OPTIMAL L^{p} HARDY-RELLICH TYPE INEQUALITIES ON THE SPHERE

Abimbola Abolarinwa* and Kamilu Rauf
(Communicated by M. Praljak)

Abstract

In this paper we study some L^{p}-Hardy-Rellich type inequalities and the corresponding optimal constant on the geodesic sphere. By the divergence theorem, properties of radial Laplacian and geodesic distance, we obtain an improved version of Hardy-Rellich inequalities holding in dimension $N \geqslant 3$. The result is new for $N=3,4$. Moreover, we show that the constant obtained is optimally sharp.

1. Introduction

This paper is concerned with the proof of an improved extension of Hardy-Rellich inequalities for L^{p}-functions on the N-sphere of constant sectional curvature. We apply properties of geodesic distance on the unit sphere, radial Laplacian and the divergence theorem to establish, for $N \geqslant 3$ and $f \in L^{p}\left(\mathbb{S}^{N}, d V\right)$,

$$
\begin{equation*}
\int_{\mathbb{S}^{N}} \frac{\left|\Delta_{\mathbb{S}^{N}} f\right|^{p}}{(\sin \theta)^{2-2 p}} d V+B \int_{\mathbb{S}^{N}} \frac{|f|^{p}}{(\sin \theta)^{2-2 p}} d V \geqslant C \int_{\mathbb{S}^{N}} \frac{|f|^{p}}{\sin ^{2} \theta} d V \tag{1}
\end{equation*}
$$

where $B=B(N, p)$ and $C=C(N, p)$ are some constants involving the best constant in the classical Hardy inequality. We further show that the constant $C(N, p)$ is the best possible achieved in the sense that

$$
C(N, p) \geqslant \inf _{f \in C^{\infty}\left(\mathbb{S}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{S}^{N}} \frac{\left|\Delta_{\mathbb{S}^{N} N} f\right|^{p}}{(\sin \theta)^{2-2 p}} d V+B \int_{\mathbb{S}^{N}} \frac{|f|^{p}}{(\sin \theta)^{2-2 p}} d V}{\int_{\mathbb{S}^{N}} \frac{|f|^{p}}{d(x, q)^{2}} d V},
$$

where $d(x, q)$ is the geodesic distance between points x and q on \mathbb{S}^{N}. The statement of the above result is given in Theorem 1 and the its proof in Section 3. To the best of our knowledge, this is the first time of having such inequalities extended to dimensions $N=3$ and 4 .

Let $\mathbb{R}^{N}, N \geqslant 3$ be the N-dimensional Euclidean space, the classical Hardy inequality for $f \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ and $1<p<\infty$ is given as follows

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla f(x)|^{p} d x \geqslant\left(\frac{N-p}{p}\right)^{p} \int_{\mathbb{R}^{N}} \frac{|f(x)|^{p}}{|x|^{p}} d x \tag{2}
\end{equation*}
$$

Mathematics subject classification (2010): 26D10, 46E30, 53C21.
Keywords and phrases: Hardy inequalities, geodesic, divergence theorem, best constant.

* Corresponding author.
where $((N-p) / p)^{p}$ is the best constant and never achieved. The Hardy-Rellich [7, 6] states that for $p>1, N>\alpha+2, \alpha \in \mathbb{R}$, and for any smooth function f on $\Omega \subseteq \mathbb{R}^{N}$, it holds that

$$
\begin{equation*}
\int_{\Omega} \frac{|\Delta f|^{p}}{|x|^{\alpha+2-2 p}} d x \geqslant\left(\frac{(N-\alpha-2)[(p-1)(N-2)+\alpha]}{p^{2}}\right)^{p} \int_{\Omega} \frac{|f|^{p}}{|x|^{\alpha+2}} d x \tag{3}
\end{equation*}
$$

with sharp constant. Meanwhile, the classical case $p=2$ and $\alpha=2$

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\Delta f|^{2} d x \geqslant \frac{N^{2}(N-4)^{4}}{16} \int_{\mathbb{R}^{N}} \frac{|f|^{2}}{|x|^{4}} d x \tag{4}
\end{equation*}
$$

was first published by F. Rellich in 1955 for $N \geqslant 5$, and the constant $\frac{N^{2}(N-4)^{4}}{16}$ is optimal but never achieved.

Owing to several areas of their applications, such as in elliptic operator theory, spectral theory, harmonic analysis, mathematical physics, differential geometry to mention but a few, numerous literatures have been devoted to obtaining improvement and extension of Hardy-Rellich type inequalities. For examples, we find [3, 5, 6, 7, 11]. In paricular, see $[8,9,13,15]$ for the extension to complete manifolds. For more exposition see [1,2] and the references therein. Recently, Xiao [14] studied L^{2}-Hardy inequality on the unit sphere and as a consequence derived L^{2}-Rellich type inequality with sharp constant. Motivated by [14], we obtained some L^{p} Hardy-Rellich type inequalities in [1] and showed that the constant is sharp in the sense that it cannot be improved. In a similar spirit, the present paper is devoted to obtaining an improved version of the optimal L^{p} Hardy-Rellich inequalities that can be extended to lower dimensions.

