty compact convex subsets of K. For $A, B \in c c(K)$, the difference $A-B$ is a set $C \in c c(K)$ satisfying $A=B+C$. Uniqueness of this difference is a conclusion of Lemma 2 in [14].

Let $d(a, B):=\inf _{b \in B}\|a-b\|$ for $a \in A$. Then,

$$
\mathfrak{h}(A, B):=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}, \quad(A, B \in c c(X))
$$

defines a metric on $c c(X)$, which is called Hausdorff metric.
We understand the continuity of a set-valued function with respect to the Hausdorff metric \mathfrak{h} derived from the norm in X.

DEFInITION 1. [5] Assume that X is a normed space, $K \subseteq X$ is a convex cone and $F:[0,+\infty) \rightarrow c c(K)$ is a set-valued function. If all the differences $F(s)-F(t)$ exist for $t, s \in[0,+\infty)$ with $s>t$, then the Hukuhara derivative of F at t is defined by the formula

$$
D F(t)=\lim _{s \rightarrow t^{+}} \frac{F(s)-F(t)}{s-t}=\lim _{s \rightarrow t^{-}} \frac{F(t)-F(s)}{t-s}
$$

whenever both limits exist with respect to the Hausdorff metric \mathfrak{h} in $c c(K)$ derived from the norm in X. Also,

$$
D F(0)=\lim _{s \rightarrow 0^{+}} \frac{F(s)-F(0)}{s}
$$

Consider X, Y and Z are nonempty sets. The superposition $G \circ F$ of set-valued functions $F: X \rightarrow n(Y)$ and $G: Y \rightarrow n(Z)$ is defined by $(G \circ F)(x)=\cup_{y \in F(x)} G(y)$ for every $x \in X$.

DEFINITION 2. Let X be a normed space and $K \subseteq X$ be a convex cone.

- A family $\left\{F_{t}: K \rightarrow n(K)\right\}_{t \geqslant 0}$ is called a cosine family if

$$
F_{t+s}(x)+F_{t-s}(x)=2 F_{t}\left(F_{s}(x)\right), \quad F_{0}(x)=\{x\}
$$

for every $x \in K$ and $0 \leqslant s \leqslant t$. A cosine family $\left\{F_{t}: t \geqslant 0\right\}$ is said to be regular if $\lim _{t \rightarrow 0^{+}} \mathfrak{h}\left(F_{t}(x),\{x\}\right)=0$ for every $x \in K$.

- A family $\left\{F_{t}: K \rightarrow n(K)\right\}_{t \in \mathbb{R}}$ is called a cosine family if

$$
F_{t+s}(x)+F_{t-s}(x)=2 F_{t}\left(F_{s}(x)\right), \quad F_{0}(x)=\{x\}
$$

for every $x \in K$ and $t, s \in \mathbb{R}$. A cosine family $\left\{F_{t}: t \in \mathbb{R}\right\}$ is said to be regular if $\lim _{t \rightarrow 0} \mathfrak{h}\left(F_{t}(x),\{x\}\right)=0$ for every $x \in K$.

If X is a normed space, K is a convex cone in X and $\left\{F_{t}: t \in \mathbb{R}\right\}$ is a cosine family of set-valued functions $F_{t}: K \rightarrow c c(K)$, then

$$
F_{s}(x)+F_{-s}(x)=2 F_{0} F_{s}(x)=2 F_{s}(x)
$$

By Rảdström cancelation Lemma, $F_{s}(x)=F_{-s}(x)$ for all $x \in K$ and $s \in \mathbb{R}$. That is, the set-valued functions $t \mapsto F_{t}(x)$ are even.

The following Lemma is an immediate consequence of Lemma 1 in [15].
Lemma 2. Let X and Y be two topological vector spaces, K be a convex cone in $X, F: K \rightarrow c c(Y)$ is an additive set-valued function and $A, B \in c c(K)$. If the difference $A-B$ exists, then $F(A)-F(B)$ exists and $F(A)-F(B)=F(A-B)$.

By Lemma 4 in [17] (see also Lemma 3 in [19]), we have the following lemma.
Lemma 3. Let X and Y be two normed spaces and K be a convex cone in X. If $\left\{F_{i}: K \rightarrow n(Y)\right\}_{i \in I}$ is a family of continuous linear set-valued functions, K is of the second category in K and for every $x \in K, \cup_{i \in I} F_{i}(x)$ is bounded in Y, then there exists a positive number M with

$$
\left\|F_{i}(x)\right\|:=\sup \left\{\|y\|: y \in F_{i}(x)\right\} \leqslant M\|x\|
$$

for every $i \in I$ and $x \in K$.
And, by Lemma 2 in [17], we have the following result.
Lemma 4. If X, Y and K have the same meaning as in Lemma 3, then the functional

$$
F \mapsto\|F\|:=\sup \left\{\frac{\|F(x)\|}{\|x\|}: x \in K, x \neq 0\right\}
$$

is finite for every continuous linear set-valued function $F: K \rightarrow c c(Y)$.
Lemma 5. [17] Let X and Y be two normed spaces, \mathfrak{h} be the Hausdorff distance derived from the norm in Y and K be a convex cone in X with nonempty interior. Then, there is a positive number M_{0} such that for every continuous linear set-valued function $F: K \rightarrow c c(Y)$ the inequality $\mathfrak{h}(F(x), F(y)) \leqslant M_{0}\|F|\|\mid x-y\|$ holds for all $x, y \in K$.

Lemma 6. [16] Consider two metric spaces $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ and let \mathfrak{h}_{1} and \mathfrak{h}_{2} be the corresponding Hausdorff metrics. If $F: X \rightarrow n(Y)$ is a set-valued function and M is a positive number satisfying $\mathfrak{h}_{2}(F(x), F(y)) \leqslant M d_{1}(x, y)$ for all $x, y \in X$, then $\mathfrak{h}_{2}(F(A), F(B)) \leqslant M \mathfrak{h}_{1}(A, B)$ for every $A, B \in n(X)$.

LEMMA 7. [16] Let D and Y be a nonempty set and a normed space, respectively. If $F_{0}, F_{n}: D \rightarrow c(Y)$ are set-valued functions such that the sequence $\left(F_{n}\right)$ uniformly converges to F_{0} on D, then

$$
\lim _{n \rightarrow \infty} F_{n}(D)=F_{0}(D)
$$

Since normed spaces and the cones are not supposed to be complete, so our main results generalize some recent results on cosine families of linear set-valued functions.

2. Main results

For a normed space X, we use the notations X_{0}, int $X_{X} K$ and $c l_{X} K$ for the completion X, the interior of K in X and the closure of K in X, respectively. If the symbol \sim denotes Radström's equivalence relation in $c c\left(X_{0}\right)$ with $(A, B) \sim(D, E) \Leftrightarrow A+E=$ $B+D$ for all $A, B, D, E \in c c\left(X_{0}\right)$ and $[A, B]$ is the equivalence class of (A, B). Then, the vector space Δ of all equivalence classes with operations

$$
\begin{gathered}
{[A, B]+[D, E]=[A+D, B+E]} \\
\lambda[A, B]=[\lambda A, \lambda B],(\lambda \geqslant 0) \\
\lambda[A, B]=[-\lambda B,-\lambda A],(\lambda<0)
\end{gathered}
$$

is a normed space with the norm $\|[A, B]\|:=\mathfrak{h}(A, B)$ (see [14]). By Theorems 3.85 and 3.88 in [3], $\left(c c\left(X_{0}\right), \mathfrak{h}\right)$ is a complete metric space.

2.1. Continuity properties of regular cosine families

From now on, unless explicitly stated otherwise, X and Y are normed spaces and K is a convex cone in X such that $\operatorname{int}_{X} K \neq \emptyset$. Note that $\left(c c\left(c l_{X_{0}} K\right), \mathfrak{h}\right)$ is a complete metric space. If $F: K \rightarrow c c(K)$ is a continuous linear set-valued function, then by Theorem 1 in [2], F has a unique continuous linear extension $\tilde{F}: c l_{X_{0}} K \rightarrow c c\left(c l_{X_{0}} K\right)$ such that $\|\tilde{F}\|=\|F\|$. Identifying \tilde{F} with the unique continuous linear extension of F, we have the following results.

LEMMA 8. If $\left\{F_{t}: t \in \mathbb{R}\right\}$ is a regular cosine family of continuous linear setvalued functions $F_{t}: K \rightarrow c c(K)$, then the function $t \mapsto\left\|F_{t}\right\|$ is bounded on some neighborhood of zero if and only if the set-valued function $t \mapsto \tilde{F}_{t}(x)$ is continuous for every $x \in \operatorname{cl}_{X_{0}} K$.

Proof. Let the function $t \mapsto\left\|F_{t}\right\|$ be bounded on some neighborhood of zero and $x \in K$ be arbitrary. Put $G_{t}(x):=F_{t}(x)$ and $H_{t}(x):=F_{-t}(x)$ for every $t \geqslant 0$. It is easy to see that $\left\{G_{t}: t \geqslant 0\right\}$ and $\left\{H_{t}: t \geqslant 0\right\}$ are regular cosine families. By Theorem 2 in [2], the set-valued function $t \mapsto \tilde{F}_{t}(x)$ is continuous on $[0, \infty)$ and $(-\infty, 0]$ for every $x \in c l_{X_{0}} K$. Hence, the set-valued function $t \mapsto \tilde{F}_{t}(x)$ is continuous for all $x \in c l_{X_{0}} K$.

