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OPTIMAL Lp HARDY–RELLICH TYPE INEQUALITIES ON THE SPHERE

ABIMBOLA ABOLARINWA ∗ AND KAMILU RAUF

(Communicated by M. Praljak)

Abstract. In this paper we study some Lp -Hardy-Rellich type inequalities and the correspond-
ing optimal constant on the geodesic sphere. By the divergence theorem, properties of radial
Laplacian and geodesic distance, we obtain an improved version of Hardy-Rellich inequalities
holding in dimension N � 3 . The result is new for N = 3, 4 . Moreover, we show that the
constant obtained is optimally sharp.

1. Introduction

This paper is concerned with the proof of an improved extension of Hardy-Rellich
inequalities for Lp -functions on the N -sphere of constant sectional curvature. We apply
properties of geodesic distance on the unit sphere, radial Laplacian and the divergence
theorem to establish, for N � 3 and f ∈ Lp(SN ,dV ) ,

∫
SN

|ΔSN f |p
(sinθ )2−2p dV +B

∫
SN

| f |p
(sinθ )2−2p dV � C

∫
SN

| f |p
sin2 θ

dV, (1)

where B = B(N, p) and C = C(N, p) are some constants involving the best constant in
the classical Hardy inequality. We further show that the constant C(N, p) is the best
possible achieved in the sense that

C(N, p) � inf
f∈C∞(SN )\{0}

∫
SN

|Δ
SN f |p

(sinθ)2−2p dV +B
∫
SN

| f |p
(sinθ)2−2p dV∫

SN
| f |p

d(x,q)2 dV
,

where d(x,q) is the geodesic distance between points x and q on S
N . The statement

of the above result is given in Theorem 1 and the its proof in Section 3. To the best of
our knowledge, this is the first time of having such inequalities extended to dimensions
N = 3 and 4.

Let R
N , N � 3 be the N -dimensional Euclidean space, the classical Hardy in-

equality for f ∈C∞
0 (RN) and 1 < p < ∞ is given as follows

∫
RN

|∇ f (x)|pdx �
(N− p

p

)p∫
RN

| f (x)|p
|x|p dx, (2)
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where ((N − p)/p)p is the best constant and never achieved. The Hardy-Rellich [7, 6]
states that for p > 1, N > α +2, α ∈ R , and for any smooth function f on Ω ⊆ R

N ,
it holds that∫

Ω

|Δ f |p
|x|α+2−2p dx �

( (N−α −2)[(p−1)(N−2)+ α]
p2

)p ∫
Ω

| f |p
|x|α+2 dx (3)

with sharp constant. Meanwhile, the classical case p = 2 and α = 2

∫
RN

|Δ f |2dx � N2(N−4)4

16

∫
RN

| f |2
|x|4 dx (4)

was first published by F. Rellich in 1955 for N � 5, and the constant
N2(N−4)4

16
is

optimal but never achieved.
Owing to several areas of their applications, such as in elliptic operator theory,

spectral theory, harmonic analysis, mathematical physics, differential geometry to men-
tion but a few, numerous literatures have been devoted to obtaining improvement and
extension of Hardy-Rellich type inequalities. For examples, we find [3, 5, 6, 7, 11].
In paricular, see [8, 9, 13, 15] for the extension to complete manifolds. For more ex-
position see [1, 2] and the references therein. Recently, Xiao [14] studied L2 -Hardy
inequality on the unit sphere and as a consequence derived L2 -Rellich type inequal-
ity with sharp constant. Motivated by [14], we obtained some Lp Hardy-Rellich type
inequalities in [1] and showed that the constant is sharp in the sense that it cannot be im-
proved. In a similar spirit, the present paper is devoted to obtaining an improved version
of the optimal Lp Hardy-Rellich inequalities that can be extended to lower dimensions.

The rest of the paper is planned as follows. In Section 2 we recall some basic facts
about the sphere and then present the main results of this paper. Section 3 is devoted to
the proof of improvedHardy-Rellich type inequalities and the sharpness of the constant.

