MAXIMAL VALUES OF SYMMETRIC FUNCTIONS IN DISTANCES BETWEEN POINTS

Artūras Dubickas

(Communicated by J. Jakšetić)

Abstract

In this note we find the maximal values of several symmetric functions in the variables which are the squares of distances $\left|z_{i}-z_{j}\right|^{2}, 1 \leqslant i<j \leqslant d$, between some d complex points z_{1}, \ldots, z_{d} in the unit disc. We compute the maximums of σ_{m}, for $m=1,2,3,4$, explicitly and find the conditions on z_{1}, \ldots, z_{d} under which those maximal values are attained. This problem is motivated by an inequality of Cassels (1966) and a subsequent conjecture of Alexander.

1. Introduction

Throughout, let

$$
\mathbb{U}:=\{|z| \leqslant 1, z \in \mathbb{C}\}
$$

be the unit disc, and let

$$
\mathbb{T}:=\{|z|=1, z \in \mathbb{C}\}
$$

be the unit circle. For any $z_{1}, \ldots, z_{d} \in \mathbb{U}$, where $d \geqslant 2$, let

$$
\begin{equation*}
Z:=\left\{\left|z_{i}-z_{j}\right|^{2}, 1 \leqslant i<j \leqslant d\right\} \tag{1}
\end{equation*}
$$

be the list of squares of distances between the points z_{i}.
By Hadamard's inequality (see also [14]), the product of all $d(d-1) / 2$ elements of Z does not exceed d^{d}, with equality iff z_{1}, \ldots, z_{d} are the vertices of a regular d-gon inscribed in the circle \mathbb{T}. For $z_{1}, \ldots, z_{d} \in \mathbb{T}$ one can write this well-known inequality in several equivalent forms:

$$
\prod_{1 \leqslant i<j \leqslant d}\left|z_{i}-z_{j}\right|^{2}=\prod_{1 \leqslant i<j \leqslant d}\left|z_{i} \overline{z_{j}}-1\right|^{2}=\prod_{i \neq j}\left|z_{i}-z_{j}\right| \leqslant d^{d} .
$$

In [5], Cassels considered a very similar product

$$
\begin{aligned}
P(\rho, Z) & :=\prod_{1 \leqslant i<j \leqslant d}\left|\rho^{2} z_{i}-z_{j}\right|^{2}=\prod_{i \neq j}\left|\rho^{2} z_{i}-z_{j}\right|=\prod_{1 \leqslant i<j \leqslant d}\left|\rho^{2} z_{i} \overline{z_{j}}-1\right|^{2} \\
& =\rho^{d(d-1)} \prod_{1 \leqslant i<j \leqslant d}\left((\rho-1 / \rho)^{2}+\left|z_{i}-z_{j}\right|^{2}\right)
\end{aligned}
$$

for $z_{1}, \ldots, z_{d} \in \mathbb{T}$ and some fixed $\rho \geqslant 1$. The last expression shows that instead of the product of factors $\left|z_{i}-z_{j}\right|^{2}$, the product of the shifted factors $a+\left|z_{i}-z_{j}\right|^{2}$ is considered. His motivation was an application of such products to the estimates of the Mahler measure of a nonreciprocal algebraic number. (See also the subsequent papers of the author [6] and [7] on the same subject, where such products are quite useful.) Even without applications the evaluation of the maximum of the product $P(\rho, Z)$ itself seems to be a problem of interest.

Assuming that

$$
\cos (\pi / d) \leqslant \frac{\rho^{2}}{\rho^{4}-\rho^{2}+1}
$$

Cassels showed that the above product $P(\rho, Z)$ also attains its maximum $\left(1+\rho^{2}+\right.$ $\left.\ldots+\rho^{2 d-2}\right)^{d}$ iff z_{1}, \ldots, z_{d} are the vertices of a regular d-gon inscribed in \mathbb{T}.

