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MAXIMAL VALUES OF SYMMETRIC

FUNCTIONS IN DISTANCES BETWEEN POINTS

ARTŪRAS DUBICKAS

(Communicated by J. Jakšetić)

Abstract. In this note we find the maximal values of several symmetric functions in the variables
which are the squares of distances |zi − z j|2 , 1 � i < j � d , between some d complex points
z1, . . . ,zd in the unit disc. We compute the maximums of σm , for m = 1,2,3,4 , explicitly and
find the conditions on z1, . . . ,zd under which those maximal values are attained. This problem
is motivated by an inequality of Cassels (1966) and a subsequent conjecture of Alexander.

1. Introduction

Throughout, let
U := {|z| � 1, z ∈ C}

be the unit disc, and let
T := {|z| = 1, z ∈ C}

be the unit circle. For any z1, . . . ,zd ∈ U , where d � 2, let

Z := {|zi− z j|2, 1 � i < j � d} (1)

be the list of squares of distances between the points zi .
By Hadamard’s inequality (see also [14]), the product of all d(d−1)/2 elements

of Z does not exceed dd , with equality iff z1, . . . ,zd are the vertices of a regular d -gon
inscribed in the circle T . For z1, . . . ,zd ∈ T one can write this well-known inequality
in several equivalent forms:

∏
1�i< j�d

|zi − z j|2 = ∏
1�i< j�d

|ziz j −1|2 = ∏
i�= j

|zi − z j| � dd .

In [5], Cassels considered a very similar product

P(ρ ,Z) := ∏
1�i< j�d

|ρ2zi − z j|2 = ∏
i�= j

|ρ2zi − z j| = ∏
1�i< j�d

|ρ2ziz j −1|2

= ρd(d−1) ∏
1�i< j�d

(
(ρ −1/ρ)2 + |zi − z j|2

)

Mathematics subject classification (2010): 52A40, 11R06.
Keywords and phrases: Unit circle, extremal configuration of points, maximal sums of distances.
This research was funded by the European Social Fund according to the activity “Improvement of researchers” quali-

fication by implementing world-class R&D projects’ of Measure No. 09.3.3-LMT-K-712-01-0037.

c© � � , Zagreb
Paper MIA-23-25

329

http://dx.doi.org/10.7153/mia-2020-23-25


330 A. DUBICKAS

for z1, . . . ,zd ∈ T and some fixed ρ � 1. The last expression shows that instead of
the product of factors |zi − z j|2 , the product of the shifted factors a+ |zi− z j|2 is con-
sidered. His motivation was an application of such products to the estimates of the
Mahler measure of a nonreciprocal algebraic number. (See also the subsequent papers
of the author [6] and [7] on the same subject, where such products are quite useful.)
Even without applications the evaluation of the maximum of the product P(ρ ,Z) itself
seems to be a problem of interest.

Assuming that

cos(π/d) � ρ2

ρ4−ρ2 +1

Cassels showed that the above product P(ρ ,Z) also attains its maximum (1 + ρ2 +
. . .+ ρ2d−2)d iff z1, . . . ,zd are the vertices of a regular d -gon inscribed in T .

In [1], Alexander observed that the above condition can be slightly improved (to
cos(π/d) � 2ρ2/(ρ4 +1)) and still yields the same conclusion. Note that the range for
ρ is very narrow, roughly, 1 � ρ � 1+ π/(2d) for d large, and there is a little chance
that using similar methods one can get the same assertion for each ρ � 1. Nevertheless,
in [1], Alexander conjectured that

CONJECTURE 1. For each ρ � 1 we have

P(ρ ,Z) � (1+ ρ2 + . . .+ ρ2d−2)d

with equality attained iff z1, . . . ,zd are the vertices of a regular d -gon inscribed in T .

Note that Z defined in (1) is a list of

L :=
d(d−1)

2

nonnegative numbers, say, x1, . . . ,xL . For each m in the range 1 � m � L , let

σm = σm(Z) := ∑
1�i1<...<im�L

xi1 . . .xim

be the m th symmetric function in the variables xi , and let

sm = sm(Z) :=
L

∑
j=1

xm
j = ∑

1�i< j�d

|zi − z j|2m.

The relation between σm and the power sums sm, . . . ,s1 is given by the following for-
mula (see, e.g., [13]):

σm =
1
m!

∣∣∣∣∣∣∣∣∣∣∣

s1 1 0 . . . 0
s2 s1 2 . . . 0
...

...
...