The rest of the paper is planned as follows. In Section 2 we recall some basic facts about the sphere and then present the main results of this paper. Section 3 is devoted to the proof of improved Hardy-Rellich type inequalities and the sharpness of the constant.

2. Preliminaries and main theorem

2.1. Sphere

We deal with the unit N-sphere $\mathbb{S}^{N}=\left\{x \in \mathbb{R}^{N+1}:|x|=1\right\}$ of sectional curvature 1 , endowed with canonical Riemannian structure. Let $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{N}\right)$ be angular variables on \mathbb{S}^{N}, we set $\theta=\theta_{N}$, where $x_{N+1}=|x| \cos \theta_{N}$. The associated weight function is given as $\Theta(\theta, \xi)=(\sin \theta)^{N-1}, \quad \xi \in \mathbb{S}^{N-1}$ and by polar coordinate transformation

$$
\int_{\mathbb{S}^{N}} f d V=\int_{\mathbb{S}^{N-1}} \int_{0}^{\pi} f(\sin \theta)^{N-1} d \theta d \sigma, \quad f \in L^{1}\left(\mathbb{S}^{N}\right)
$$

where $d V$ and $d \sigma$ denote the standard volume element on \mathbb{S}^{N} and unit $(N-1)$-sphere respectively. A function $f=f(\theta)$ which depends only on θ is called radial. In this case using the radial part of the Laplace-Beltrami operator $\Delta_{\mathbb{S}^{N}}$ we have

$$
\Delta_{\mathbb{S}^{N}} f(\theta)=(\sin \theta)^{1-N} \frac{d}{d \theta}\left((\sin \theta)^{N-1} \frac{d}{d \theta} f\right)
$$

while the gradient of a function f on \mathbb{S}^{N} is $\left|\nabla_{\mathbb{S}^{N}} f(\theta)\right|=\left|\frac{d}{d \theta} f(\theta)\right|$.
The geodesic distance between x and an arbitrary point $q \in \mathbb{S}^{N}$ is denoted by $d(x, q)$. Note that the points on the sphere are all the same distance from the origin, which is a fixed point and all geodesics of the sphere are closed curves. Consider two points x and y on a sphere of radius $r>0$ centered at the origin of \mathbb{R}^{N}, the distance between the two points is given by $d(x, y)=r \arccos ((x \cdot y) / r)$, while $x \cdot y=r^{2} \cos \theta$, where θ is the angle between vectors x and y. Hence, the minimal geodesic joining two points on the unit sphere can be taken to be θ. Throughout we denote $\Delta=\Delta_{\mathbb{S}^{N}}$ and $\nabla=\nabla_{\mathbb{S}^{N}}$.

Lemma 1. Let $\beta \in \mathbb{R}$. Then

$$
\begin{equation*}
\Delta_{\mathbb{S}^{N}}(\sin \theta)^{-\beta}=\frac{\beta(N-\beta-1)}{(\sin \theta)^{\beta}}-\frac{\beta(N-\beta-2)}{(\sin \theta)^{\beta+2}} . \tag{5}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\Delta_{\mathbb{S}^{N}}(\sin \theta)^{-\beta} & =(\sin \theta)^{1-N} \frac{d}{d \theta}\left((\sin \theta)^{N-1} \frac{d}{d \theta}(\sin \theta)^{-\beta}\right) \\
& =-\beta(\sin \theta)^{1-N} \frac{d}{d \theta}\left((\sin \theta)^{N-\beta-2} \cos \theta\right) \\
& =-\beta(N-\beta-2)(\sin \theta)^{-\beta-2} \cos ^{2} \theta+\beta(\sin \theta)^{-\beta} \\
& =\beta(N-\beta-1)(\sin \theta)^{-\beta}-\beta(N-\beta-2)(\sin \theta)^{-(\beta+2)}
\end{aligned}
$$

by using the trigonometry identity $\cos ^{2} \theta+\sin ^{2} \theta=1$, which is formula (5).