In [1], Alexander observed that the above condition can be slightly improved (to $\left.\cos (\pi / d) \leqslant 2 \rho^{2} /\left(\rho^{4}+1\right)\right)$ and still yields the same conclusion. Note that the range for ρ is very narrow, roughly, $1 \leqslant \rho \leqslant 1+\pi /(2 d)$ for d large, and there is a little chance that using similar methods one can get the same assertion for each $\rho \geqslant 1$. Nevertheless, in [1], Alexander conjectured that

Conjecture 1. For each $\rho \geqslant 1$ we have

$$
P(\rho, Z) \leqslant\left(1+\rho^{2}+\ldots+\rho^{2 d-2}\right)^{d}
$$

with equality attained iff z_{1}, \ldots, z_{d} are the vertices of a regular d-gon inscribed in \mathbb{T}.
Note that Z defined in (1) is a list of

$$
L:=\frac{d(d-1)}{2}
$$

nonnegative numbers, say, x_{1}, \ldots, x_{L}. For each m in the range $1 \leqslant m \leqslant L$, let

$$
\sigma_{m}=\sigma_{m}(Z):=\sum_{1 \leqslant i_{1}<\ldots<i_{m} \leqslant L} x_{i_{1}} \ldots x_{i_{m}}
$$

be the m th symmetric function in the variables x_{i}, and let

$$
s_{m}=s_{m}(Z):=\sum_{j=1}^{L} x_{j}^{m}=\sum_{1 \leqslant i<j \leqslant d}\left|z_{i}-z_{j}\right|^{2 m}
$$

The relation between σ_{m} and the power sums s_{m}, \ldots, s_{1} is given by the following formula (see, e.g., [13]):

$$
\sigma_{m}=\frac{1}{m!}\left|\begin{array}{ccccc}
s_{1} & 1 & 0 & \ldots & 0 \tag{2}\\
s_{2} & s_{1} & 2 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
s_{m-1} & s_{m-2} & s_{m-3} & \ldots & m-1 \\
s_{m} & s_{m-1} & s_{m-2} & \ldots & s_{1}
\end{array}\right|
$$

Note that the expression for $P(\rho, Z) \rho^{-2 L}$ can be written in the form

$$
P(\rho, Z) \rho^{-2 L}=\prod_{1 \leqslant i<j \leqslant d}\left(a+\left|z_{i}-z_{j}\right|^{2}\right)=a^{L}+\sum_{m=1}^{L} a^{L-m} \sigma_{m}(Z),
$$

where $a=(\rho-1 / \rho)^{2}$. So, for any given m in the range $1 \leqslant m \leqslant L$, the investigation of the maximum of $\sigma_{m}(Z)$, where z_{1}, \ldots, z_{d} all belong to \mathbb{U}, seems to be a natural problem.

We remark that the maximum of the sum $\sum_{1 \leqslant i<j \leqslant d}\left|z_{i}-z_{j}\right|$, where $z_{1}, \ldots, z_{d} \in \mathbb{U}$, has been evaluated by Fejes Tóth in [8] (see also [9]), who showed that it is attained iff z_{1}, \ldots, z_{d} are the vertices of a regular d-gon inscribed in \mathbb{T}. There is a huge literature related to maximization (or minimization) of various functions in $\left|z_{i}-z_{j}\right|$ when z_{1}, \ldots, z_{d} lie in a higher dimensional sphere \mathbb{T}^{d} (energy-minimizing point configurations, so-called Thomson problem, best packing problems, etc.). One can find many references on this in the review paper [4], for instance. See also [2], [3], [11], [12], [15] for some other nice extremal problems when the points z_{1}, \ldots, z_{d} belong to \mathbb{T} or to a sphere. (On a sphere it is nontrivial already to place 5 points so that that the mutual distance sum between those points is maximal [10].)

In our context it seems likely that the following is true:
CONJECTURE 2. For any positive integers $d \geqslant 3$ and $m, 1 \leqslant m \leqslant L-1, L=$ $d(d-1) / 2$, and any Z as in (1) the maximum of $\sigma_{m}(Z)$ is attained iff $z_{1}, \ldots, z_{d} \in \mathbb{T}$ and satisfy

$$
\begin{equation*}
\sum_{j=1}^{d} z_{j}=\sum_{j=1}^{d} z_{j}^{2}=\ldots=\sum_{j=1}^{d} z_{j}^{\min (m,\lfloor d / 2\rfloor)}=0 \tag{3}
\end{equation*}
$$

The case $m=L$ is excluded, since we already know that

$$
\sigma_{L}(Z)=\prod_{1 \leqslant i<j \leqslant d}\left|z_{i}-z_{j}\right|^{2}
$$

attains its maximum d^{d} iff $z_{1}, \ldots, z_{d} \in \mathbb{T}$ and are the vertices of a regular d-gon. The case $d=2$ is also excluded, because it is trivial. As the points $z_{j}=e^{2 \pi i(j-1) / d}$, $j=$ $1, \ldots, d$, satisfy the condition (3), one can calculate the maximal value of $\sigma_{m}(Z)$ by inserting those points into (2) and using Lemma 2 below (where $s_{1}(Z), \ldots, s_{m}(Z)$ have been evaluated).