. . .
...

sm−1 sm−2 sm−3 . . . m−1
sm sm−1 sm−2 . . . s1

∣∣∣∣∣∣∣∣∣∣∣
. (2)
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Note that the expression for P(ρ ,Z)ρ−2L can be written in the form

P(ρ ,Z)ρ−2L = ∏
1�i< j�d

(a+ |zi− z j|2) = aL +
L

∑
m=1

aL−mσm(Z),

where a = (ρ −1/ρ)2 . So, for any given m in the range 1 � m � L , the investigation
of the maximum of σm(Z) , where z1, . . . ,zd all belong to U , seems to be a natural
problem.

We remark that the maximum of the sum ∑1�i< j�d |zi− z j| , where z1, . . . ,zd ∈ U ,
has been evaluated by Fejes Tóth in [8] (see also [9]), who showed that it is attained
iff z1, . . . ,zd are the vertices of a regular d -gon inscribed in T . There is a huge liter-
ature related to maximization (or minimization) of various functions in |zi − z j| when
z1, . . . ,zd lie in a higher dimensional sphere Td (energy-minimizing point configura-
tions, so-called Thomson problem, best packing problems, etc.). One can find many
references on this in the review paper [4], for instance. See also [2], [3], [11], [12], [15]
for some other nice extremal problems when the points z1, . . . ,zd belong to T or to a
sphere. (On a sphere it is nontrivial already to place 5 points so that that the mutual
distance sum between those points is maximal [10].)

In our context it seems likely that the following is true:

CONJECTURE 2. For any positive integers d � 3 and m, 1 � m � L− 1 , L =
d(d − 1)/2 , and any Z as in (1) the maximum of σm(Z) is attained iff z1, . . . ,zd ∈ T

and satisfy
d

∑
j=1

z j =
d

∑
j=1

z2
j = . . . =

d

∑
j=1

zmin(m,�d/2�)
j = 0. (3)

The case m = L is excluded, since we already know that

σL(Z) = ∏
1�i< j�d

|zi − z j|2

attains its maximum dd iff z1, . . . ,zd ∈ T and are the vertices of a regular d -gon. The
case d = 2 is also excluded, because it is trivial. As the points z j = e2π i( j−1)/d , j =
1, . . . ,d , satisfy the condition (3), one can calculate the maximal value of σm(Z) by
inserting those points into (2) and using Lemma 2 below (where s1(Z), . . . ,sm(Z) have
been evaluated).

Note that Conjecture 2 immediately implies Conjecture 1, because the points
z1, . . . ,zd ∈ T for which (3) holds for m � �d/2� must be the vertices of a regular
d -gon inscribed into T . Indeed, for

f (z) := (z− z1) . . . (z− zd) = zd + cd−1z
d−1 + . . .+ c0

with z1, . . . ,zd ∈ T we have

c0z
d + c1z

d−1 + . . .+1 = zd f (1/z) = c0 f (z) = c0(zd + cd−1z
d−1 + . . .+ c0),

so that ci = c0cd−i for i = 1, . . . ,d − 1. Hence, (3) with m = �d/2� implies not only
c1 = . . . = c�d/2� = 0 but also c1 = . . . = cd−1 = 0.

In this note we shall prove Conjecture 2 for m = 1,2,3 and 4.
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THEOREM 1. Let d � 3 and let Z be as in (1). Then, for each m in the range 1 �
m � L = d(d−1)/2 the maximum of σm(Z) is attained for z1, . . . ,zd ∈T . Furthermore,

(i) σ1(Z) � d2 with equality iff z1, . . . ,zd ∈ T and ∑d
j=1 z j = 0 .

(ii) σ2(Z) � (d4−3d2)/2 with equality iff z1, . . . ,zd ∈ T and

d

∑
j=1

z j =
d

∑
j=1

z2
j = 0.

(iii) σ3(Z) � (d6−9d4 +20d2)/6 (for d � 4 ) with equality iff z1, . . . ,zd ∈ T and

d

∑
j=1

z j =
d

∑
j=1

z2
j =

d

∑
j=1

z3
j = 0.

(iv) σ4(Z)� (d8−18d6+107d4−210d2)/24 (for d � 5 ) with equality iff z1, . . . ,zd ∈
T and

d

∑
j=1

z j =
d

∑
j=1

z2
j =

d

∑
j=1

z3
j =

d

∑
j=1

z4
j = 0. (4)

For d = 3 in part (iii) the maximum of σ3(Z) is equal to dd = 27 and is attained
at the roots of z3−θ = 0, where θ ∈ T . For d = 4 in part (iv) the condition (4) cannot
hold, and the maximum of σ4(Z) is different.