2. Preliminaries and main theorem

2.1. Sphere

We deal with the unit N -sphere S
N = {x ∈ R

N+1 : |x| = 1} of sectional curvature
1, endowed with canonical Riemannian structure. Let (θ1,θ2, ...,θN) be angular vari-
ables on S

N , we set θ = θN , where xN+1 = |x|cosθN . The associated weight function
is given as Θ(θ ,ξ ) = (sinθ )N−1, ξ ∈ S

N−1 and by polar coordinate transformation∫
SN

f dV =
∫

SN−1

∫ π

0
f (sinθ )N−1dθdσ , f ∈ L1(SN),

where dV and dσ denote the standard volume element on S
N and unit (N−1)-sphere

respectively. A function f = f (θ ) which depends only on θ is called radial. In this
case using the radial part of the Laplace-Beltrami operator Δ

SN we have

ΔSN f (θ ) = (sinθ )1−N d
dθ

(
(sinθ )N−1 d

dθ
f
)
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while the gradient of a function f on S
N is |∇

SN f (θ )| = | d
dθ f (θ )| .

The geodesic distance between x and an arbitrary point q ∈ S
N is denoted by

d(x,q) . Note that the points on the sphere are all the same distance from the origin,
which is a fixed point and all geodesics of the sphere are closed curves. Consider two
points x and y on a sphere of radius r > 0 centered at the origin of R

N , the distance
between the two points is given by d(x,y) = rarccos((x · y)/r) , while x · y = r2 cosθ ,
where θ is the angle between vectors x and y . Hence, the minimal geodesic joining
two points on the unit sphere can be taken to be θ . Throughout we denote Δ = Δ

SN

and ∇ = ∇SN .

LEMMA 1. Let β ∈ R . Then

Δ
SN (sinθ )−β =

β (N−β −1)
(sinθ )β − β (N−β −2)

(sinθ )β+2
. (5)

Proof.

ΔSN (sinθ )−β = (sinθ )1−N d
dθ

(
(sinθ )N−1 d

dθ
(sinθ )−β

)
= −β (sinθ )1−N d

dθ

(
(sinθ )N−β−2 cosθ

)
= −β (N−β −2)(sinθ )−β−2 cos2 θ + β (sinθ )−β

= β (N−β −1)(sinθ )−β −β (N−β −2)(sinθ )−(β+2)

by using the trigonometry identity cos2 θ + sin2 θ = 1, which is formula (5). �

2.2. Main results

Our main theorem is the following Hardy-Rellich type inequalities

THEOREM 1. Let N � 3 and 1 < p < ∞ , then there exists a positive constant
A = A(N,α, p) such that for all f ∈C∞(SN)∫

SN

|Δ
SN f |p

(sinθ )2−2p dV +B(N, p)
∫

SN

| f |p
(sinθ )2−2p dV � C(N, p)

∫
SN

| f |p
sin2 θ

dV, (6)

where

B(N, p) =
(N(N−2)(p−1)

p2

)p
and C(N, p) =

((N−2)2(p−1)
p2

)p
.

Moreover, the constant C(N, p) appearing in (6) is sharp.

REMARK 1. The family of inequalities in (6) is new and can be viewed as an
extension of [1] and [14] ( p = 2) since it holds for N � 3. The case p = 2 reads∫

SN
sin2 θ |Δ f |2dV +

N2(N−2)2

16

∫
SN

sin2 θ f 2dV �
(N−2

2

)2 ∫
SN

| f |p
sin2 θ

dV.
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3. Proof of the main Theorem

We start this section with a fundamental lemma that will be applied in the proof of
Theorem 1.

LEMMA 2. ([1, Theorem 2.1]) Let N � 3 , 0 � α < N− p, and 1 < p < ∞ , then
there exists a constant A = A(N,α, p) > 0 such that for all f ∈C∞(SN)

∫
SN

|∇
SN f |p

(sinθ )α dV +A
∫

SN

| f |p
(sinθ )α+p−2 dV �

(N− p−α
p

)p ∫
SN

| f |p
(sinθ )α+p dV, (7)

where

A(N,α, p) = min
{

1,
p
2

}(N− p−α
p

)p
+
(N− p−α

p

)p−1
.

The idea of the proof is similar to the ones in [1, 8, 12, 14]. It is however included here
for completeness sake.