Note that Conjecture 2 immediately implies Conjecture 1, because the points $z_{1}, \ldots, z_{d} \in \mathbb{T}$ for which (3) holds for $m \geqslant\lfloor d / 2\rfloor$ must be the vertices of a regular d-gon inscribed into \mathbb{T}. Indeed, for

$$
f(z):=\left(z-z_{1}\right) \ldots\left(z-z_{d}\right)=z^{d}+c_{d-1} z^{d-1}+\ldots+c_{0}
$$

with $z_{1}, \ldots, z_{d} \in \mathbb{T}$ we have

$$
c_{0} z^{d}+c_{1} z^{d-1}+\ldots+1=z^{d} f(1 / z)=c_{0} \bar{f}(z)=c_{0}\left(z^{d}+\overline{c_{d-1}} z^{d-1}+\ldots+\overline{c_{0}}\right)
$$

so that $c_{i}=c_{0} \overline{c_{d-i}}$ for $i=1, \ldots, d-1$. Hence, (3) with $m=\lfloor d / 2\rfloor$ implies not only $c_{1}=\ldots=c_{\lfloor d / 2\rfloor}=0$ but also $c_{1}=\ldots=c_{d-1}=0$.

In this note we shall prove Conjecture 2 for $m=1,2,3$ and 4 .

THEOREM 1. Let $d \geqslant 3$ and let Z be as in (1). Then, for each m in the range $1 \leqslant$ $m \leqslant L=d(d-1) / 2$ the maximum of $\sigma_{m}(Z)$ is attained for $z_{1}, \ldots, z_{d} \in \mathbb{T}$. Furthermore,
(i) $\sigma_{1}(Z) \leqslant d^{2}$ with equality iff $z_{1}, \ldots, z_{d} \in \mathbb{T}$ and $\sum_{j=1}^{d} z_{j}=0$.
(ii) $\sigma_{2}(Z) \leqslant\left(d^{4}-3 d^{2}\right) / 2$ with equality iff $z_{1}, \ldots, z_{d} \in \mathbb{T}$ and

$$
\sum_{j=1}^{d} z_{j}=\sum_{j=1}^{d} z_{j}^{2}=0
$$

(iii) $\sigma_{3}(Z) \leqslant\left(d^{6}-9 d^{4}+20 d^{2}\right) / 6$ (for $d \geqslant 4$) with equality iff $z_{1}, \ldots, z_{d} \in \mathbb{T}$ and

$$
\sum_{j=1}^{d} z_{j}=\sum_{j=1}^{d} z_{j}^{2}=\sum_{j=1}^{d} z_{j}^{3}=0
$$

(iv) $\sigma_{4}(Z) \leqslant\left(d^{8}-18 d^{6}+107 d^{4}-210 d^{2}\right) / 24($ for $d \geqslant 5)$ with equality iff $z_{1}, \ldots, z_{d} \in$ \mathbb{T} and

$$
\begin{equation*}
\sum_{j=1}^{d} z_{j}=\sum_{j=1}^{d} z_{j}^{2}=\sum_{j=1}^{d} z_{j}^{3}=\sum_{j=1}^{d} z_{j}^{4}=0 \tag{4}
\end{equation*}
$$

For $d=3$ in part (iii) the maximum of $\sigma_{3}(Z)$ is equal to $d^{d}=27$ and is attained at the roots of $z^{3}-\theta=0$, where $\theta \in \mathbb{T}$. For $d=4$ in part (iv) the condition (4) cannot hold, and the maximum of $\sigma_{4}(Z)$ is different.

In the next section we shall prove two useful lemmas. Then, in Section 3 we will conclude the proof of Theorem 1.