Conversely, if the set-valued function $t \mapsto \tilde{F}_{t}(x)$ is continuous for every $x \in \operatorname{cl}_{X_{0}} K$. Then, putting $E=[-1,1], \cup_{t \in E} \tilde{F}_{t}(x)$ is compact for every $x \in c l_{X_{0}} K$. By Lemmas 3
and 4 , there is a positive constant M such that $\left\|\tilde{F}_{t}\right\|=\left\|F_{t}\right\| \leqslant M$ for every $t \in E$. Thus, $t \mapsto\left\|F_{t}\right\|$ is bounded on some neighborhood of zero.
It is natural to ask whether the continuity of $t \mapsto F_{t}(x)$ for every $x \in K$, can be equivalent to the boundedness of $t \mapsto\left\|F_{t}\right\|$ on some neighborhood of zero. In the following, we will list the results of this issue.

THEOREM 1. If $\left\{F_{t}: t \in \mathbb{R}\right\}$ is a regular cosine family of continuous linear setvalued functions $F_{t}: K \rightarrow c c(K)$, then the following statements are equivalent.

1. $t \mapsto F_{t}(x)$ is continuous for every $x \in K$.
2. The function $t \mapsto\left\|F_{t}\right\|$ is bounded on some neighborhood of zero.
3. For every $x \in c l_{X_{0}} K$ the set-valued function $t \mapsto \tilde{F}_{t}(x)$ is continuous.

Proof. (1) \Rightarrow (2) Assume by way of contradiction that there exists a sequence $\left(t_{n}\right)$ in $[0, \infty)$ satisfying $\lim _{n \rightarrow \infty} t_{n}=0$ and $\left\|F_{t_{n}}\right\|=\left\|\tilde{F}_{t_{n}}\right\| \geqslant n$ for all $n \in \mathbb{N}$. By Lemma 3, there exists $x_{0} \in c l_{X_{0}} K$ such that $\left(\left\|\tilde{F}_{t_{n}}\left(x_{0}\right)\right\|\right)$ is unbounded. Since $x_{0} \in c l_{X_{0}} K$, so there is $\left(x_{n}\right)$ in K such that $\lim _{n \rightarrow \infty} x_{n}=x_{0}$. Define real functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{n}(t)=\left\|\left[F_{t}\left(x_{n}\right),\{0\}\right]\right\|$ for all $t \in \mathbb{R}$ and $n \in \mathbb{N}$. Since $t \mapsto F_{t}(x)$ is continuous for every $x \in K$, so $\left\{f_{n}: n \in \mathbb{N}\right\}$ is a family of continuous real functions. On the other hand, $x \mapsto F_{t}(x)$ is a continuous linear set-valued function for every $t \in \mathbb{R}$, thus $x \mapsto F_{t}(x)$ is uniformly continuous for every $t \in \mathbb{R}$ and consequently $\left(F_{t}\left(x_{n}\right)\right)$ is a Cauchy sequence in $c c(K)$ and therefore bounded for every $t \in \mathbb{R}$. Hence, $\left(f_{n}(t)\right)$ is bounded for every $t \in \mathbb{R}$. Since \mathbb{R} is a complete metric space, so by uniform boundedness principle (see [8], pp. 299) there is an open neighborhood U_{0} of \mathbb{R} on which the functions f_{n} are uniformly bounded, that is, there is $L_{0}>0$ such that $\left|f_{n}(t)\right|<L_{0}$ for all $t \in U_{0}$ and $n \in \mathbb{N}$. Thus, there are $L_{0}>0$ and $0 \leqslant \delta<\eta$ such that $\left\|F_{t}\left(x_{n}\right)\right\|<L_{0}$ for every $t \in[\delta, \eta] \subseteq U_{0}$ and $n \in \mathbb{N}$. As $n \rightarrow \infty$, by Theorem 1 in [2] we have:

$$
\left\|\tilde{F}_{t}\left(x_{0}\right)\right\| \leqslant L_{0}
$$

for every $t \in[\delta, \eta]$. Now, consider real functions $f_{n}:[2 \delta, 2 \eta] \rightarrow \mathbb{R}$ by $f_{n}(t)=$ $\left\|\left[F_{t}\left(x_{n}\right),\{0\}\right]\right\|$ for all $t \in[2 \delta, 2 \eta]$ and $n \in \mathbb{N}$. So as above, there is an open neighborhood V_{0} of $[2 \delta, 2 \eta]$ on which the functions f_{n} are uniformly bounded, that is, there is $L_{0}^{\prime}>0$ such that $\left\|\tilde{F}_{t}\left(x_{0}\right)\right\|<L_{0}^{\prime}$ for every $t \in V_{0}$ and $n \in \mathbb{N}$.

Put $L=\max \left\{L_{0}, L_{0}^{\prime}, 1\right\}$. For some $2 t_{0} \in V_{0}$, there exists an $n \in \mathbb{N}$ such that $\left[2 t_{0}, 2 t_{0}+\frac{t_{0}}{n}\right] \subseteq V_{0}$ and $\left[t_{0}, t_{0}+\frac{t_{0}}{2 n}\right] \subseteq[\delta, \eta]$. We claim that $\left\|\tilde{F}_{t}\left(x_{0}\right)\right\|$ is bounded on $\left[0, \frac{t_{0}}{2 n}\right]$. Without loss of generality we can assume that $L \geqslant\left\|F_{t_{0}}\right\|$. Since $\left[t_{0}, t_{0}+\frac{t_{0}}{2 n}\right] \subseteq$ $[\delta, \eta]$, so for all $t \in\left[t_{0}, t_{0}+\frac{t_{0}}{2 n}\right]$ we have:

$$
\begin{aligned}
\left\|\tilde{F}_{t-t_{0}}\left(x_{0}\right)\right\| & \leqslant\left\|\tilde{F}_{t+t_{0}}\left(x_{0}\right)\right\|+2\left\|F_{t_{0}}\right\|\left\|\tilde{F}_{t}\left(x_{0}\right)\right\| \\
& \leqslant 3 L^{2}
\end{aligned}
$$

Hence, $t \mapsto\left\|\tilde{F}_{t}\left(x_{0}\right)\right\|$ is bounded on some neighborhood $\left[0, \frac{t_{0}}{2 n}\right]$ which is a contradiction. Thus, $t \mapsto\left\|F_{t}\right\|$ is bounded on some neighborhood of zero.
$(2) \Rightarrow(3)$ The proof is an immediate consequence of Lemma 8.
$(3) \Rightarrow(1)$ The proof is clear.
By the proof of Theorem 1, the corresponding result holds for a regular cosine family $\left\{F_{t}: t \geqslant 0\right\}$. Hence, the answer to the considered question in Remark 1 in [2] is yes. That is, the boundedness of the function $t \rightarrow\left\|\varphi_{t}\right\|$ on some neighborhood of zero in Theorem 2 is essential.

Let $\left\{F_{t}: t \in \mathbb{R}\right\}$ be a regular cosine family of continuous linear set-valued functions $F_{t}: K \rightarrow c c(K)$. Since for all $x \in K$ the set-valued functions $t \mapsto F_{t}(x)$ are even, so

$$
2 F_{t}\left(F_{s}(x)\right)=F_{t+s}(x)+F_{t-s}(x)=F_{s+t}(x)+F_{s-t}(x)=2 F_{s}\left(F_{t}(x)\right)
$$

for $x \in K$ and $s, t \in \mathbb{R}$. That is, $F_{t}\left(F_{s}(x)\right)=F_{s}\left(F_{t}(x)\right)$. For $u, v \in \mathbb{R}$ putting $t=\frac{v+u}{2}$ and $s=\frac{v-u}{2}$ in $F_{t+s}(x)+F_{t-s}(x)=2 F_{t}\left(F_{s}(x)\right)$, we have

$$
F_{v}(x)+F_{u}(x)=2 F_{\frac{u+v}{2}}\left(F_{\frac{v-u}{2}}(x)\right)
$$

If $x \in F_{t}(x)$ for all $x \in K$ and $t \in \mathbb{R}$, then

$$
F_{\frac{u+v}{2}}(x) \subseteq \frac{F_{u}(x)+F_{v}(x)}{2}
$$

By Theorem 4.2 in [9], $t \mapsto F_{t}(x)$ is continuous and by Theorem 4.1 in [9], this setvalued function is concave. For $0 \leqslant u \leqslant v$, there exists $\lambda \in[0,1]$ such that $u=(1-$ $\lambda) 0+\lambda \nu$. Thus,

$$
\begin{aligned}
F_{u}(x) & \subseteq(1-\lambda) F_{0}(x)+\lambda F_{v}(x) \\
& =(1-\lambda) x+\lambda F_{v}(x) \\
& \subseteq(1-\lambda) F_{v}(x)+\lambda F_{v}(x)=F_{v}(x)
\end{aligned}
$$

And, for $v \leqslant u \leqslant 0$ we have $F_{u}(x) \subseteq F_{v}(x)$. Hence $t \mapsto F_{t}(x)$ is increasing in $[0, \infty)$ and decreasing in $(-\infty, 0]$. Conversely, if $t \mapsto F_{t}(x)$ is increasing in $[0, \infty)$ or decreasing in $(-\infty, 0]$, then $x \in F_{t}(x)$ for all $x \in K$ and $t \in \mathbb{R}$.