In the next section we shall prove two useful lemmas. Then, in Section 3 we will
conclude the proof of Theorem 1.

2. Auxiliary results

LEMMA 1. Suppose f1, . . . , f� are holomorphic functions in a bounded domain
D⊂C and continuous up to the boundary of D. Then, the function | f1(z)|+ . . .+ | f�(z)|
attains its maximum in D on the boundary of D.

Proof. The result is evident if fi , i = 1, . . . , � , are all constants. Assume that at
least one of the functions fi is not a constant and that the sum | f1(z)|+ . . . + | f�(z)|
attains its maximum at the point z0 ∈ D . Clearly, for each j ∈ {1, . . . , �} there exists
ζ j ∈ T such that f j(z0) = | f j(z0)|ζ j . Consider the function

g(z) :=
�

∑
j=1

f j(z)ζ j.
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It is holomorphic in D , continuous up to the boundary of D and not a constant. Fur-
thermore, by our assumption and the definition of ζ j and z0 , one has

|g(z)| =
∣∣∣ �

∑
j=1

f j(z)ζ j

∣∣∣ �
�

∑
j=1

| f j(z)||ζ j| =
�

∑
j=1

| f j(z)| �
�

∑
j=1

| f j(z0)|

=
�

∑
j=1

f j(z0)ζ j = g(z0) = |g(z0)|.

This contradicts to the maximum modulus principle for the holomorphic function g ,
which is not a constant, and hence our initial assumption on z0 were false.

LEMMA 2. Let k,d ∈ N , d � 2 and z1, . . . ,zd ∈ T . Then,

sk(Z) = ∑
1�i< j�d

|zi − z j|2k =
d2

2

(
2k
k

)
+

k

∑
s=1

(−1)s
(

2k
k− s

)
as, (5)

where

as :=
∣∣∣ d

∑
j=1

zs
j

∣∣∣2 (6)

for s ∈ Z .

Proof. From zi,z j ∈ T it follows that

|zi − z j|2 = (zi − z j)(zi − z j) = (zi − z j)
( 1

zi
− 1

z j

)
= − (zi − z j)2

ziz j
.

Therefore,

|zi − z j|2k = (−1)k
2k

∑
t=0

(−1)2k−t
(

2k
t

)
zt−k
i zk−t

j ,

and consequently

∑
1�i< j�d

|zi − z j|2k =
1
2

d

∑
i, j=1

|zi − z j|2k =
1
2

d

∑
i, j=1

2k

∑
t=0

(−1)k+t
(

2k
t

)
zt−k
i zk−t

j .

By changing the summation and taking into account (6), we find that the latter
expression is equal to

1
2

2k

∑
t=0

(−1)k+t
(

2k
t

) d

∑
i=1

zt−k
i

d

∑
j=1

zk−t
j =

1
2

2k

∑
t=0

(−1)k+t
(

2k
t

)
at−k. (7)

Since a0 = d2 , the term corresponding to t = k gives the first summand

d2

2

(
2k
k

)
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on the right hand side of (5). From (6) and z1, . . . ,zd ∈ T it follows that a−s = as .
Hence,

k−1

∑
t=0

(−1)k+t
(

2k
t

)
at−k =

2k

∑
t=k+1

(−1)k+2k−t
(

2k
2k− t

)
ak−t

=
2k

∑
t=k+1

(−1)k+t
(

2k
t

)
at−k,

so the sum of all the other terms of the right hand side of (7) (corresponding to t �= k )
equals

2k

∑
t=k+1

(−1)k+t
(

2k
t

)
at−k =

k

∑
s=1

(−1)s
(

2k
k+ s

)
as =

k

∑
s=1

(−1)s
(

2k
k− s

)
as,

which is the sum on the right hand side of (5). Thus, (7) equals the right hand side of
(5), as claimed.

3. Proof of Theorem 1

Fix m in the range 1 � m � L and i , 1 � i � d . Notice that the m th symmetric
function σm(Z) is of the form | f1(zi)|+ . . .+ | f�(zi)| , where f1, . . . , f� are polynomials
in zi . Hence, by Lemma 1, the maximum of σm(Z) is attained when z1, . . . ,zd ∈ T .
So, from now on, we will assume that z1, . . . ,zd ∈ T .

By (5) with k = 1, we obtain

σ1(Z) = s1(Z) = d2−a1. (8)

Here, a1 � 0 by (6), and hence σ1(Z) � d2 with equality iff z1, . . . ,zd ∈ T and a1 = 0.
This proves (i).