2.2. Main results

Our main theorem is the following Hardy-Rellich type inequalities
THEOREM 1. Let $N \geqslant 3$ and $1<p<\infty$, then there exists a positive constant $A=A(N, \alpha, p)$ such that for all $f \in C^{\infty}\left(\mathbb{S}^{N}\right)$

$$
\begin{equation*}
\int_{\mathbb{S}^{N}} \frac{\left|\Delta_{\mathbb{S}^{N}} f\right|^{p}}{(\sin \theta)^{2-2 p}} d V+B(N, p) \int_{\mathbb{S}^{N}} \frac{|f|^{p}}{(\sin \theta)^{2-2 p}} d V \geqslant C(N, p) \int_{\mathbb{S}^{N}} \frac{|f|^{p}}{\sin ^{2} \theta} d V \tag{6}
\end{equation*}
$$

where

$$
B(N, p)=\left(\frac{N(N-2)(p-1)}{p^{2}}\right)^{p} \quad \text { and } C(N, p)=\left(\frac{(N-2)^{2}(p-1)}{p^{2}}\right)^{p}
$$

Moreover, the constant $C(N, p)$ appearing in (6) is sharp.
REMARK 1. The family of inequalities in (6) is new and can be viewed as an extension of [1] and [14] $(p=2)$ since it holds for $N \geqslant 3$. The case $p=2$ reads

$$
\int_{\mathbb{S}^{N}} \sin ^{2} \theta|\Delta f|^{2} d V+\frac{N^{2}(N-2)^{2}}{16} \int_{\mathbb{S}^{N}} \sin ^{2} \theta f^{2} d V \geqslant\left(\frac{N-2}{2}\right)^{2} \int_{\mathbb{S}^{N}} \frac{|f|^{p}}{\sin ^{2} \theta} d V
$$

3. Proof of the main Theorem

We start this section with a fundamental lemma that will be applied in the proof of Theorem 1.

Lemma 2. ([1, Theorem 2.1]) Let $N \geqslant 3,0 \leqslant \alpha<N-p$, and $1<p<\infty$, then there exists a constant $A=A(N, \alpha, p)>0$ such that for all $f \in C^{\infty}\left(\mathbb{S}^{N}\right)$

$$
\begin{equation*}
\int_{\mathbb{S}^{N}} \frac{\left|\nabla_{\mathbb{S}^{N}} f\right|^{p}}{(\sin \theta)^{\alpha}} d V+A \int_{\mathbb{S}^{N}} \frac{|f|^{p}}{(\sin \theta)^{\alpha+p-2}} d V \geqslant\left(\frac{N-p-\alpha}{p}\right)^{p} \int_{\mathbb{S}^{N}} \frac{|f|^{p}}{(\sin \theta)^{\alpha+p}} d V \tag{7}
\end{equation*}
$$

where

$$
A(N, \alpha, p)=\min \left\{1, \frac{p}{2}\right\}\left(\frac{N-p-\alpha}{p}\right)^{p}+\left(\frac{N-p-\alpha}{p}\right)^{p-1}
$$

The idea of the proof is similar to the ones in $[1,8,12,14]$. It is however included here for completeness sake.

REMARK 2. Consider the extreme case $\alpha=0$ and $p=2$ in Lemma 2, we have

$$
\begin{equation*}
\int_{\mathbb{S}^{N}}\left|\nabla_{\mathbb{S}^{N}} f\right|^{2} d V+\frac{N(N-2)}{4} \int_{\mathbb{S}^{N}}|f|^{2} d V \geqslant \frac{(N-2)^{2}}{4} \int_{\mathbb{S}^{N}} \frac{|f|^{2}}{\sin ^{2} \theta} d V \tag{8}
\end{equation*}
$$

which is exactly the Hardy inequality with sharp constant in [14, Theorem 1].

Proof of Lemma 2

Recall from $[10,13]$ that for any $u, v \in \mathbb{R}^{N}$, it holds that $|u+v|^{p} \geqslant|u|^{p}+p|u|^{p-2}\langle u, v\rangle$. Now letting $\gamma=-(N-p-\alpha) / p>0, f=\rho^{\gamma} \phi, \rho=\sin \theta$ and $f \in C^{\infty}\left(\mathbb{S}^{N}\right)$, we have

$$
\begin{aligned}
\left|\nabla_{\mathbb{S}^{N}} f\right|^{p} & =\left|\gamma \rho^{\gamma-1} \nabla \rho \phi+\rho^{\gamma} \nabla \phi\right|^{p} \\
& \left.\geqslant|\gamma|^{p} \rho^{\gamma p-p}|\nabla \rho|^{p}|\phi|^{p}+\left.p \gamma^{p-1} \rho^{\gamma p+1-p}|\phi|^{p-1}\langle | \nabla \rho\right|^{p-1}, \nabla \phi\right\rangle
\end{aligned}
$$

Multiplying througn by $\rho^{-\alpha}$ and applying divergence theorem, we have

$$
\begin{align*}
& \int_{\mathbb{S}^{N}} \frac{\left|\nabla_{\mathbb{S}^{N}} f\right|^{p}}{\rho^{\alpha}} d V \geqslant|\gamma|^{p} \int_{\mathbb{S}^{N}} \rho^{\gamma p-p-\alpha}|\nabla \rho|^{p}|\phi|^{p} d V \\
&-\frac{|\gamma|^{p-2} \gamma}{\gamma p-p-\alpha+2} \int_{\mathbb{S}^{N}} \Delta p^{\gamma p-p-\alpha+2}|\phi|^{p} d V \tag{9}
\end{align*}
$$