The immediate consequence of the preceding theorem is:

COROLLARY 1. Let $\left\{F_{t}: t \in \mathbb{R}\right\}$ be a regular cosine family of continuous linear set-valued functions $F_{t}: K \rightarrow c c(K)$ such that $\left\{F_{t}(x): t \in \mathbb{R}\right\}$ is increasing in $[0, \infty)$ for every $x \in K$. Then,

1. $t \mapsto F_{t}(x)$ is continuous for every $x \in K$.
2. the function $t \mapsto\left\|F_{t}\right\|$ is bounded on some neighborhood of zero.
3. for every $x \in \operatorname{cl}_{X_{0}} K$ the set-valued function $t \mapsto \tilde{F}_{t}(x)$ is continuous.

2.2. Commutativity and Hukuhara's derivative of regular cosine families

Recall that if $\left\{F_{t}: t \in \mathbb{R}\right\}$ is a regular cosine family of continuous linear set-valued functions $F_{t}: K \rightarrow c c(K)$ such that $x \in F_{t}(x)$ for every $x \in K$ and $t \in \mathbb{R}$, then for every $x \in K$ the set-valued function $t \mapsto F_{t}(x)$ is concave, continuous, even, decreasing in $(-\infty, 0]$ and increasing in $[0,+\infty)$. Also, $F_{s} \circ F_{t}=F_{t} \circ F_{s}$ for every $s, t \in \mathbb{R}$ (see [18]). For some more properties of sine and cosine equations, see also [4].

THEOREM 2. If $\left\{F_{t}: K \rightarrow c c(K)\right\}_{t \geqslant 0}$ is a regular cosine family of continuous linear set-valued functions such that $t \mapsto\left\|F_{t}\right\|$ is bounded on some neighborhood of zero, then

$$
\lim _{t \rightarrow s} \mathfrak{h}\left(F_{t}(D), F_{s}(D)\right)=0
$$

for every nonempty compact subset D of K.

Proof. Let $\left(t_{n}\right)$ be a sequence in $[0, \infty)$ such that $t_{n} \rightarrow s$. Putting $\phi_{n}(x):=\tilde{F}_{t_{n}}(x)$ and $\phi(x):=\tilde{F}_{s}(x)$ we have $\lim _{n \rightarrow \infty} \phi_{n}(x)=\phi(x)$ for every $x \in \operatorname{cl}_{X_{0}} K$. By Lemma 7 in [16], $\left(\phi_{n}\right)$ is uniformly convergent to ϕ on each nonempty compact subset D and by Lemma 7, $\lim _{n \rightarrow \infty} \phi_{n}(D)=\phi(D)$. Therefore,

$$
\lim _{t \rightarrow s} \mathfrak{h}\left(F_{t}(D), F_{s}(D)\right)=0
$$

for every nonempty compact subset D of K.
The corresponding result (given in Theorem 2) holds for a regular cosine family $\left\{F_{t}\right.$: $K \rightarrow c c(K)\}_{t \in \mathbb{R}}$ of continuous linear set-valued functions.

LEMMA 9. If $F: \mathbb{R} \rightarrow c c(X)$ is continuous, then the set-valued function

$$
\phi(t)=\int_{a}^{t} F(u) d u,(t \geqslant a)
$$

is continuous.

Proof. The proof is identical to the proof of Lemma 10 in [12]. Let $h>0$ and $t \geqslant a$. By Lemmas 7 and 8 in [1], we have

$$
\begin{aligned}
\mathfrak{h}(\phi(t), \phi(t+h)) & =\mathfrak{h}\left(\int_{a}^{t} F(u) d u, \int_{a}^{t} F(u) d u+\int_{t}^{t+h} F(u) d u\right) \\
& \leqslant \mathfrak{h}\left(\int_{t}^{t+h} F(u) d u,\{0\}\right) \\
& \leqslant h \sup _{t \leqslant u \leqslant t+h}\|F(u)\| .
\end{aligned}
$$

As $h \rightarrow 0$, we have $\mathfrak{h}(\phi(t), \phi(t+h)) \rightarrow 0$. That is, ϕ is continuous.
Lemma 10. Let $F: \mathbb{R} \rightarrow c c(X)$ be continuous, then for every $t \in \mathbb{R}$,

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{t}^{t+h} F(u) d u=F(t)
$$

Proof. Consider $t \in \mathbb{R}, \alpha=t-1$ and $\beta=t+1$. Define $H(s)=\int_{\alpha}^{s} F(u) d u$ for every $s \in[\alpha, \beta]$. Since $F:[\alpha, \beta] \rightarrow c c(X)$ is continuous, so by Lemma 9 in [1], H is differentiable and $\lim _{h \rightarrow 0} \frac{H(t+h)-H(t)}{h}=F(t)$ or $\lim _{h \rightarrow 0} \frac{1}{h} \int_{t}^{t+h} F(u) d u=F(t)$ for all $t \in \mathbb{R}$.

Lemma 11. If $F:[0, \infty) \rightarrow c c(X)$ is continuous, then

$$
\begin{equation*}
\int_{0}^{t}\left(\int_{0}^{s} F(u) d u\right) d s=\int_{0}^{t}(t-u) F(u) d u(t \geqslant 0) \tag{1}
\end{equation*}
$$

Proof. The proof is identical to that of Lemma 12 in [12]. For sake of convenience we give the proof. Define

$$
\phi(t):=\mathfrak{h}\left(\int_{0}^{t}\left(\int_{0}^{s} F(u) d u\right) d s, \int_{0}^{t}(t-u) F(u) d u\right) \quad(t \geqslant 0)
$$

By Lemma 9, ϕ is continuous and by Lemma 8 in [1] we have

$$
\begin{aligned}
\phi(t+h) & =\mathfrak{h}\left(\int_{0}^{t+h}\left(\int_{0}^{s} F(u) d u\right) d s, \int_{0}^{t+h}(t+h-u) F(u) d u\right) \\
& \leqslant \mathfrak{h}\left(\int_{0}^{t}\left(\int_{0}^{s} F(u) d u\right) d s, \int_{0}^{t}(t-u) F(u) d u\right) \\
& +\mathfrak{h}\left(\int_{t}^{t+h}\left(\int_{0}^{s} F(u) d u\right) d s, \int_{t}^{t+h}(t+h-u) F(u) d u+h \int_{0}^{t} F(u) d u\right)
\end{aligned}
$$

Thus,

$$
\frac{\phi(t+h)-\phi(t)}{h} \leqslant \mathfrak{h}\left(\frac{1}{h} \int_{t}^{t+h}\left(\int_{0}^{s} F(u) d u\right) d s, \frac{1}{h} \int_{t}^{t+h}(t+h-u) F(u) d u+\int_{0}^{t} F(u) d u\right)
$$

for all $t \geqslant 0$ and $h>0$. Since F is continuous, so there is $M>0$ such that $\|F(u)\| \leqslant M$ for $u \in[t, t+1]$. By Lemma 7 in [1],

$$
\left\|\frac{1}{h} \int_{t}^{t+h}(t+h-u) F(u) d u\right\| \leqslant \frac{1}{h} \int_{t}^{t+h}(t+h-u)\|F(u)\| d u \leqslant \frac{M h}{2}
$$

for every $h \in[0,1]$. Therefore,

$$
\lim _{h \rightarrow 0^{+}} \frac{1}{h} \int_{t}^{t+h}(t+h-u) F(u) d u=\{0\}
$$

Consequently, by Lemmas 9 and 10 we have

$$
\begin{aligned}
\liminf _{h \rightarrow 0^{+}} \frac{\phi(t+h)-\phi(t)}{h} & \leqslant \lim _{h \rightarrow 0^{+}} \mathfrak{h}\left(\frac{1}{h} \int_{t}^{t+h}\left(\int_{0}^{s} F(u) d u\right) d s, \int_{0}^{t} F(u) d u\right) \\
& +\lim _{h \rightarrow 0^{+}}\left\|\frac{1}{h} \int_{t}^{t+h}(t+h-u) F(u) d u\right\| \\
& =\mathfrak{h}\left(\int_{0}^{t} F(u) d u, \int_{0}^{t} F(u) d u\right)+0=0
\end{aligned}
$$

Hence, ϕ is nonincreasing. Then, $\phi(t) \leqslant \phi(0)$ for every $t \geqslant 0$. This completes the proof.