REMARK 2. Consider the extreme case α = 0 and p = 2 in Lemma 2, we have

∫
SN

|∇
SN f |2dV +

N(N −2)
4

∫
SN

| f |2dV � (N−2)2

4

∫
SN

| f |2
sin2 θ

dV, (8)

which is exactly the Hardy inequality with sharp constant in [14, Theorem 1].

Proof of Lemma 2

Recall from [10, 13] that for any u,v∈R
N , it holds that |u+v|p � |u|p+ p|u|p−2〈u,v〉 .

Now letting γ = −(N− p−α)/p > 0, f = ργφ , ρ = sinθ and f ∈C∞(SN) , we have

|∇
SN f |p = |γργ−1∇ρφ + ργ∇φ |p

� |γ|pργ p−p|∇ρ |p|φ |p + pγ p−1ργ p+1−p|φ |p−1〈|∇ρ |p−1,∇φ〉.

Multiplying througn by ρ−α and applying divergence theorem, we have

∫
SN

|∇
SN f |p
ρα dV � |γ|p

∫
SN

ργ p−p−α |∇ρ |p|φ |pdV

− |γ|p−2γ
γ p− p−α +2

∫
SN

Δpγ p−p−α+2|φ |pdV.
(9)
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Note that |∇ρ |= cosθ , |γ|= |− N− p−α
p

| , γ p− p−α =−N and
|γ|p−2γ

γ p− p−α +2
=

1
N−2

(N− p−α
p

)p−1
. Hence, (9) becomes

∫
SN

|∇ f |p
(sinθ )α dV �

(N− p−α
p

)p∫
SN

|ϕ |p
(sinθ )N (cosθ )pdV

− 1
(N−2)

(N− p−α
p

)p−1∫
SN
〈Δ(sinθ )−(N−2), |ϕ |p〉

=
(N− p−α

p

)p∫
SN

|ϕ |p
(sinθ )N (cosθ )pdV

−
(N− p−α

p

)p−1∫
SN

|ϕ |p
(sinθ )N−2 dV

by applying Lemma 1. Substituting the identity |cosθ |p � 1−min{1, p
2}sin2 θ into

the last inequality yields∫
SN

|∇ f |p
(sinθ )α dV �

(N− p−α
p

)p∫
SN

ϕ p

(sinθ )N dV

−
(

min
{

1,
p
2

}(N− p−α
p

)p
+
(N− p−α

p

)p−1
)∫

SN

|ϕ |p
(sinθ )N−2 dV.

By using the substitution φ = ρ−γ f = (sinθ )
N−p−α

p f , we recover the desired inequality
(7). �

Proof of Theorem 1

Let f ∈C∞(SN) . For ε > 0, define fε := (| f |2 + ε2)p/2 − ε p ∈C∞(SN) with the
same support as f . We have

Δ fε = p(| f |2 + ε2)
p
2 −1|∇ f |2 + p(p−2)(| f |2 + ε2)

p
2 −2 f 2|∇ f |2

+ p(| f |2 + ε2)
p
2−1 fΔ f

� p(p−1)(| f |2 + ε2)
p
2−2 f 2|∇ f |2 + p(| f |2 + ε2)

p
2 −1 fΔ f

� 4(p−1)
p

|∇hε |+ p(| f |2 + ε2)
p
2−1 fΔ f ,

where hε := (| f |2 + ε2)
p
4 − ε

p
2 ∈C∞(SN) . Therefore

−p(| f |2 + ε2)
p
2 −1 fΔ f � 4(p−1)

p
|∇hε |2−Δ fε .

Integrating the last inequality over S
N and using compactness of the sphere yields

−p
∫

SN
(| f |2 + ε2)

p
2 −1 fΔ f dV � 4(p−1)

p

∫
SN

|∇hε |2dV. (10)
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Applying Lemma 2 (i.e. (7) with p = 2 and α = 0) on the right hand side of (10), we
obtain

−
∫

SN
(| f |2 + ε2)

p
2−1 fΔ f dV � (N−2)2(p−1)

p2

∫
SN

|hε |2
sin2 θ

dV

− N(N−2)(p−1)
p2

∫
SN

|hε |2dV.