2. Auxiliary results

LEMMA 1. Suppose f_{1}, \ldots, f_{ℓ} are holomorphic functions in a bounded domain $D \subset \mathbb{C}$ and continuous up to the boundary of D. Then, the function $\left|f_{1}(z)\right|+\ldots+\left|f_{\ell}(z)\right|$ attains its maximum in \bar{D} on the boundary of D.

Proof. The result is evident if $f_{i}, i=1, \ldots, \ell$, are all constants. Assume that at least one of the functions f_{i} is not a constant and that the sum $\left|f_{1}(z)\right|+\ldots+\left|f_{\ell}(z)\right|$ attains its maximum at the point $z_{0} \in D$. Clearly, for each $j \in\{1, \ldots, \ell\}$ there exists $\zeta_{j} \in \mathbb{T}$ such that $f_{j}\left(z_{0}\right)=\left|f_{j}\left(z_{0}\right)\right| \zeta_{j}$. Consider the function

$$
g(z):=\sum_{j=1}^{\ell} f_{j}(z) \overline{\zeta_{j}}
$$

It is holomorphic in D, continuous up to the boundary of D and not a constant. Furthermore, by our assumption and the definition of ζ_{j} and z_{0}, one has

$$
\begin{aligned}
|g(z)| & =\left|\sum_{j=1}^{\ell} f_{j}(z) \overline{\zeta_{j}}\right| \leqslant \sum_{j=1}^{\ell}\left|f_{j}(z)\right|\left|\overline{\zeta_{j}}\right|=\sum_{j=1}^{\ell}\left|f_{j}(z)\right| \leqslant \sum_{j=1}^{\ell}\left|f_{j}\left(z_{0}\right)\right| \\
& =\sum_{j=1}^{\ell} f_{j}\left(z_{0}\right) \overline{\zeta_{j}}=g\left(z_{0}\right)=\left|g\left(z_{0}\right)\right| .
\end{aligned}
$$

This contradicts to the maximum modulus principle for the holomorphic function g, which is not a constant, and hence our initial assumption on z_{0} were false.

Lemma 2. Let $k, d \in \mathbb{N}, d \geqslant 2$ and $z_{1}, \ldots, z_{d} \in \mathbb{T}$. Then,

$$
\begin{equation*}
s_{k}(Z)=\sum_{1 \leqslant i<j \leqslant d}\left|z_{i}-z_{j}\right|^{2 k}=\frac{d^{2}}{2}\binom{2 k}{k}+\sum_{s=1}^{k}(-1)^{s}\binom{2 k}{k-s} a_{s}, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{s}:=\left|\sum_{j=1}^{d} z_{j}^{s}\right|^{2} \tag{6}
\end{equation*}
$$

for $s \in \mathbb{Z}$.

Proof. From $z_{i}, z_{j} \in \mathbb{T}$ it follows that

$$
\left|z_{i}-z_{j}\right|^{2}=\left(z_{i}-z_{j}\right)\left(\overline{z_{i}}-\overline{z_{j}}\right)=\left(z_{i}-z_{j}\right)\left(\frac{1}{z_{i}}-\frac{1}{z_{j}}\right)=-\frac{\left(z_{i}-z_{j}\right)^{2}}{z_{i} z_{j}}
$$

Therefore,

$$
\left|z_{i}-z_{j}\right|^{2 k}=(-1)^{k} \sum_{t=0}^{2 k}(-1)^{2 k-t}\binom{2 k}{t} z_{i}^{t-k} z_{j}^{k-t}
$$

and consequently

$$
\sum_{1 \leqslant i<j \leqslant d}\left|z_{i}-z_{j}\right|^{2 k}=\frac{1}{2} \sum_{i, j=1}^{d}\left|z_{i}-z_{j}\right|^{2 k}=\frac{1}{2} \sum_{i, j=1}^{d} \sum_{t=0}^{2 k}(-1)^{k+t}\binom{2 k}{t} z_{i}^{t-k} z_{j}^{k-t} .
$$

By changing the summation and taking into account (6), we find that the latter expression is equal to

$$
\begin{equation*}
\frac{1}{2} \sum_{t=0}^{2 k}(-1)^{k+t}\binom{2 k}{t} \sum_{i=1}^{d} z_{i}^{t-k} \sum_{j=1}^{d} z_{j}^{k-t}=\frac{1}{2} \sum_{t=0}^{2 k}(-1)^{k+t}\binom{2 k}{t} a_{t-k} \tag{7}
\end{equation*}
$$