Lemma 12. Let $F:[\alpha, \beta] \rightarrow c c(X)$ be continuous and a, b, A, B be real numbers satisfying $a<b, A a+B=\alpha$ and $A b+B=\beta$. Then,

$$
\int_{\alpha}^{\beta} F(t) d t=A \int_{a}^{b} F(A u+B) d u
$$

Proof. Consider $F:[\alpha, \beta] \rightarrow c c\left(X_{0}\right)$. By Lemma 3 in [11], $\int_{\alpha}^{\beta} F(t) d t=A \int_{a}^{b} F(A u+$ $B) d u$. And, $\int_{\alpha}^{\beta} F(t) d t, \int_{a}^{b} F(A u+B) d u \in c c(X)$, which completes the proof.

Lemma 13. Let $F: \mathbb{R} \rightarrow c c(X)$ be continuous. Then,

$$
\int_{a}^{b} F(u) d u=\int_{t-b}^{t-a} F(t-u) d u
$$

for every $t \in \mathbb{R}$.

Proof. Consider $F: \mathbb{R} \rightarrow c c\left(X_{0}\right)$. By Lemma 4 in [11], $\int_{a}^{b} F(u) d u=\int_{t-b}^{t-a} F(t-$ $u) d u$ for every $t \in \mathbb{R}$. And, $\int_{a}^{b} F(u) d u, \int_{t-b}^{t-a} F(t-u) d u \in c c(X)$, which completes the proof.

Lemma 14. If $F: K \rightarrow c c(X)$ is continuous linear and $G:[a, b] \rightarrow c c(K)$ is continuous, then $\int_{a}^{b} F(G(t)) d t=F\left(\int_{a}^{b} G(t) d t\right)$.

Proof. Consider $F: \operatorname{cl}_{X_{0}} K \rightarrow c c\left(X_{0}\right)$ and $G:[a, b] \rightarrow c c\left(c l_{X_{0}} K\right)$. By Lemma 5 in [11], $\int_{a}^{b} F(G(t)) d t=F\left(\int_{a}^{b} G(t) d t\right)$.

We have $\int_{a}^{b} G(t) d t \in c c(K)$ and $\int_{a}^{b} F(G(t)) d t, F\left(\int_{a}^{b} G(t) d t\right) \in c c(X)$, which complete the proof.

THEOREM 3. Let $\left\{F_{t}: t \in \mathbb{R}\right\}$ be a regular cosine family of continuous linear setvalued functions $F_{t}: K \rightarrow c c(K)$ such that $t \mapsto\left\|F_{t}\right\|$ is bounded on some neighborhood of zero. For any set $D \in c c(K)$ such that $F_{t+s}(D)+F_{t-s}(D)=2 F_{t} F_{s}(D)$ for every $s, t \in \mathbb{R}$, the set-valued function $\phi: \mathbb{R} \rightarrow c c(K)$ satisfying

$$
\begin{gathered}
\phi(s)=\int_{0}^{s}(s-v) F_{v}(D) d v, \quad(s \geqslant 0) \\
\phi(s)=\phi(-s) \quad(s \leqslant 0)
\end{gathered}
$$

is a continuous even solution of

$$
\begin{equation*}
\phi(t+s)+\phi(t-s)=2 F_{t}(\phi(s))+2 \phi(t) \tag{2}
\end{equation*}
$$

with $\phi(0)=\{0\}, D \phi(0)=\{0\}$.

Proof. By Theorem 2 (which also holds for a regular cosine family on all reals), set-valued functions $t \mapsto F_{t}(D)$ are continuous. Define

$$
\begin{gathered}
\phi(s)=\int_{0}^{s}(s-v) F_{v}(D) d v, \quad s \geqslant 0 \\
\phi(s)=\phi(-s), \quad s \leqslant 0
\end{gathered}
$$

By Lemma 9, ϕ is continuous. By Lemmas 10 and 11, $D \phi(t)=\lim _{h \rightarrow 0} \frac{\phi(t+h)-\phi(t)}{h}=$ $\int_{0}^{t} F_{v}(D) d v$ for every $t \geqslant 0$. It is easy to see that ϕ is even, $\phi(0)=\{0\}$ and $D \phi(0)=$ $\lim _{h \rightarrow 0} \frac{\phi(h)-\phi(0)}{h}=\{0\}$. If $s \in[0, t]$, then by Lemma 12 ,

$$
\begin{equation*}
\int_{0}^{s}(s-v) F_{t+v}(D) d v=\int_{t}^{t+s}(t+s-v) F_{v}(D) d v \tag{3}
\end{equation*}
$$

And, by Lemma 13,

$$
\begin{equation*}
\int_{0}^{s}(s-v) F_{t-v}(D) d v=\int_{t-s}^{t}(s-t+v) F_{v}(D) d v \tag{4}
\end{equation*}
$$

By Lemma 1, Lemma 8 in [1] and (3) we have

$$
\begin{aligned}
\phi(t+s)+\phi(t-s) & =\int_{0}^{t+s}(t+s-v) F_{v}(D) d v+\int_{0}^{t-s}(t-s-v) F_{v}(D) d v \\
& =\int_{0}^{t-s}(t+s-v) F_{v}(D) d v+\int_{t-s}^{t}(t+s-v) F_{v}(D) d v \\
& +\int_{t}^{t+s}(t+s-v) F_{v}(D) d v+\int_{0}^{t-s}(t-s-v) F_{v}(D) d v \\
& =2 \int_{0}^{t-s}(t-v) F_{v}(D) d v+\int_{0}^{s}(s-v) F_{t+v}(D) d v \\
& +\int_{t-s}^{t}(t+s-v) F_{v}(D) d v
\end{aligned}
$$

By the equality

$$
\int_{t-s}^{t}(t+s-v) F_{v}(D) d v=\int_{t-s}^{t}(s-t+v) F_{v}(D) d v+2 \int_{t-s}^{t}(t-v) F_{v}(D) d v
$$

Lemma 14 and (4) we have

$$
\begin{aligned}
\phi(t+s)+\phi(t-s) & =\int_{0}^{s}(s-v) F_{t+v}(D) d v+\int_{0}^{s}(s-v) F_{t-v}(D) d v \\
& +2 \int_{0}^{t}(t-v) F_{v}(D) d v \\
& =2 F_{t}\left(\int_{0}^{s}(s-v) F_{v}(D) d v\right)+2 \int_{0}^{t}(t-v) F_{v}(D) d v \\
& =2 F_{t}(\phi(s))+2 \phi(t)
\end{aligned}
$$

That is, ϕ is a solution of equation (2) for $0 \leqslant s \leqslant t$. Now we prove that $F_{t}(\phi(s))+$ $\phi(t)=F_{s}(\phi(t))+\phi(s)$ for all $s, t \in \mathbb{R}$. If $0 \leqslant s \leqslant t$, then by Lemmas 12, 13 and Lemma 8 in [1],

$$
\int_{0}^{t}(t-v) F_{s+v}(D) d v=\int_{s}^{t+s}(t+s-v) F_{v}(D) d v
$$

and

$$
\begin{aligned}
\int_{0}^{t}(t-v) F_{s-v}(D) d v & =\int_{0}^{s}(t-v) F_{s-v}(D) d v+\int_{s}^{t}(t-v) F_{v-s}(D) d v \\
& =\int_{0}^{s}(t-s+v) F_{v}(D) d v+\int_{0}^{t-s}(t-s-v) F_{v}(D) d v
\end{aligned}
$$

Consequently, by Lemma 14 we have

$$
\begin{aligned}
2 F_{s}(\phi(t))+2 \phi(s) & =2 F_{s}\left(\int_{0}^{t}(t-v) F_{v}(D) d v\right)+2 \int_{0}^{s}(s-v) F_{v}(D) d v \\
& =\int_{0}^{t}(t-v) F_{s+v}(D) d v+\int_{0}^{t}(t-v) F_{s-v}(D) d v \\
& +2 \int_{0}^{s}(s-v) F_{v}(D) d v \\
& =\int_{s}^{t+s}(t+s-v) F_{v}(D) d v+\int_{0}^{s}(t-s+v) F_{v}(D) d v \\
& +\int_{0}^{t-s}(t-s-v) F_{v}(D) d v+2 \int_{0}^{s}(s-v) F_{v}(D) d v
\end{aligned}
$$

Also, by Lemma 1,

$$
\int_{0}^{s}(t-s+v) F_{v}(D) d v+2 \int_{0}^{s}(s-v) F_{v}(D) d v=\int_{0}^{s}(t+s-v) F_{v}(D) d v
$$

and by Lemma 8 in [1],

$$
\int_{s}^{t+s}(t+s-v) F_{v}(D) d v=\int_{s}^{t}(t+s-v) F_{v}(D) d v+\int_{t}^{t+s}(t+s-v) F_{v}(D) d v
$$

Therefore,

$$
\begin{aligned}
2 F_{s}(\phi(t)) & +2 \phi(s) \\
& =\int_{t}^{t+s}(t+s-v) F_{v}(D) d v+\int_{0}^{t}(t+s-v) F_{v}(D) d v \\
& +\int_{0}^{t-s}(t-s-v) F_{v}(D) d v
\end{aligned}
$$