Sending ε → 0, we have by Lebesgue dominated convergence theorem

(N−2)2(p−1)
p2

∫
SN

| f |p
sin2 θ

dV �
∫

SN
| f |p−1Δ f dV +

N(N−2)(p−1)
p2

∫
SN

| f |pdV.

By Hölder’s inequality

∫
SN

| f |p−1Δ f dV �
(∫

SN

| f |p
sin2 θ

dV
) p−1

p
(∫

SN

|Δ f |p
(sinθ )2−2p dV

) 1
p
.

Therefore

(∫
SN

|Δ f |p
(sinθ )2−2p dV

) 1
p

� (N−2)2(p−1)
p2

(∫
SN

| f |p
sin2 θ

dV

) 1
p

−N(N−2)(p−1)
p2

(∫
SN

| f |p
(sinθ )2−2p dV

) 1
p

.

Denoting by B(N, p) =
( (N−2)2(p−1)

p2

)p
and C(N, p) =

(N(N−2)(p−1)
p2

)p
, we

arrived at (6) which is the required inequality.

The next is to prove that the constant
(

(N−2)2(p−1)
p2

)p
is sharp. It then suffices to

show that

( (N−2)2(p−1)
p2

)p
� inf

f∈C∞(SN)\{0}

∫
SN

|Δ
SN f |p

(sinθ)2−2p dV +B
∫
SN

| f |p
(sinθ)2−2p dV∫

SN
| f |p
θ2 dV

.

The proof is similar to [1] and we follow it closely, see also [14, 15].
Let ϕ(t)∈ [0,1] be the cut-off function such that ϕ(t) = 1 for |t|� 1 and ϕ(t)≡ 0

for |t| > 2. Set H(t) = 1−ϕ(t) . For sufficiently small ε , define fε (θ ) = H
(

θ
ε

)
θ

2−N
p

for 0 < θ � π and fε (θ ) = 0 for θ = 0. Without loss of generality, we assume 0 < ε <
1/2 and fε (θ ) is a smooth radial function on S

N . Let Vol(SN−1) denote the volume
of the unit (N−1)-sphere, then we have

∫
SN

f p
ε

θ 2 dV � Vol
(
S

N−1
)∫ π

2ε
θ−N(sinθ )N−1dθ
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and

∫
SN

f p
ε

(sinθ )2−2p dV � Vol
(
S

N−1
)∫ π

ε
θ 2p−1dθ .

Since fε (θ ) is radial we compute

Δ
SN fε (θ ) =

( d2

dθ 2 +(N−1)cotθ
d
dθ

)(
H
(θ

ε

)
θ

2−N
p

)

= H
(θ

ε

)((2−N
p

)(2−N− p
p

)
θ

2−N−2p
p +(N−1)

(2−N
p

)
θ

2−N−p
p cotθ

)

+
1
ε
H ′
(θ

ε

)(2(2−N)
p

θ
2−N−p

p +(N−1)θ
2−N

p cotθ

)
+

1
ε2 H ′′

(θ
ε

)
θ

2−N
p .

Hence
∫

SN

|Δ fε |p
(sinθ )2−2p dV � I + II + III,

where

I := Vol(SN−1)
∫ π

ε
Hp
(θ

ε

)∣∣∣(2−N
p

)(2−N− p
p

)
θ

2−N−2p
p

+(N−1)
(2−N

p

)
θ

2−N−p
p cotθ

∣∣∣p(sinθ )N−3+2pdθ

� Vol(SN−1)
∫ π

ε

∣∣∣(2−N
p

)(2−N− p
p

)
+(N−1)

(2−N
p

)
cosθ

∣∣∣pθ 2−N−p(sinθ )N−3+2pdθ .