Since $a_{0}=d^{2}$, the term corresponding to $t=k$ gives the first summand

$$
\frac{d^{2}}{2}\binom{2 k}{k}
$$

on the right hand side of (5). From (6) and $z_{1}, \ldots, z_{d} \in \mathbb{T}$ it follows that $a_{-s}=a_{s}$. Hence,

$$
\begin{aligned}
\sum_{t=0}^{k-1}(-1)^{k+t}\binom{2 k}{t} a_{t-k} & =\sum_{t=k+1}^{2 k}(-1)^{k+2 k-t}\binom{2 k}{2 k-t} a_{k-t} \\
& =\sum_{t=k+1}^{2 k}(-1)^{k+t}\binom{2 k}{t} a_{t-k}
\end{aligned}
$$

so the sum of all the other terms of the right hand side of (7) (corresponding to $t \neq k$) equals

$$
\sum_{t=k+1}^{2 k}(-1)^{k+t}\binom{2 k}{t} a_{t-k}=\sum_{s=1}^{k}(-1)^{s}\binom{2 k}{k+s} a_{s}=\sum_{s=1}^{k}(-1)^{s}\binom{2 k}{k-s} a_{s}
$$

which is the sum on the right hand side of (5). Thus, (7) equals the right hand side of (5), as claimed.

3. Proof of Theorem 1

Fix m in the range $1 \leqslant m \leqslant L$ and $i, 1 \leqslant i \leqslant d$. Notice that the m th symmetric function $\sigma_{m}(Z)$ is of the form $\left|f_{1}\left(z_{i}\right)\right|+\ldots+\left|f_{\ell}\left(z_{i}\right)\right|$, where f_{1}, \ldots, f_{ℓ} are polynomials in z_{i}. Hence, by Lemma 1 , the maximum of $\sigma_{m}(Z)$ is attained when $z_{1}, \ldots, z_{d} \in \mathbb{T}$. So, from now on, we will assume that $z_{1}, \ldots, z_{d} \in \mathbb{T}$.

By (5) with $k=1$, we obtain

$$
\begin{equation*}
\sigma_{1}(Z)=s_{1}(Z)=d^{2}-a_{1} \tag{8}
\end{equation*}
$$

Here, $a_{1} \geqslant 0$ by (6), and hence $\sigma_{1}(Z) \leqslant d^{2}$ with equality iff $z_{1}, \ldots, z_{d} \in \mathbb{T}$ and $a_{1}=0$. This proves (i).

Inserting $k=2$ into (5) we find that

$$
\begin{equation*}
s_{2}(Z)=3 d^{2}-4 a_{1}+a_{2}=4 s_{1}(Z)+a_{2}-d^{2} \tag{9}
\end{equation*}
$$

So, by (8), (9) and (2) with $m=2$,

$$
\begin{aligned}
2 \sigma_{2}(Z) & =s_{1}(Z)^{2}-s_{2}(Z)=\left(d^{2}-a_{1}\right)^{2}-3 d^{2}+4 a_{1}-a_{2} \\
& =d^{4}-3 d^{2}-2 d^{2} a_{1}+a_{1}^{2}+4 a_{1}-a_{2}
\end{aligned}
$$

The inequality $\sigma_{2}(Z) \leqslant\left(d^{4}-3 d^{2}\right) / 2$ is equivalent to

$$
\begin{equation*}
-2 d^{2} a_{1}+a_{1}^{2}+4 a_{1}-a_{2} \leqslant 0 \tag{10}
\end{equation*}
$$

Clearly, $0 \leqslant a_{1} \leqslant d^{2}$ by (6). So $a_{1}<2 d^{2}-4$ and

$$
-2 d^{2} a_{1}+a_{1}^{2}+4 a_{1}=a_{1}\left(a_{1}-2 d^{2}+4\right) \leqslant 0
$$

with equality iff $a_{1}=0$. Trivially, $-a_{2} \leqslant 0$ with equality iff $a_{2}=0$. This proves (10). Moreover, equality in (10) is attained iff $a_{1}=a_{2}=0$. The proof of part (ii) is completed.