From

$$
\begin{aligned}
\int_{0}^{t}(t+s-v) F_{v}(D) d v & +\int_{0}^{t-s}(t-s-v) F_{v}(D) d v \\
& =\int_{t-s}^{t}(t+s-v) F_{v}(D) d v+\int_{0}^{t-s}(2 t-2 v) F_{v}(D) d v \\
& =\int_{t-s}^{t}(s-t+v) F_{v}(D) d v+2 \int_{t-s}^{t}(t-v) F_{v}(D) d v \\
& +2 \int_{0}^{t-s}(t-v) F_{v}(D) d v \\
& =\int_{t-s}^{t}(s-t+v) F_{v}(D) d v+2 \int_{0}^{t}(t-v) F_{v}(D) d v
\end{aligned}
$$

we have:

$$
\begin{aligned}
2 F_{s}(\phi(t)) & +2 \phi(s) \\
& =\int_{t}^{t+s}(t+s-v) F_{v}(D) d v+\int_{t-s}^{t}(s-t+v) F_{v}(D) d v \\
& +2 \int_{0}^{t}(t-v) F_{v}(D) d v
\end{aligned}
$$

According to (3), (4) and Lemma 14,

$$
\begin{aligned}
2 F_{s}(\phi(t)) & +2 \phi(s) \\
& =\int_{0}^{s}(s-v) F_{t+v}(D) d v+\int_{0}^{s}(s-v) F_{t-v}(D) d v \\
& +2 \int_{0}^{t}(t-v) F_{v}(D) d v \\
& =2 F_{t}\left(\int_{0}^{s}(s-v) F_{v}(D) d v\right)+2 \phi(t) \\
& =2 F_{t}(\phi(s))+2 \phi(t)
\end{aligned}
$$

Hence, $F_{t}(\phi(s))+\phi(t)=F_{s}(\phi(t))+\phi(s)$ for every $s, t \in \mathbb{R}$. Since for all $x \in K$, $t \mapsto F_{t}(x)$ and ϕ are even, so ϕ satisfies (2) for all $s, t \in \mathbb{R}$.

Example 1. Let $\left\{F_{t}: t \in \mathbb{R}\right\}$ be a regular cosine family of continuous linear setvalued functions $F_{t}: K \rightarrow c c(K)$ and $x \in F_{t}(x)$ for every $x \in K$ and $t \in \mathbb{R}$. Then, for every set $D \in c c(K)$ satisfying $0 \in D$ and $F_{t+s}(D)+F_{t-s}(D)=2 F_{t}\left(F_{s}(D)\right)$ for every $s, t \in \mathbb{R}$, the set-valued function $\phi: \mathbb{R} \rightarrow c c(K)$ via

$$
\phi(s)=\int_{0}^{s}(s-u) F_{u}(D) d u,(s \geqslant 0)
$$

and

$$
\phi(s)=\phi(-s),(s \leqslant 0)
$$

is a continuous even solution of (2) with $\phi(0)=\{0\}, D \phi(0)=\{0\}$ and $0 \in \phi(s)$ for all $s \in \mathbb{R}$.

Lemma 15. Let $\left(A_{n}\right)$ and $\left(B_{n}\right)$ be two sequences in $c c(X)$ such that $A_{n} \rightarrow A$ and $B_{n} \rightarrow B$. If there exist the Hukuhara differences $A_{n}-B_{n}$ in $c c(X)$ for every $n \in \mathbb{N}$, then there exists the Hukuhara difference $A-B$ and $A_{n}-B_{n} \rightarrow A-B$.

Proof. There is no loss of generality in supposing that $\left(A_{n}\right)$ and $\left(B_{n}\right)$ are two sequences in $c c\left(X_{0}\right)$ such that $A_{n} \rightarrow A$ and $B_{n} \rightarrow B$ in $c c\left(X_{0}\right)$. By Lemma 1 in [13], there exists Hukuhara difference $A-B$ in $c c\left(X_{0}\right)$ and $A_{n}-B_{n} \rightarrow A-B$. Now, put $C:=A-B$ and $C_{n}:=A_{n}-B_{n}$ for $n \in \mathbb{N}$, by definition of the Hukuhara difference $A=B+C$ and $A_{n}=B_{n}+C_{n}$ for $n \in \mathbb{N}$. Since for all $n \in \mathbb{N}, A_{n}, B_{n}, A, B$ are compact subsets in $c c(X)$, so $B_{n}+C_{n}, B+C \in c c(X)$ for $n \in \mathbb{N}$ and consequently $C_{n}, C \in c c(X)$ for all $n \in \mathbb{N}$.
The next Lemma is the normed space version of Lemma 11 in [11] which can be easily obtained via a similar argument if we just replace Lemma 1 in [13] with Lemma 15.

LEMMA 16. If a continuous set-valued function $\phi: \mathbb{R} \rightarrow c c(K)$ fulfills (2) and $\phi(0)=\{0\}$, then for all $0 \leqslant s \leqslant t$ Hukuhara differences $\phi(t)-\phi(s)$ exist.

THEOREM 4. Let $\left\{F_{t}: t \in \mathbb{R}\right\}$ be a regular cosine family of continuous linear setvalued functions $F_{t}: K \rightarrow c c(K)$ such that $t \mapsto\left\|F_{t}\right\|$ is bounded on some neighborhood
of zero. If a Hukuhara differentiable set-valued function $\phi: \mathbb{R} \rightarrow c c(K)$ is an even solution of (2) such that $D \phi$ is continuous, $\phi(0)=\{0\}, D \phi(0)=\{0\}$ and $\lim _{t \rightarrow 0^{+}} \frac{D \phi(t)}{t}$ exists, then there is a set $D \in c c(K)$ satisfying

$$
\begin{gathered}
F_{t+s}(D)+F_{t-s}(D)=2 F_{t}\left(F_{s}(D)\right), \quad(s, t \in \mathbb{R}) \\
\phi(s)=\int_{0}^{s}(s-u) F_{v}(D) d v, \quad(s \geqslant 0) \\
\phi(s)=\phi(-s), \quad(s \leqslant 0) .
\end{gathered}
$$

Proof. Since by assumption ϕ is even, so

$$
\begin{equation*}
\phi(t+s)+\phi(t-s)=2 F_{s}(\phi(t))+2 \phi(s),(s, t \in \mathbb{R}) \tag{5}
\end{equation*}
$$

Consider $0 \leqslant s \leqslant t$, and replace t by $t+v$ in (5). Then,

$$
\begin{equation*}
\phi(t+s+v)+\phi(t-s+v)=2 F_{s}(\phi(t+v))+2 \phi(s) \tag{6}
\end{equation*}
$$

where $v>0$. By (5), (6) and Lemma 16 we obtain

$$
\frac{\phi(t+s+v)-\phi(t+s)}{v}+\frac{\phi(t-s+v)-\phi(t-s)}{v}=2 F_{s}\left(\frac{\phi(t+v)-\phi(t)}{v}\right) .
$$

As $v \rightarrow 0^{+}$, we get

$$
\begin{equation*}
D \phi(t+s)+D \phi(t-s)=2 F_{s}(D \phi(t)) \tag{7}
\end{equation*}
$$

for $0 \leqslant s \leqslant t$. By Lemma 16, the Hukuhara differences $\phi(t)-\phi(s)$ exist for $0 \leqslant s \leqslant t$. Consider $0 \leqslant s<t$ and $0<v \leqslant t-s$ and replace s by $s+v$ in (2). Then,

$$
\begin{equation*}
\phi(t+s+v)+\phi(t-s-v)=2 F_{t}(\phi(s+v))+2 \phi(t) . \tag{8}
\end{equation*}
$$

Adding both sides of (2) and (8) yields

$$
\begin{aligned}
\phi(t+s+v) & +\phi(t-s-v)+2 F_{t}(\phi(s))+2 \phi(t) \\
& =\phi(t+s)+\phi(t-s)+2 F_{t}(\phi(s+v))+2 \phi(t)
\end{aligned}
$$

Hence,

$$
\phi(t+s+v)-\phi(t+s)=2 F_{t}(\phi(s+v)-\phi(s))+\phi(t-s)-\phi(t-s-v) .
$$

Dividing by v and letting $v \rightarrow 0^{+}$we have

$$
\begin{equation*}
D \phi(t+s)=2 F_{t}(D \phi(s))+D \phi(t-s) \tag{9}
\end{equation*}
$$

for $0 \leqslant s<t$. From (9) we have

$$
F_{v}(D \phi(t+s))=2 F_{v}\left(F_{t}(D \phi(s))\right)+F_{v}(D \phi(t-s))
$$

and replacing in (7) t by $t+s$ and s by v and next t by $t-s$ and s by v, we have $\frac{1}{2} D \phi(t+s+v)+\frac{1}{2} D \phi(t+s-v)=2 F_{v}\left(F_{t}(D \phi(s))\right)+\frac{1}{2} D \phi(t-s+v)+\frac{1}{2} D \phi(t-s-v)$.
By (9), we get

$$
F_{t+v}(D \phi(s))+F_{t-v}(D \phi(s))=2 F_{v}\left(F_{t}(D \phi(s))\right)
$$

for $0 \leqslant v \leqslant t-s$. Dividing by s and letting $s \rightarrow 0^{+}$, we have

$$
\begin{equation*}
F_{t+v}(D)+F_{t-v}(D)=2 F_{v}\left(F_{t}(D)\right) \tag{10}
\end{equation*}
$$

where $D:=\lim _{t \rightarrow 0^{+}} \frac{D \phi(t)}{t}$. Define

$$
\psi(t)=\int_{0}^{t}(t-v) F_{v}(D) d v, \quad(t \geqslant 0)
$$

and

$$
\psi(t)=\psi(-t), \quad(t \leqslant 0)
$$

By Theorem 3, ψ is continuous, holds in (2) and $D \psi(t)=\int_{0}^{t} F_{v}(D) d v$. Moreover, by Lemma 10 we have

$$
\lim _{t \rightarrow 0^{+}} \frac{D \psi(t)}{t}=\lim _{t \rightarrow 0^{+}} \frac{1}{t} \int_{0}^{t} F_{v}(D) d v=F_{0}(D)=D
$$