Note that $|\nabla \rho|=\cos \theta,|\gamma|=\left|-\frac{N-p-\alpha}{p}\right|, \gamma p-p-\alpha=-N$ and $\frac{|\gamma|^{p-2} \gamma}{\gamma p-p-\alpha+2}=$ $\frac{1}{N-2}\left(\frac{N-p-\alpha}{p}\right)^{p-1}$. Hence, (9) becomes

$$
\left.\begin{array}{rl}
\int_{\mathbb{S}^{N}} \frac{|\nabla f|^{p}}{(\sin \theta)^{\alpha}} d V \geqslant & \left(\frac{N-p-\alpha}{p}\right)^{p} \int_{\mathbb{S}^{N}} \frac{|\varphi|^{p}}{(\sin \theta)^{N}}(\cos \theta)^{p} d V \\
\left.\quad-\left.\frac{1}{(N-2)}\left(\frac{N-p-\alpha}{p}\right)^{p-1} \int_{\mathbb{S}^{N}}\left\langle\Delta(\sin \theta)^{-(N-2)},\right| \varphi\right|^{p}\right\rangle \\
= & \left(\frac{N-p-\alpha}{p}\right)^{p} \int_{\mathbb{S}^{N}} \frac{|\varphi|^{p}}{(\sin \theta)^{N}}(\cos \theta)^{p} d V
\end{array} \quad-\quad-\left(\frac{N-p-\alpha}{p}\right)^{p-1} \int_{\mathbb{S}^{N}} \frac{|\varphi|^{p}}{(\sin \theta)^{N-2}} d V\right)
$$

by applying Lemma 1. Substituting the identity $|\cos \theta|^{p} \geqslant 1-\min \left\{1, \frac{p}{2}\right\} \sin ^{2} \theta$ into the last inequality yields

$$
\begin{aligned}
& \int_{\mathbb{S}^{N}} \frac{|\nabla f|^{p}}{(\sin \theta)^{\alpha}} d V \geqslant\left(\frac{N-p-\alpha}{p}\right)^{p} \int_{\mathbb{S}^{N}} \frac{\varphi^{p}}{(\sin \theta)^{N}} d V \\
& \quad-\left(\min \left\{1, \frac{p}{2}\right\}\left(\frac{N-p-\alpha}{p}\right)^{p}+\left(\frac{N-p-\alpha}{p}\right)^{p-1}\right) \int_{\mathbb{S}^{N}} \frac{|\varphi|^{p}}{(\sin \theta)^{N-2}} d V .
\end{aligned}
$$

By using the substitution $\phi=\rho^{-\gamma} f=(\sin \theta)^{\frac{N-p-\alpha}{p}} f$, we recover the desired inequality (7).

Proof of Theorem 1

Let $f \in C^{\infty}\left(\mathbb{S}^{N}\right)$. For $\varepsilon>0$, define $f_{\varepsilon}:=\left(|f|^{2}+\varepsilon^{2}\right)^{p / 2}-\varepsilon^{p} \in C^{\infty}\left(\mathbb{S}^{N}\right)$ with the same support as f. We have

$$
\begin{aligned}
\Delta f_{\varepsilon}= & p\left(|f|^{2}+\varepsilon^{2}\right)^{\frac{p}{2}-1}|\nabla f|^{2}+p(p-2)\left(|f|^{2}+\varepsilon^{2}\right)^{\frac{p}{2}-2} f^{2}|\nabla f|^{2} \\
& +p\left(|f|^{2}+\varepsilon^{2}\right)^{\frac{p}{2}-1} f \Delta f \\
\geqslant & p(p-1)\left(|f|^{2}+\varepsilon^{2}\right)^{\frac{p}{2}-2} f^{2}|\nabla f|^{2}+p\left(|f|^{2}+\varepsilon^{2}\right)^{\frac{p}{2}-1} f \Delta f \\
\geqslant & \frac{4(p-1)}{p}\left|\nabla h_{\varepsilon}\right|+p\left(|f|^{2}+\varepsilon^{2}\right)^{\frac{p}{2}-1} f \Delta f,
\end{aligned}
$$

where $h_{\varepsilon}:=\left(|f|^{2}+\varepsilon^{2}\right)^{\frac{p}{4}}-\varepsilon^{\frac{p}{2}} \in C^{\infty}\left(\mathbb{S}^{N}\right)$. Therefore

$$
-p\left(|f|^{2}+\varepsilon^{2}\right)^{\frac{p}{2}-1} f \Delta f \geqslant \frac{4(p-1)}{p}\left|\nabla h_{\varepsilon}\right|^{2}-\Delta f_{\varepsilon} .
$$