To prove part (iii) note that, by (5),

$$
\begin{equation*}
s_{3}(Z)=10 d^{2}-15 a_{1}+6 a_{2}-a_{3}=15 s_{1}(Z)+6 a_{2}-a_{3}-5 d^{2} \tag{11}
\end{equation*}
$$

Now, using (2) with $m=3$, we obtain

$$
\begin{equation*}
6 \sigma_{3}(Z)=s_{1}(Z)^{3}-3 s_{1}(Z) s_{2}(Z)+2 s_{3}(Z) \tag{12}
\end{equation*}
$$

which in view of (8), (9), (11) equals

$$
\left(d^{2}-a_{1}\right)^{3}-3\left(d^{2}-a_{1}\right)\left(3 d^{2}-4 a_{1}+a_{2}\right)+20 d^{2}-30 a_{1}+12 a_{2}-2 a_{3}
$$

We need to show that the above expression, denoted by $F\left(d, a_{1}, a_{2}, a_{3}\right)$, does not exceed

$$
F(d, 0,0,0)=d^{6}-9 d^{4}+20 d^{2}
$$

with equality iff $a_{1}=a_{2}=a_{3}=0$.
It is evident that $F\left(d, a_{1}, a_{2}, a_{3}\right) \leqslant F\left(d, a_{1}, a_{2}, 0\right)$, with equality iff $a_{3}=0$. Next, the coefficient for a_{2} is $12-3 d^{2}+3 a_{1}$. Consider two cases: $a_{1}<d^{2}-4$ and $a_{1} \geqslant$ $d^{2}-4$.

In the first case, $a_{1}<d^{2}-4$, the coefficient for a_{2} is negative. Consequently, $F\left(d, a_{1}, a_{2}, 0\right) \leqslant F\left(d, a_{1}, 0,0\right)$ with equality iff $a_{2}=0$. It remains to show that

$$
F\left(d, a_{1}, 0,0\right)=\left(d^{2}-a_{1}\right)^{3}-3\left(d^{2}-a_{1}\right)\left(3 d^{2}-4 a_{1}\right)+20 d^{2}-30 a_{1}
$$

attains its maximum in $a_{1} \in\left[0, d^{2}\right]$ at $a_{1}=0$. Indeed, the difference $F\left(d, a_{1}, 0,0\right)-$ $F(d, 0,0,0)$ is equal to

$$
-a_{1}\left(a_{1}^{2}-\left(3 d^{2}-12\right) a_{1}+3 d^{4}-21 d^{2}+30\right)
$$

Evidently, this is zero if $a_{1}=0$, whereas for $a_{1}>0$ the above expression is negative, because $-a_{1}<0$ and $a_{1}^{2}-\left(3 d^{2}-12\right)+3 d^{4}-21 d^{2}+30>0$. The latter inequality is indeed true, since the discriminant of the quadratic polynomial is negative for $d \geqslant 4$:

$$
\left(3 d^{2}-12\right)^{2}-4\left(3 d^{4}-21 d^{2}+30\right)=-3\left(\left(d^{2}-2\right)^{2}-12\right)<0
$$

We now turn to the alternative case, namely, $a_{1} \geqslant d^{2}-4$. Then, $0 \leqslant d^{2}-a_{1} \leqslant 4$, and hence $s_{1}(Z)^{3} \leqslant\left(d-a_{1}\right)^{3} \leqslant 64$. In view of $s_{1}(Z), s_{2}(Z), a_{3} \geqslant 0$ and $0 \leqslant a_{2} \leqslant d^{2}$, by (11) and (12), we get

$$
\begin{aligned}
6 \sigma_{3}(Z) & \leqslant s_{1}(Z)^{3}+2 s_{3}(Z) \leqslant 64+30 s_{1}(Z)+12 a_{2}-10 d^{2} \\
& \leqslant 61+120+12 d^{2}-10 d^{2}=181+2 d^{2}
\end{aligned}
$$

It is easy to see that

$$
181+2 d^{2}<F(d, 0,0,0)=d^{6}-9 d^{4}+20 d^{2}
$$

for $d \geqslant 4$, so in the second case the value $F(d, 0,0,0)$ of the function $6 \sigma_{3}(Z)$ is not attained. This completes the proof of (iii).