To end the proof it suffices to show that $\phi=\psi$. Define $h(t)=\mathfrak{h}(D \phi(t), D \psi(t))$ for every $t \geqslant 0$. Then,

$$
\begin{aligned}
h(t+s) & -h(t) \\
& =\mathfrak{h}\left(D \phi\left(t+\frac{s}{2}+\frac{s}{2}\right), D \psi\left(t+\frac{s}{2}+\frac{s}{2}\right)\right)-\mathfrak{h}(D \phi(t), D \psi(t)) \\
& =\mathfrak{h}\left(2 F_{t+\frac{s}{2}}\left(D \phi\left(\frac{s}{2}\right)\right)+D \phi(t), 2 F_{t+\frac{s}{2}}\left(D \psi\left(\frac{s}{2}\right)\right)+D \psi(t)\right)-\mathfrak{h}(D \phi(t), D \psi(t)) \\
& \leqslant 2 \mathfrak{h}\left(F_{t+\frac{s}{2}}\left(D \phi\left(\frac{s}{2}\right)\right), F_{t+\frac{s}{2}}\left(D \psi\left(\frac{s}{2}\right)\right)\right) .
\end{aligned}
$$

By Lemmas 5 and 6, there is $M_{0} \geqslant 0$ with

$$
\frac{h(t+s)-h(t)}{s} \leqslant \mathfrak{h}\left(F_{t+\frac{s}{2}}\left(\frac{D \phi\left(\frac{s}{2}\right)}{\frac{s}{2}}\right), F_{t+\frac{s}{2}}\left(\frac{D \psi\left(\frac{s}{2}\right)}{\frac{s}{2}}\right)\right) \leqslant M_{0}\left\|F_{t+\frac{s}{2}}\right\| \mathfrak{h}\left(\frac{D \phi\left(\frac{s}{2}\right)}{\frac{s}{2}}, \frac{D \psi\left(\frac{s}{2}\right)}{\frac{s}{2}}\right) .
$$

By Theorem $1, t \mapsto \tilde{F}_{t}(x)$ is continuous for every $x \in \operatorname{cl}_{X_{0}} K$, consequently $\cup_{s \in[0,1]} \tilde{F}_{t+\frac{s}{2}}(x)$ is bounded for every $x \in c l_{X_{0}} K$. By Lemma 3, there exists $M>0$ such that $\left\|F_{t+\frac{s}{2}}\right\| \leqslant M$ for $s \in[0,1]$. Thus,

$$
\frac{h(t+s)-h(t)}{s} \leqslant M M_{0} \mathfrak{h}\left(\frac{D \phi\left(\frac{s}{2}\right)}{\frac{s}{2}}, \frac{D \psi\left(\frac{s}{2}\right)}{\frac{s}{2}}\right) .
$$

Hence, $\liminf _{s \rightarrow 0^{+}} \frac{h(t+s)-h(t)}{s} \leqslant 0$. By Zygmund's Lemma (see [6], p. 174) h is nonincreasing. So, $h(t) \leqslant h(0)$ for all $t \geqslant 0$. That is, $D \phi=D \psi$. Since $D \phi=D \psi$, $\phi(0)=\psi(0)$ and ϕ, ψ are even, so $\phi=\psi$.

Example 2. Let $\left\{F_{t}: t \in \mathbb{R}\right\}$ is a regular cosine family of continuous linear setvalued functions $F_{t}: K \rightarrow c c(K)$ and $x \in F_{t}(x)$ for every $x \in K$ and $t \in \mathbb{R}$. If a setvalued function $\phi: \mathbb{R} \rightarrow c c(k)$ is a concave continuous even solution of (2) with $\phi(0)=$ $\{0\}, D \phi(0)=\{0\}$ and $0 \in \phi(t)$ for all $t \in \mathbb{R}$, then by Corollary $1, t \mapsto\left\|F_{t}\right\|$ is bounded on some neighborhood of zero. By Lemma 16, the differences $\phi(t)-\phi(s)$ exist for all $0 \leqslant s \leqslant t$. And, by Theorem 3.2 in [10], there exists

$$
\lim _{h \rightarrow 0^{+}} \frac{\phi(t+h)-\phi(t)}{h}:=D^{+} \phi(t),(t>0)
$$

and

$$
\lim _{h \rightarrow 0^{+}} \frac{\phi(t)-\phi(t-h)}{h}:=D^{-} \phi(t),(t>0)
$$

By (2), we have

$$
\phi(t+s)-\phi(t)=2 F_{t}(\phi(s))+\phi(t)-\phi(t-s)
$$

for all $0<s \leqslant t$. Divide by s and let $s \rightarrow 0^{+}$, then $D^{+} \phi(t)=D^{-} \phi(t)=: D \phi(t)$ for all $t>0$. That is, ϕ is Hukuhara differentiable at every $t>0$. Since by assumption ϕ is even, so

$$
\begin{equation*}
\phi(t+s)+\phi(t-s)=2 F_{s}(\phi(t))+2 \phi(s),(s, t \in \mathbb{R}) \tag{11}
\end{equation*}
$$

Consider $0 \leqslant s \leqslant t$ and replace t by $t+v$ in (11), then

$$
\begin{equation*}
\phi(t+s+v)+\phi(t-s+v)=2 F_{s}(\phi(t+v))+2 \phi(s) \tag{12}
\end{equation*}
$$

where $v>0$. By (11) and (12), we get

$$
\frac{\phi(t+s+v)-\phi(t+s)}{v}+\frac{\phi(t-s+v)-\phi(t-s)}{v}=2 F_{s}\left(\frac{\phi(t+v)-\phi(t)}{v}\right)
$$

As $v \rightarrow 0^{+}$, we get $D \phi(t+s)+D \phi(t-s)=2 F_{s}(D \phi(t))$ for all $0 \leqslant s \leqslant t$. Putting $t=\frac{u+v}{2}$ and $s=\frac{v-u}{2}$ we have

$$
D \phi(v)+D \phi(u)=2 F_{\frac{v-u}{2}}\left(D \phi\left(\frac{v+u}{2}\right)\right)
$$

where $0 \leqslant u \leqslant v$. By assumption $x \in F_{t}(x)$, we have $D \phi\left(\frac{u+v}{2}\right) \subseteq \frac{D \phi(v)+D \phi(u)}{2}$. Let $[a, b] \subseteq[0, \infty)$ and fix it. By Theorem 3.2 in [10], $D \phi$ is increasing and for $t \in[a, b]$, $D \phi(t) \subseteq D \phi(b)$. Thus, $D \phi$ is bounded on $[a, b]$ and by Theorem 4.4 in [9], $D \phi$ is continuous on $(0, \infty)$ and by Theorem 4.1 in [9], is concave. Therefore, there exists

$$
\lim _{t \rightarrow 0^{+}} \frac{D \phi(t)}{t} \in c c(K)
$$

Since $D \phi(0)=\{0\}, D \phi$ is increasing and $0 \in D \phi(t)$ for $t \geqslant 0$. Hence by Theorem 4, there is a set $D \in c c(K)$ with $0 \in D$ and

$$
\begin{gathered}
F_{t+s}(D)+F_{t-s}(D)=2 F_{t}\left(F_{s}(D)\right), \quad(s, t \in \mathbb{R}) \\
\phi(s)=\int_{0}^{s}(s-u) F_{u}(D) d u, \quad(s \geqslant 0) \\
\phi(s)=\phi(-s), \quad(s \leqslant 0)
\end{gathered}
$$

Lemma 17. If set-valued functions $F, G, H: K \rightarrow c c(K)$ are continuous and linear, then there exists at most one continuous linear set-valued function $\varphi:[0, \infty) \times K \rightarrow$ $c c(K)$ which is twice differentiable with respect to the first variable and it satisfies the following differentiable problem

$$
\begin{equation*}
D_{t}^{2} \varphi(t, x)=\varphi(t, H(x)), \varphi(0, x)=F(x),\left.D_{t} \varphi(t, x)\right|_{t=0}=G(x) \tag{13}
\end{equation*}
$$