Integrating the last inequality over \mathbb{S}^{N} and using compactness of the sphere yields

$$
\begin{equation*}
-p \int_{\mathbb{S}^{N}}\left(|f|^{2}+\varepsilon^{2}\right)^{\frac{p}{2}-1} f \Delta f d V \geqslant \frac{4(p-1)}{p} \int_{\mathbb{S}^{N}}\left|\nabla h_{\varepsilon}\right|^{2} d V . \tag{10}
\end{equation*}
$$

Applying Lemma 2 (i.e. (7) with $p=2$ and $\alpha=0$) on the right hand side of (10), we obtain

$$
\begin{aligned}
-\int_{\mathbb{S}^{N}}\left(|f|^{2}+\varepsilon^{2}\right)^{\frac{p}{2}-1} f \Delta f d V \geqslant & \frac{(N-2)^{2}(p-1)}{p^{2}} \int_{\mathbb{S}^{N}} \frac{\left|h_{\mathcal{\varepsilon}}\right|^{2}}{\sin ^{2} \theta} d V \\
& -\frac{N(N-2)(p-1)}{p^{2}} \int_{\mathbb{S}^{N}}\left|h_{\mathcal{\varepsilon}}\right|^{2} d V
\end{aligned}
$$

Sending $\varepsilon \rightarrow 0$, we have by Lebesgue dominated convergence theorem

$$
\frac{(N-2)^{2}(p-1)}{p^{2}} \int_{\mathbb{S}^{N}} \frac{|f|^{p}}{\sin ^{2} \theta} d V \leqslant \int_{\mathbb{S}^{N}}|f|^{p-1} \Delta f d V+\frac{N(N-2)(p-1)}{p^{2}} \int_{\mathbb{S}^{N}}|f|^{p} d V
$$

By Hölder's inequality

$$
\int_{\mathbb{S}^{N}}|f|^{p-1} \Delta f d V \leqslant\left(\int_{\mathbb{S}^{N}} \frac{|f|^{p}}{\sin ^{2} \theta} d V\right)^{\frac{p-1}{p}}\left(\int_{\mathbb{S}^{N}} \frac{|\Delta f|^{p}}{(\sin \theta)^{2-2 p}} d V\right)^{\frac{1}{p}}
$$

Therefore

$$
\begin{aligned}
\left(\int_{\mathbb{S}^{N}} \frac{|\Delta f|^{p}}{(\sin \theta)^{2-2 p}} d V\right)^{\frac{1}{p}} \geqslant \frac{(N-2)^{2}(p-1)}{p^{2}}\left(\int_{\mathbb{S}^{N}} \frac{|f|^{p}}{\sin ^{2} \theta} d V\right)^{\frac{1}{p}} \\
-\frac{N(N-2)(p-1)}{p^{2}}\left(\int_{\mathbb{S}^{N}} \frac{|f|^{p}}{(\sin \theta)^{2-2 p}} d V\right)^{\frac{1}{p}}
\end{aligned}
$$

Denoting by $B(N, p)=\left(\frac{(N-2)^{2}(p-1)}{p^{2}}\right)^{p}$ and $C(N, p)=\left(\frac{N(N-2)(p-1)}{p^{2}}\right)^{p}$, we arrived at (6) which is the required inequality.

The next is to prove that the constant $\left(\frac{(N-2)^{2}(p-1)}{p^{2}}\right)^{p}$ is sharp. It then suffices to show that

$$
\left(\frac{(N-2)^{2}(p-1)}{p^{2}}\right)^{p} \geqslant \inf _{f \in C^{\infty}\left(\mathbb{S}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{S}^{N}} \frac{\left|\Delta_{\mathbb{S}^{N}} f\right|^{p}}{(\sin \theta)^{2-2 p}} d V+B \int_{\mathbb{S}^{N}} \frac{|f|^{p}}{(\sin \theta)^{2-2 p}} d V}{\int_{\mathbb{S}^{N}} \frac{|f|^{p}}{\theta^{2}} d V}
$$

The proof is similar to [1] and we follow it closely, see also [14, 15].
Let $\varphi(t) \in[0,1]$ be the cut-off function such that $\varphi(t)=1$ for $|t| \leqslant 1$ and $\varphi(t) \equiv 0$ for $|t|>2$. Set $H(t)=1-\varphi(t)$. For sufficiently small ε, define $f_{\varepsilon}(\theta)=H\left(\frac{\theta}{\varepsilon}\right) \theta^{\frac{2-N}{p}}$ for $0<\theta \leqslant \pi$ and $f_{\varepsilon}(\theta)=0$ for $\theta=0$. Without loss of generality, we assume $0<\varepsilon<$ $1 / 2$ and $f_{\varepsilon}(\theta)$ is a smooth radial function on \mathbb{S}^{N}. Let $\operatorname{Vol}\left(\mathbb{S}^{N-1}\right)$ denote the volume of the unit $(N-1)$-sphere, then we have