II := +Vol(SN−1)
1

ε p

∫ 2ε

ε

∣∣∣H ′
(θ

ε

)∣∣∣p∣∣∣2(2−N)
p

θ
2−N−2

p

+(N−1)θ
2−N

p cotθ
∣∣∣p(sinθ )N−3+2pdθ

� Vol(SN−1)
1
ε p

(
max
t∈[0,2]

H ′(t)
)p ∫ 2ε

ε

∣∣∣2(2−N)
p

sinθ

+(N−1)θ cosθ
∣∣∣pθ 2−N−p(sinθ )N−3+2pdθ

� Vol(SN−1)
1
ε p

(
max
t∈[0,2]

H ′(t)
)p ∫ 2ε

ε

∣∣∣2(2−N)
p

θ +(N−1)θ
∣∣∣pθ 2−N−pθN−3+2pdθ

= Vol(SN−1)
1
ε p

(
max
t∈[0,2]

H ′(t)
)p(2(2−N)+ (N−1)p

p

)∫ 2ε

ε
θ 2p−1dθ .
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III := Vol(SN−1)
1

ε2p

∫ 2ε

ε

∣∣∣H ′′
(θ

ε

)∣∣∣pθ 2−N(sinθ )N−3+2pdθ

� Vol(SN−1)
1

ε2p

(
max
t∈[0,2]

H ′′(t)
)p ∫ 2ε

ε
θ 2−NθN−3+2pdθ

= Vol(SN−1)
1

ε2p

(
max
t∈[0,2]

H ′′(t)
)p ∫ 2ε

ε
θ 2p−1dθ .

Thus

inf
f∈C∞(SN)

∫
SN

|Δ f |p
(sinθ)2−2p dV +B

∫
SN

| f |p
(sinθ)2−2p dV∫

SN
| f |p

sin2 θ dV
�
∫
SN

|Δ fε |p
(sinθ)2−2p dV +B

∫
SN

| fε |p
(sinθ)2−2p dV∫

SN
| fε |p
θ2 dV

� I + II + III

Vol
(
SN−1

)∫ π
2ε θ 2−N−p(sinθ )N−1dθ

+
B
∫ 2ε

ε θ 2p−1dθ∫ π
2ε θ 2−N−p(sinθ )N−1dθ

�
∫ π

ε

∣∣∣( 2−N
p

)(
2−N−p

p

)
+(N−1)

(
2−N

p

)
cosθ

∣∣∣pθ 2−N−p(sinθ )N−3+2pdθ∫ π
2ε θ 2−N−p(sinθ )N−1dθ

+
1

ε p

(
maxt∈[0,2] H

′(t)
)p( 2(2−N)+(N−1)p

p

)∫ 2ε
ε θ 2p−1dθ∫ π

2ε θ 2−N−p(sinθ )N−1dθ

+
1

ε2p

(
maxt∈[0,2] H

′′(t)
)p ∫ 2ε

ε θ 2p−1dθ∫ π
2ε θ 2−N−p(sinθ )N−1dθ

+
B
∫ 2ε

ε θ 2p−1dθ∫ π
2ε θ 2−N−p(sinθ )N−1dθ

.

Passing to the limit as ε → 0+ yields

inf
f∈C∞(SN)

∫
SN

|Δ f |p
(sinθ)2−2p dV +B

∫
SN

| f |p
(sinθ)2−2p dV∫

SN
| f |p

sin2 θ dV

� lim
ε→0+

∫ π
ε

∣∣∣( 2−N
p

)(
2−N−p

p

)
+(N−1)

(
2−N

p

)
cosθ

∣∣∣pθ 2−N−p(sinθ )N−3+2pdθ∫ π
2ε θ 2−N−p(sinθ )N−1dθ

= lim
ε→0+

−
∣∣∣( 2−N

p

)(
2−N−p

p

)
+(N−1)

(
2−N

p

)
cosε

∣∣∣p(ε)2−N−p(sinε)N−3+2p

−(2ε)2−N−p(sin2ε)N−1

=
((2−N)2(p−1)

p2

)p
,

since limε→0+
∫ π
2ε θ 2−N−p(sinθ )N−1dθ →+∞ . Application of L’Hopital rule gives the

transition from last inequality sign to the next equality sign. The proof is complete. �
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4. Conclusion

In this paper, we have considered optimal Lp -Hardy-Rellich type inequalities on
the N -Sphere of constant sectional curvature. We obtained improved inequalities in-
volving the best constants in the classical Hardy inequalities for dimension N � 3.
Our computation makes use of properties of geodesic distance, radial Laplacian and
divergence theorem. We show that the constant obtained is the best possible.
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