Proof. Let $\phi, \psi:[0, \infty) \times K \rightarrow c c(K)$ be two solutions of problem (13). By Lemmas 9 and 10, we have

$$
D \phi(t, x)=G(x)+\int_{0}^{t} \phi(u, H(x)) d u
$$

and

$$
\phi(t, x)=F(x)+t G(x)+\int_{0}^{t}\left(\int_{0}^{s} \phi(u, H(x)) d u\right) d s
$$

Also,

$$
D \psi(t, x)=G(x)+\int_{0}^{t} \psi(u, H(x)) d u
$$

and

$$
\psi(t, x)=F(x)+t G(x)+\int_{0}^{t}\left(\int_{0}^{s} \psi(u, H(x)) d u\right) d s
$$

By Theorem 1 in [2], F, G, H and ϕ, ψ have continuous linear extensions $\tilde{F}, \tilde{G}, \tilde{H}$: $c l_{X_{0}} K \rightarrow c c\left(c l_{X_{0}} K\right)$ and $\tilde{\phi}, \tilde{\psi}:[0, \infty) \times c l_{X_{0}} K \rightarrow c c\left(c l_{X_{0}} K\right)$, respectively. By Lemma 7 in [1], we obtain $\tilde{\phi}(t, x)=\tilde{F}(x)+t \tilde{G}(x)+\int_{0}^{t}\left(\int_{0}^{s} \tilde{\phi}(u, \tilde{H}(x)) d u\right) d s$ and $\tilde{\psi}(t, x)=\tilde{F}(x)+$ $t \tilde{G}(x)+\int_{0}^{t}\left(\int_{0}^{s} \tilde{\psi}(u, \tilde{H}(x)) d u\right) d s$. Thus, $\tilde{\phi}(t, x)$ and $\tilde{\psi}(t, x)$ are two solutions of problem (13). By Theorem 2 in [7], $\tilde{\phi}(t, x)=\tilde{\psi}(t, x)$ and consequently $\phi(t, x)=\psi(t, x)$ for every $(t, x) \in[0, \infty) \times c c(K)$.
From now, we use the abbreviation $G_{t}(x)$ for $\lim _{h \rightarrow 0} \frac{F_{t+h}(x)-F_{t}(x)}{h}$.
THEOREM 5. Let $\left\{F_{t}: t \geqslant 0\right\}$ be a regular cosine family of continuous linear setvalued functions $F_{t}: K \rightarrow c c(K)$ such that $t \mapsto\left\|F_{t}\right\|$ is bounded on some neighborhood of zero. If $\lim _{h \rightarrow 0^{+}} \frac{F_{t+h}(x)-F_{t}(x)}{h}$ exists, then $\left\{F_{t}: t \geqslant 0\right\}$ is differentiable. Moreover, if $\lim _{h \rightarrow 0^{+}} \frac{G_{h}(x)}{h}:=H(x)$ exists, then

$$
F_{t}\left(F_{s}(x)\right)=F_{s}\left(F_{t}(x)\right)
$$

for $x \in K$ and $s, t \geqslant 0$.

Proof. Since $F_{t+s}(x)+F_{t-s}(x)=2 F_{t}\left(F_{s}(x)\right)$ for all $x \in K$ and $0 \leqslant s \leqslant t$, so $\frac{F_{2 t}(x)-x}{2 t}=F_{t}\left(\frac{F_{t}(x)-x}{t}\right)+\frac{F_{t}(x)-x}{t}$. Let $t \rightarrow 0^{+}$, then

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} F_{t}\left(\frac{F_{t}(x)-x}{t}\right)=\{0\} . \tag{14}
\end{equation*}
$$

By Lemmas 5 and 6, there exists $M_{0}>0$ such that

$$
\begin{aligned}
\mathfrak{h}\left(F_{t}\left(C_{t}(x)\right), C(x)\right) & \leqslant \mathfrak{h}\left(F_{t}\left(C_{t}(x)\right), F_{t}(C(x))\right)+\mathfrak{h}\left(F_{t}(C(x)), C(x)\right) \\
& \leqslant M_{0}\left\|F_{t}\right\| \mathfrak{h}\left(C_{t}(x), C(x)\right)+\mathfrak{h}\left(F_{t}(C(x)), C(x)\right),
\end{aligned}
$$

where $C_{t}(x):=\frac{F_{t}(x)-x}{t}$ and $C(x):=\lim _{t \rightarrow 0^{+}} \frac{F_{t}(x)-x}{t}$. Since $t \mapsto\left\|F_{t}\right\|$ is bounded on some neighborhood of zero, so there exist positive constants δ and M such that $\left\|F_{t}\right\| \leqslant$ M for $t \in[0, \delta]$. Moreover, by Theorem 3 in [1],

$$
\lim _{t \rightarrow 0^{+}} \mathfrak{h}\left(F_{t}(D), D\right)=0
$$

for every nonempty compact subset D of K. Therefore,

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \mathfrak{h}\left(F_{t}\left(C_{t}(x)\right), C(x)\right)=0 \tag{15}
\end{equation*}
$$

From (14) and (15) we have $C(x)=\lim _{t \rightarrow 0^{+}} \frac{F_{t}(x)-x}{t}=\{0\}$ for every $x \in K$. By Lemma 2, we obtain $F_{t+h}(x)-F_{t}(x)=2 F_{t}\left(F_{h}(x)-x\right)+F_{t}(x)-F_{t-h}(x)$ for $0<h \leqslant t$. Dividing this equality by h we get

$$
\frac{F_{t+h}(x)-F_{t}(x)}{h}=2 F_{t}\left(\frac{F_{h}(x)-x}{h}\right)+\frac{F_{t}(x)-F_{t-h}(x)}{h} .
$$

Letting $h \rightarrow 0^{+}$, we have

$$
\lim _{t \rightarrow 0^{+}} \frac{F_{t+h}(x)-F_{t}(x)}{h}=\lim _{t \rightarrow 0^{+}} \frac{F_{t}(x)-F_{t-h}(x)}{h}=G_{t}(x) \quad(t>0) .
$$

This implies that the family $\left\{F_{t}: t \geqslant 0\right\}$ is differentiable.
Let $s \geqslant 0$, define $\varphi(t, x):=F_{s}\left(F_{t+s}(x)\right)$ and $\psi(t, x):=F_{t+s}\left(F_{s}(x)\right)$ for all $x \in K$ and $t \geqslant 0$. We have

$$
\varphi(0, x)=F_{s}\left(F_{s}(x)\right)=\psi(0, x),(x \in K)
$$

By Lemma 2, we have

$$
\begin{aligned}
D_{t}^{+} \varphi(t, x) & =\lim _{h \rightarrow 0^{+}} \frac{F_{s}\left(F_{t+h+s}\right)(x)-F_{s}\left(F_{t+s}\right)(x)}{h} \\
& =F_{s}\left(\lim _{h \rightarrow 0^{+}} \frac{F_{t+s+h}(x)-F_{t+s}(x)}{h}\right) \\
& =F_{s}\left(G_{t+s}(x)\right)
\end{aligned}
$$

for $x \in K$ and $t \geqslant 0$. And, similarly $D_{t}^{-} \varphi(t, x)=F_{s}\left(G_{t+s}(x)\right)$ for $t>0$ and $x \in K$. Moreover, we obtain

$$
\begin{aligned}
D_{t}^{+} \psi(t, x) & \left.=\lim _{h \rightarrow 0^{+}} \frac{F_{t+s+h}\left(F_{s}(x)\right)-F_{t+s}\left(F_{s}(x)\right)}{h}\right) \\
& =\frac{1}{2} \lim _{h \rightarrow 0^{+}}\left[\frac{F_{t+2 s+h}(x)-F_{t+2 s}(x)}{h}+\frac{F_{t+h}(x)-F_{t}(x)}{h}\right] \\
& =\frac{1}{2}\left[G_{t+2 s}(x)+G_{t}(x)\right]=D_{t}^{-} \psi(t, x)
\end{aligned}
$$

Also, for $0<s<t$ we obtain

$$
\begin{aligned}
2 F_{t}\left(G_{s}(x)\right) & =2 F_{t}\left(\lim _{h \rightarrow 0^{+}} \frac{F_{s+h}(x)-F_{s}(x)}{h}\right) \\
& =\lim _{h \rightarrow 0^{+}} \frac{2 F_{t}\left(F_{s+h}(x)\right)-2 F_{t}\left(F_{s}(x)\right)}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{F_{t+s+h}(x)+F_{t-s-h}(x)-\left(F_{t+s}(x)+F_{t-s}(x)\right)}{h} \\
& =\lim _{h \rightarrow 0^{+}}\left[\frac{F_{t+s+h}(x)-F_{t+s}(x)}{h}-\frac{F_{t-s}(x)-F_{t-s-h}(x)}{h}\right] \\
& =G_{t+s}(x)-G_{t-s}(x) .
\end{aligned}
$$