Inserting k = 2 into (5) we find that

s2(Z) = 3d2−4a1 +a2 = 4s1(Z)+a2−d2. (9)

So, by (8), (9) and (2) with m = 2,

2σ2(Z) = s1(Z)2 − s2(Z) = (d2 −a1)2 −3d2 +4a1−a2

= d4−3d2−2d2a1 +a2
1 +4a1−a2.

The inequality σ2(Z) � (d4−3d2)/2 is equivalent to

−2d2a1 +a2
1 +4a1−a2 � 0. (10)

Clearly, 0 � a1 � d2 by (6). So a1 < 2d2−4 and

−2d2a1 +a2
1 +4a1 = a1(a1−2d2 +4) � 0
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with equality iff a1 = 0. Trivially, −a2 � 0 with equality iff a2 = 0. This proves
(10). Moreover, equality in (10) is attained iff a1 = a2 = 0. The proof of part (ii) is
completed.

To prove part (iii) note that, by (5),

s3(Z) = 10d2−15a1 +6a2−a3 = 15s1(Z)+6a2−a3−5d2. (11)

Now, using (2) with m = 3, we obtain

6σ3(Z) = s1(Z)3 −3s1(Z)s2(Z)+2s3(Z), (12)

which in view of (8), (9), (11) equals

(d2−a1)3−3(d2−a1)(3d2−4a1 +a2)+20d2−30a1 +12a2−2a3.

We need to show that the above expression, denoted by F(d,a1,a2,a3) , does not exceed

F(d,0,0,0) = d6 −9d4 +20d2

with equality iff a1 = a2 = a3 = 0.
It is evident that F(d,a1,a2,a3) � F(d,a1,a2,0) , with equality iff a3 = 0. Next,

the coefficient for a2 is 12− 3d2 + 3a1 . Consider two cases: a1 < d2 − 4 and a1 �
d2−4.

In the first case, a1 < d2 − 4, the coefficient for a2 is negative. Consequently,
F(d,a1,a2,0) � F(d,a1,0,0) with equality iff a2 = 0. It remains to show that

F(d,a1,0,0) = (d2 −a1)3 −3(d2−a1)(3d2−4a1)+20d2−30a1

attains its maximum in a1 ∈ [0,d2] at a1 = 0. Indeed, the difference F(d,a1,0,0)−
F(d,0,0,0) is equal to

−a1(a2
1− (3d2−12)a1 +3d4−21d2 +30).

Evidently, this is zero if a1 = 0, whereas for a1 > 0 the above expression is negative,
because −a1 < 0 and a2

1 − (3d2−12)+3d4−21d2 +30 > 0. The latter inequality is
indeed true, since the discriminant of the quadratic polynomial is negative for d � 4:

(3d2−12)2−4(3d4−21d2 +30) = −3((d2−2)2−12) < 0.

We now turn to the alternative case, namely, a1 � d2−4. Then, 0 � d2−a1 � 4,
and hence s1(Z)3 � (d−a1)3 � 64. In view of s1(Z),s2(Z),a3 � 0 and 0 � a2 � d2 ,
by (11) and (12), we get

6σ3(Z) � s1(Z)3 +2s3(Z) � 64+30s1(Z)+12a2−10d2

� 61+120+12d2−10d2 = 181+2d2.
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It is easy to see that

181+2d2 < F(d,0,0,0) = d6−9d4 +20d2

for d � 4, so in the second case the value F(d,0,0,0) of the function 6σ3(Z) is not
attained. This completes the proof of (iii).

In part (iv), by (2) with m = 4, we obtain

24e4(Z) = s1(Z)4 −6s1(Z)2s2(Z)+3s2(Z)2 +8s1(Z)s3(Z)−6s4(Z).

By (5),

s4(Z) = 35d2−56a1 +28a2−8a3 +a4

= 56s1(Z)+28a2−8a3 +a4−21d2.

Combining this with (9) and (11), we find that 24e4(Z) equals

Φ(y,a2,a3,a4) = y4 −6y2(4y+a2−d2)+3(4y+a2−d2)2 (13)

+8y(15y+6a2−a3−5d2)

−6(56y+28a2−8a3 +a4−21d2),

where
y := s1(Z) = d2−a1

by (8).
In all what follows we will show that the maximum of the function Φ(y,a2,a3,a4)

in the range 0 � y,a2,a3,a4 � d2 (plus some extra restrictions coming from the in-
equalities s2(Z),s3(Z),s4(Z) � 0 which we will not specify) is attained at the unique
point

(y,a2,a3,a4) = (d2,0,0,0).