$$
\int_{\mathbb{S}^{N}} \frac{f_{\varepsilon}^{p}}{\theta^{2}} d V \geqslant \operatorname{Vol}\left(\mathbb{S}^{N-1}\right) \int_{2 \varepsilon}^{\pi} \theta^{-N}(\sin \theta)^{N-1} d \theta
$$

and

$$
\int_{\mathbb{S}^{N}} \frac{f_{\varepsilon}^{p}}{(\sin \theta)^{2-2 p}} d V \leqslant \operatorname{Vol}\left(\mathbb{S}^{N-1}\right) \int_{\varepsilon}^{\pi} \theta^{2 p-1} d \theta
$$

Since $f_{\varepsilon}(\theta)$ is radial we compute

$$
\begin{aligned}
\Delta_{\mathbb{S}^{N}} f_{\varepsilon}(\theta)= & \left(\frac{d^{2}}{d \theta^{2}}+(N-1) \cot \theta \frac{d}{d \theta}\right)\left(H\left(\frac{\theta}{\varepsilon}\right) \theta^{\frac{2-N}{p}}\right) \\
= & H\left(\frac{\theta}{\varepsilon}\right)\left(\left(\frac{2-N}{p}\right)\left(\frac{2-N-p}{p}\right) \theta^{\frac{2-N-2 p}{p}}+(N-1)\left(\frac{2-N}{p}\right) \theta^{\frac{2-N-p}{p}} \cot \theta\right) \\
& +\frac{1}{\varepsilon} H^{\prime}\left(\frac{\theta}{\varepsilon}\right)\left(\frac{2(2-N)}{p} \theta^{\frac{2-N-p}{p}}+(N-1) \theta^{\frac{2-N}{p}} \cot \theta\right)+\frac{1}{\varepsilon^{2}} H^{\prime \prime}\left(\frac{\theta}{\varepsilon}\right) \theta^{\frac{2-N}{p}}
\end{aligned}
$$

Hence

$$
\int_{\mathbb{S}^{N}} \frac{\left|\Delta f_{\varepsilon}\right|^{p}}{(\sin \theta)^{2-2 p}} d V \leqslant \mathrm{I}+\mathrm{II}+\mathrm{III}
$$

where

$$
\begin{aligned}
& \mathrm{I}:= \left.\operatorname{Vol}\left(\mathbb{S}^{N-1}\right) \int_{\varepsilon}^{\pi} H^{p}\left(\frac{\theta}{\varepsilon}\right) \right\rvert\,\left(\frac{2-N}{p}\right)\left(\frac{2-N-p}{p}\right) \theta^{\frac{2-N-2 p}{p}} \\
&+\left.(N-1)\left(\frac{2-N}{p}\right) \theta^{\frac{2-N-p}{p}} \cot \theta\right|^{p}(\sin \theta)^{N-3+2 p} d \theta \\
& \leqslant \operatorname{Vol}\left(\mathbb{S}^{N-1}\right) \int_{\varepsilon}^{\pi} \left\lvert\,\left(\frac{2-N}{p}\right)\left(\frac{2-N-p}{p}\right)\right. \\
&+\left.(N-1)\left(\frac{2-N}{p}\right) \cos \theta\right|^{p} \theta^{2-N-p}(\sin \theta)^{N-3+2 p} d \theta \\
& \mathrm{II}: \left.=+\operatorname{Vol}\left(\mathbb{S}^{N-1}\right) \frac{1}{\varepsilon^{p}} \int_{\varepsilon}^{2 \varepsilon}\left|H^{\prime}\left(\frac{\theta}{\varepsilon}\right)\right|^{p} \right\rvert\, \frac{2(2-N)}{p} \theta^{\frac{2-N-2}{p}} \\
&+\left.(N-1) \theta^{\frac{2-N}{p}} \cot \theta\right|^{p}(\sin \theta)^{N-3+2 p} d \theta \\
& \leqslant \left.\operatorname{Vol}\left(\mathbb{S}^{N-1}\right) \frac{1}{\varepsilon^{p}}\left(\max _{t \in[0,2]} H^{\prime}(t)\right)^{p} \int_{\varepsilon}^{2 \varepsilon} \right\rvert\, \frac{2(2-N)}{p} \sin \theta \\
&+\left.(N-1) \theta \cos \theta\right|^{p} \theta^{2-N-p}(\sin \theta)^{N-3+2 p} d \theta \\
& \leqslant \operatorname{Vol}\left(\mathbb{S}^{N-1}\right) \frac{1}{\varepsilon^{p}}\left(\max _{t \in[0,2]} H^{\prime}(t)\right)^{p} \int_{\varepsilon}^{2 \varepsilon}\left|\frac{2(2-N)}{p} \theta+(N-1) \theta\right|^{p} \theta^{2-N-p} \theta^{N-3+2 p} d \theta \\
&=\operatorname{Vol}\left(\mathbb{S}^{N-1}\right) \frac{1}{\varepsilon^{p}}\left(\max _{t \in[0,2]} H^{\prime}(t)\right)^{p}\left(\frac{2(2-N)+(N-1) p}{p}\right) \int_{\varepsilon}^{2 \varepsilon} \theta^{2 p-1} d \theta .
\end{aligned}
$$