And,

$$
\begin{aligned}
\mathfrak{h}\left(2 F_{s}\left(G_{s}(x)\right), G_{2 s}(x)\right) & \left.\leqslant \mathfrak{h}\left(\frac{F_{2 s}(x)-F_{2 s-h}(x)}{h}\right), G_{2 s}(x)\right) \\
& +\mathfrak{h}\left(\frac{\left(F_{2 s}(x)+x\right)-\left(F_{2 s-h}(x)+F_{h}(x)\right)}{h}+\frac{F_{h}(x)-x}{h}, 2 F_{s}\left(G_{s}(x)\right)\right. \\
& \leqslant \mathfrak{h}\left(\frac{F_{2 s}(x)-F_{2 s-h}(x)}{h}, G_{2 s}(x)\right) \\
& +\mathfrak{h}\left(\frac{2 F_{s}\left(F_{s}(x)\right)-2 F_{s}\left(F_{s-h}(x)\right)}{h}, 2 F_{s}\left(G_{s}(x)\right)\right) \\
& +\mathfrak{h}\left(\frac{F_{h}(x)-x}{h},\{0\}\right) \\
& \leqslant \mathfrak{h}\left(G_{2 s}(x), \frac{F_{2 s}(x)-F_{2 s-h}(x)}{h}\right) \\
& +2 M_{0}\left\|F_{s}\right\| \mathfrak{h}\left(\frac{F_{s}(x)-F_{s-h}(x)}{h}, G_{s}(x)\right)+\mathfrak{h}\left(\frac{F_{h}(x)-x}{h},\{0\}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
G_{t+s}(x)=G_{t-s}(x)+2 F_{t}\left(G_{s}(x)\right), \quad(x \in K, 0 \leqslant s \leqslant t) . \tag{16}
\end{equation*}
$$

By equation (16), $D_{t} \varphi(t, x)=F_{s}\left(G_{t+s}(x)\right)$ and $D_{t} \psi(t, x)=\frac{1}{2}\left(G_{t+2 s}(x)+G_{t}(x)\right)$ we have $\left.D_{t} \varphi(t, x)\right|_{t=0}=F_{s}\left(G_{s}(x)\right)=\left.D_{t} \psi(t, x)\right|_{t=0}$ for $x \in K$. Putting

$$
H_{t}(x):=\lim _{h \rightarrow 0^{+}} \frac{G_{t+h}(x)-G_{t}(x)}{h}
$$

we have

$$
\lim _{s \rightarrow 0^{+}} \frac{G_{t+2 s}(x)-G_{t}(x)}{2 s}=\lim _{s \rightarrow 0^{+}} F_{t+s}\left(\frac{G_{s}(x)}{s}\right)=F_{t}(H(x))
$$

for $x \in K, t \geqslant 0$ and

$$
\lim _{s \rightarrow 0^{+}} \frac{G_{t}(x)-G_{t-2 s}(x)}{2 s}=\lim _{s \rightarrow 0^{+}} F_{t-s}\left(\frac{G_{s}(x)}{s}\right)=F_{t}(H(x))
$$

for $x \in K, t>0$.

$$
\begin{aligned}
D_{t}^{+} D_{t} \varphi(t, x) & =D_{t}^{+} F_{s}\left(G_{t+s}(x)\right) \\
& =\lim _{h \rightarrow 0^{+}} F_{s}\left(\frac{G_{t+s+h}(x)-G_{t+s}(x)}{h}\right) \\
& =F_{s}\left(H_{t+s}(x)\right)=\varphi(t, H(x))=D_{t}^{-} D_{t} \varphi(t, x)
\end{aligned}
$$

and

$$
\begin{aligned}
D_{t}^{+} D_{t} \psi(t, x) & =\frac{1}{2} D_{t}^{+}\left(G_{t+2 s}(x)+G_{t}(x)\right) \\
& \left.=\frac{1}{2} \lim _{h \rightarrow 0^{+}} \frac{G_{t+2 s+h}(x)-G_{t+2 s}(x)}{h}+\frac{G_{t+h}(x)-G_{t}(x)}{h}\right) \\
& =\frac{1}{2}\left(H_{t+2 s}(x)+H_{t}(x)\right)=D_{t}^{-} D_{t} \psi(t, x)
\end{aligned}
$$

where $H_{t}(x)=F_{t}(H(x))$.
Hence, we have

$$
D_{t}^{2} \psi(t, x)=F_{t+s}\left(H_{s}(x)\right)=F_{t+s}\left(F_{s}(H(x))\right)=\psi(t, H(x))
$$

Therefore, the set-valued functions φ and ψ are solutions of problem

$$
D_{t}^{2} \varphi(t, x)=\varphi(t, H(x)), \varphi(0, x)=F(x),\left.D_{t} \varphi(t, x)\right|_{t=0}=G(x)
$$

with $F(x):=F_{s}\left(F_{s}(x)\right), G(x):=F_{s}\left(G_{s}(x)\right)$ and $H(x):=\left.D_{t}^{2} F_{t}(x)\right|_{t=0}$. By Lemma 17, $\varphi(t, x)=\psi(t, x)$. Thus, $F_{s}\left(F_{t+s}(x)\right)=F_{t+s}\left(F_{t}(x)\right)$ for $s, t \geqslant 0, x \in K$. This completes the proof.
Theorem 5 shows that a regular cosine family $\left\{F_{t}: t \geqslant 0\right\}$ of continuous linear setvalued functions can be extended to a regular cosine family $\left\{F_{t}: t \in \mathbb{R}\right\}$.

Example 3. Let $\left\{F_{t}: t \geqslant 0\right\}$ be a regular cosine family of continuous linear setvalued functions $F_{t}: K \rightarrow c c(K)$ such that $x \in F_{t}(x)$ for all $x \in K$ and $t \geqslant 0$. By Corollary $1, t \mapsto\left\|F_{t}\right\|$ is bounded on some neighborhood of zero and by Theorem 2 in [2], $\left\{\tilde{F}_{t}: t \geqslant 0\right\}$ is a regular cosine family of continuous linear set-valued functions $\tilde{F}_{t}: c l_{X_{0}} K \rightarrow c c\left(c l_{X_{0}} K\right)$ such that $x \in \tilde{F}_{t}(x)$ for all $x \in c l_{X_{0}} K$ and $t \geqslant 0$. By Theorem 4.2 in [18], $\tilde{F}_{t}\left(\tilde{F}_{s}(x)\right)=\tilde{F}_{s}\left(\tilde{F}_{t}(x)\right)$ and consequently $F_{t}\left(F_{s}(x)\right)=F_{s}\left(F_{t}(x)\right)$ for all $x \in K$ and $t \geqslant 0$.

REFERENCES

[1] M. Aghajani and K. Nourouzi, On Hukuhara's differentiable iteration semigroups of linear setvalued functions, Aequationes Math., 90, 6 (2016), 1129-1145.
[2] M. Aghajani and K. Nourouzi, On the regular cosine family of linear correspondences, Aequationes Math., 83, 3 (2012), 215-221.
[3] C. D. Aliprantis and K. C. Border, Infinite Dimentional Analysis, A hitchhiker's guide. Third edition. Springer, Berlin, 2006.
[4] Z. Fechner and L. Székelyhidi, Sine and cosine equations on hypergroups, Banach J. Math. Anal., 11, 4 (2017), 808-824.
[5] M. Hukuhara, Intégration des applications mesurables dont la valeur est un compact convexe, Funkcial. Ekvac., 10, (1967), 205-223.
[6] S. Łojasiewicz, An introduction to the theory of real functions, John Wiley and Sons, Chichester, 1988.
[7] E. Mainka-Niemczyk, Multivalued second order differential problem, Ann. Univ. Paedagog. Crac. Stud. Math., 11, (2012), 53-67.
[8] J. R. Munkres, Topology: a first course, Prentice-Hall, 1975.
[9] K. Nikodem, K-convex and K-concave set-valued functions, J. Zeszyty Nauk. Politech. Łódz. Mat. 559, J. Rozprawy Nauk., 114, (1989).
[10] M. Piszczek, Integral representations of convex and concave set-valued functions, Demonstratio Math., 35, 4 (2002), 727-742.
[11] M. Piszczek, On cosine families of Jensen set-valued functions, Aequationes Math., 75, 1-2 (2008), 103-118.
[12] M. Piszczek, On multivalued cosine families, J. Appl. Anal., 13, 1 (2007), 57-76.
[13] M. Piszczek, Second Hukuhara derivative and cosine family of linear set-valued functions, Ann. Acad. Pedagog. Crac. Stud. Math., 5, (2006), 87-98.
[14] H. RȦdström, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc., 3, (1952), 165-169.
[15] A. SmAJDOR, Hukuhara's derivative and concave iteration semigroups of linear set-valued functions, J. Appl. Anal., 8, 2 (2002), 297-305.
[16] A. Smajdor, Hukuhara's differentiable iteration semigroups of linear set-valued functions, Ann. Polon. Math., 83, 1 (2004), 1-10.
[17] A. Smajdor, On regular multivalued cosine families, European Conference on Iteration Theory (Muszyna-Zlockie, 1998). Ann. Math. Sil., 13, (1999), 271-280.
[18] A. Smajdor and W. Smajdor, Commutativity of set-valued cosine families, Cent. Eur. J. Math., 12, 12 (2014), 1871-1881.
[19] W. Smajdor, Superadditive set-valued functions and Banach-Steinhause theorem, Rad. Mat., 3, 2 (1987), 203-214.