This would complete the proof of (iv), because

Φ(d2,0,0,0) = d8−18d6 +107d4−210d2

by (13).
Clearly, the maximum of Φ(y,a2,a3,a4) is attained only if a4 = 0, since the only

term containing a4 is −6a4 . The coefficient for a3 is 48− 8y = 8(6− y) . We will
show that y > 6, and so in the maximum point a3 must be zero too.

Indeed, in case y � 6 in view of 0 � a2,a3 � d2 and s2(Z),s4(Z) � 0 we deduce
that

Φ(y,a2,a3,0) � y4 +3(4y+a2−d2)2 +8y(15y+6a2−a3−5d2).

From 0 � s2(Z) = 4y+a2−d2 � 4y and

0 � s4(Z) = 15y+6a2−a3−5d2 � 15y+d2,
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it follows that

Φ(y,a2,a3,0) � y4 +48y2 +8y(15y+d2)

� 64 +48 ·62 +120 ·62+48d2 = 7344+48d2,

which is strictly less than d8−18d6 +107d4−210d2 for each d � 5. Thus, y > 6 and
so a3 must be zero.

Inserting a3 = a4 = 0 into Φ defined in (13) we obtain

Φ(y,a2,0,0) = y4 −6y2(4y+a2−d2)+3(4y+a2−d2)2

+8y(15y+6a2−5d2)−6(56y+28a2−21d2).

Here, the terms involving a2 are

−6y2a2 +3a2
2 +6a2(4y−d2)+48ya2−168a2 = 3a2(a2−2y2 +24y−2d2−56).

The factor a2−2y2 +24y−2d2−56 is negative, because d2 −a2 � 0 and

2y2−24y+2d2+56−a2 � 2y2−24y+d2+56

= 2(y−6)2 +d2−16 > 0

by d � 5. This shows that Φ(y,a2,0,0) attains the maximum only if a2 = 0.
Inserting a2 = 0 into Φ we find that

G(y) : = Φ(y,0,0,0) = y4 −6y2(4y−d2)+3(4y−d2)2

+8y(15y−5d2)−6(56y−21d2)

= y4−24y3 +(6d2 +168)y2− (64d2 +336)y+3d4+126d2.

Note that
G′(y) = 4y3−72y2 +(12d2 +336)y− (64d2+336)

and
G′′(y) = 12y2−144y+12d2+336 = 12((y−6)2 +d2−8) > 0.

Hence, G′(y) is increasing in R . As G′(0) < 0, the only root yd of G′(y) = 0 is
positive. This means that G(y) is decreasing in [0,yd ] and increasing in [yd ,+∞) .
Observe that

G′(d2) = 4d6−72d4 +12d4 +336d2−64d2−336

= 4d6−60d4 +272d2−336 > 0

for d � 5. As G′(y) � 0 for 0 � y � yd , this yields yd < d2 . Hence, the maximum
of G(y) in the interval [0,d2] is attained at one of its endpoints y = 0 or y = d2 . The
inequality

3d4 +126d2 = G(0) < G(d2) = d8−18d6 +107d4−210d2
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is equivalent to
d6 −18d4 +104d2−336 > 0,

which clearly holds for d � 5. Therefore, the maximum of the function G in [0,d2] is
attained at the right endpoint of the interval only, that is,

max
0�y�d2

G(y) = G(d2) = Φ(d2,0,0,0).

This concludes the proof of (iv). The proof of Theorem 1 is completed.
Note that by the same method one can obtain similar results for linear forms in

σm(Z) . For instance, by (8) and (9), we obtain the following identity:

2(σ2(Z)− kσ1(Z)) = s1(Z)2 − s2(Z)−2ks1(Z)

= (d2 −a1)2 − (3d2−4a1 +a2)−2k(d2−a1)

= d4− (2k+3)d2−a1(2d2−2k−4−a1)−a2.

From 0 � a1,a2 � d2 , it is easy to see that its right hand side is less than or equal to
d4 − (2k +3)d2 when k � d2/2−2 with equality attained iff a1 = a2 = 0. (The case
(a1,a2) = (d2,0) for k = d2/2−2 is impossible, since a1 = d2 yields a2 = d2 by (6).)
Thus, the following statement (more general than Theorem 1 (ii)) is true:

PROPOSITION 1. Let d � 3 , k ∈ (−∞,d2/2− 2] and let Z be as in (1) with
z1, . . . ,zd ∈ U . Then,

σ2(Z)− kσ1(Z) � d4− (2k+3)d2

2

with equality iff z1, . . . ,zd ∈ T and ∑d
j=1 z j = ∑d

j=1 z2
j = 0 .
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