$$
\begin{aligned}
\text { III } & :=\operatorname{Vol}\left(\mathbb{S}^{N-1}\right) \frac{1}{\varepsilon^{2 p}} \int_{\varepsilon}^{2 \varepsilon}\left|H^{\prime \prime}\left(\frac{\theta}{\varepsilon}\right)\right|^{p} \theta^{2-N}(\sin \theta)^{N-3+2 p} d \theta \\
& \leqslant \operatorname{Vol}\left(\mathbb{S}^{N-1}\right) \frac{1}{\varepsilon^{2 p}}\left(\max _{t \in[0,2]} H^{\prime \prime}(t)\right)^{p} \int_{\varepsilon}^{2 \varepsilon} \theta^{2-N} \theta^{N-3+2 p} d \theta \\
& =\operatorname{Vol}\left(\mathbb{S}^{N-1}\right) \frac{1}{\varepsilon^{2 p}}\left(\max _{t \in[0,2]} H^{\prime \prime}(t)\right)^{p} \int_{\varepsilon}^{2 \varepsilon} \theta^{2 p-1} d \theta
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \inf _{f \in C^{\infty}\left(\mathbb{S}^{N}\right)} \frac{\int_{\mathbb{S}^{N}}}{} \frac{|\Delta f|^{p}}{(\sin \theta)^{2-2 p}} d V+B \int_{\mathbb{S}^{N}} \frac{|f|^{p}}{(\sin \theta)^{2-2 p}} d V \\
& \int_{\mathbb{S}^{N}} \frac{\mid f f^{p}}{\sin ^{2} \theta} d V \frac{\int_{\mathbb{S}^{N}} \frac{\left|\Delta f_{\varepsilon}\right|^{p}}{(\sin \theta)^{2-2 p}} d V+B \int_{\mathbb{S}^{N}} \frac{\left|f_{\varepsilon}\right|^{p}}{(\sin \theta)^{2-2 p}} d V}{\int_{\mathbb{S}^{N}} \frac{\left|f_{\varepsilon}\right|^{p}}{\theta^{2}} d V} \\
& \leqslant \frac{\mathrm{I}+\mathrm{II}+\mathrm{III}}{\operatorname{Vol}\left(\mathbb{S}^{N-1}\right) \int_{2 \varepsilon}^{\pi} \theta^{2-N-p}(\sin \theta)^{N-1} d \theta}+\frac{B \int_{\varepsilon}^{2 \varepsilon} \theta^{2 p-1} d \theta}{\int_{2 \varepsilon}^{\pi} \theta^{2-N-p}(\sin \theta)^{N-1} d \theta} \\
& \leqslant \frac{\int_{\varepsilon}^{\pi}\left|\left(\frac{2-N}{p}\right)\left(\frac{2-N-p}{p}\right)+(N-1)\left(\frac{2-N}{p}\right) \cos \theta\right|^{p} \theta^{2-N-p}(\sin \theta)^{N-3+2 p} d \theta}{\int_{2 \varepsilon}^{\pi} \theta^{2-N-p}(\sin \theta)^{N-1} d \theta} \\
&+\frac{\frac{1}{\varepsilon^{p}}\left(\max _{t \in[0,2]} H^{\prime}(t)\right)^{p}\left(\frac{2(2-N)+(N-1) p}{p}\right) \int_{\varepsilon}^{2 \varepsilon} \theta^{2 p-1} d \theta}{\int_{2 \varepsilon}^{\pi} \theta^{2-N-p}(\sin \theta)^{N-1} d \theta} \\
&+\frac{\frac{1}{\varepsilon^{2 p}}\left(\max _{t \in[0,2]} H^{\prime \prime}(t)\right)^{p} \int_{\varepsilon}^{2 \varepsilon} \theta^{2 p-1} d \theta}{\int_{2 \varepsilon}^{\pi} \theta^{2-N-p}(\sin \theta)^{N-1} d \theta}+\frac{B \int_{\varepsilon}^{2 \varepsilon} \theta^{2 p-1} d \theta}{\int_{2 \varepsilon}^{\pi} \theta^{2-N-p}(\sin \theta)^{N-1} d \theta} .
\end{aligned}
$$

Passing to the limit as $\varepsilon \rightarrow 0^{+}$yields

$$
\begin{aligned}
& \inf _{f \in C^{\infty}\left(\mathbb{S}^{N}\right)} \frac{\int_{\mathbb{S}^{N}} \frac{|\Delta f|^{p}}{(\sin \theta)^{2-2 p}} d V+B \int_{\mathbb{S}^{N}} \frac{|f|^{p}}{(\sin \theta)^{2-2 p}} d V}{\int_{\mathbb{S}^{N}} \frac{|f|^{p}}{\sin ^{2} \theta} d V} \\
& \leqslant \lim _{\varepsilon \rightarrow 0^{+}} \frac{\int_{\varepsilon}^{\pi}\left|\left(\frac{2-N}{p}\right)\left(\frac{2-N-p}{p}\right)+(N-1)\left(\frac{2-N}{p}\right) \cos \theta\right|^{p} \theta^{2-N-p}(\sin \theta)^{N-3+2 p} d \theta}{\int_{2 \varepsilon}^{\pi} \theta^{2-N-p}(\sin \theta)^{N-1} d \theta} \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \frac{-\left|\left(\frac{2-N}{p}\right)\left(\frac{2-N-p}{p}\right)+(N-1)\left(\frac{2-N}{p}\right) \cos \varepsilon\right|^{p}(\varepsilon)^{2-N-p}(\sin \varepsilon)^{N-3+2 p}}{-(2 \varepsilon)^{2-N-p}(\sin 2 \varepsilon)^{N-1}} \\
& =\left(\frac{(2-N)^{2}(p-1)}{p^{2}}\right)^{p},
\end{aligned}
$$

since $\lim _{\varepsilon \rightarrow 0^{+}} \int_{2 \varepsilon}^{\pi} \theta^{2-N-p}(\sin \theta)^{N-1} d \theta \rightarrow+\infty$. Application of L'Hopital rule gives the transition from last inequality sign to the next equality sign. The proof is complete.

4. Conclusion

In this paper, we have considered optimal L^{p}-Hardy-Rellich type inequalities on the N-Sphere of constant sectional curvature. We obtained improved inequalities involving the best constants in the classical Hardy inequalities for dimension $N \geqslant 3$. Our computation makes use of properties of geodesic distance, radial Laplacian and divergence theorem. We show that the constant obtained is the best possible.

REFERENCES

[1] A. Abolarinwa, T. Apata, L^{p}-Hardy-Rellich and uncertainty principle inequalities on the sphere, Adv. Oper. Theory, 3(4), (2018), 745-762.
[2] A. Abolarinwa, K. Rauf, S. Yin, Sharp L^{p} Hardy type and uncertainty principle inequalities on the sphere, J. Math. Ineq. 13(4), (2019).
[3] H. Brezis, J. L. VÁzQUeZ, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Comp. Madrid 10 (1997), 443-469.
[4] G. Carron, Inégalités de Hardy sur les vari ét és riemanniennes non-compactes, J.Math. Pures Appl., 76(10) (1997), 883-891.
[5] D. G. Costa, On Hardy-Rellich type inequalities in \mathbb{R}^{N}, Appl. Math. Lett., 22(6), (2009), 902-905.
[6] E. B. Davies, A. M. HinZ, Explicit constants for Rellich inequalities in $L^{p}(\Omega)$, Math. Z. 227 (1998), 511-532.
[7] F. Gazzola, H.-Ch. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc., 356(6), (2004), 2149-2168.
[8] I. Kombe, M. ÖZAydin, Improved Hardy and Rellich inequalities on Riemannian manifolds, Trans. Amer. Math. Soc. 361 (2009), 6191-6203.
[9] I. Kombe, A. Yener, Weighted Hardy and Rellich type inequalities on Riemannian manifolds, Math. Nachr. 289, (8-9) (2016), 994-1004.
[10] P. LindQvist, On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$, Proc. Amer. Math. Soc. 109, 157164 (1990).
[11] A. Tertikas, N. Zographopoulos, Best constants in the Hardy-Rellich Inequalities and Related Improvements, Adv. Math., 209, (2007), 407-459.
[12] X. Sun, F. Pan, Hardy type inequalities on the sphere, J. Ineq. Appl., 148, (2017), 1-8.
[13] C. XIA, Hardy and Rellich type inequalities on complete manifolds, J. Math. Anal Appl., 409 (2014), 84-90.
[14] Y. Xiao, Some Hardy inequalities on the sphere, J. Math. Inequal. 10, (2016), 793-805.
[15] Q. Yang, D. Su, Y. Kong, Hardy inequalities on Riemannian manifolds with negative curvature, Commun. Contemp. Math. 16, (2) (2014), 1350043.
e-mail: krauf@unilorin.edu.ng

[^0]
[^0]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