In part (iv), by (2) with $m=4$, we obtain

$$
24 e_{4}(Z)=s_{1}(Z)^{4}-6 s_{1}(Z)^{2} s_{2}(Z)+3 s_{2}(Z)^{2}+8 s_{1}(Z) s_{3}(Z)-6 s_{4}(Z)
$$

By (5),

$$
\begin{aligned}
s_{4}(Z) & =35 d^{2}-56 a_{1}+28 a_{2}-8 a_{3}+a_{4} \\
& =56 s_{1}(Z)+28 a_{2}-8 a_{3}+a_{4}-21 d^{2}
\end{aligned}
$$

Combining this with (9) and (11), we find that $24 e_{4}(Z)$ equals

$$
\begin{align*}
\Phi\left(y, a_{2}, a_{3}, a_{4}\right) & =y^{4}-6 y^{2}\left(4 y+a_{2}-d^{2}\right)+3\left(4 y+a_{2}-d^{2}\right)^{2} \tag{13}\\
& +8 y\left(15 y+6 a_{2}-a_{3}-5 d^{2}\right) \\
& -6\left(56 y+28 a_{2}-8 a_{3}+a_{4}-21 d^{2}\right)
\end{align*}
$$

where

$$
y:=s_{1}(Z)=d^{2}-a_{1}
$$

by (8).
In all what follows we will show that the maximum of the function $\Phi\left(y, a_{2}, a_{3}, a_{4}\right)$ in the range $0 \leqslant y, a_{2}, a_{3}, a_{4} \leqslant d^{2}$ (plus some extra restrictions coming from the inequalities $s_{2}(Z), s_{3}(Z), s_{4}(Z) \geqslant 0$ which we will not specify) is attained at the unique point

$$
\left(y, a_{2}, a_{3}, a_{4}\right)=\left(d^{2}, 0,0,0\right)
$$

This would complete the proof of (iv), because

$$
\Phi\left(d^{2}, 0,0,0\right)=d^{8}-18 d^{6}+107 d^{4}-210 d^{2}
$$

by (13).
Clearly, the maximum of $\Phi\left(y, a_{2}, a_{3}, a_{4}\right)$ is attained only if $a_{4}=0$, since the only term containing a_{4} is $-6 a_{4}$. The coefficient for a_{3} is $48-8 y=8(6-y)$. We will show that $y>6$, and so in the maximum point a_{3} must be zero too.

Indeed, in case $y \leqslant 6$ in view of $0 \leqslant a_{2}, a_{3} \leqslant d^{2}$ and $s_{2}(Z), s_{4}(Z) \geqslant 0$ we deduce that

$$
\Phi\left(y, a_{2}, a_{3}, 0\right) \leqslant y^{4}+3\left(4 y+a_{2}-d^{2}\right)^{2}+8 y\left(15 y+6 a_{2}-a_{3}-5 d^{2}\right)
$$

From $0 \leqslant s_{2}(Z)=4 y+a_{2}-d^{2} \leqslant 4 y$ and

$$
0 \leqslant s_{4}(Z)=15 y+6 a_{2}-a_{3}-5 d^{2} \leqslant 15 y+d^{2}
$$

it follows that

$$
\begin{aligned}
\Phi\left(y, a_{2}, a_{3}, 0\right) & \leqslant y^{4}+48 y^{2}+8 y\left(15 y+d^{2}\right) \\
& \leqslant 6^{4}+48 \cdot 6^{2}+120 \cdot 6^{2}+48 d^{2}=7344+48 d^{2}
\end{aligned}
$$

which is strictly less than $d^{8}-18 d^{6}+107 d^{4}-210 d^{2}$ for each $d \geqslant 5$. Thus, $y>6$ and so a_{3} must be zero.

Inserting $a_{3}=a_{4}=0$ into Φ defined in (13) we obtain

$$
\begin{aligned}
\Phi\left(y, a_{2}, 0,0\right) & =y^{4}-6 y^{2}\left(4 y+a_{2}-d^{2}\right)+3\left(4 y+a_{2}-d^{2}\right)^{2} \\
& +8 y\left(15 y+6 a_{2}-5 d^{2}\right)-6\left(56 y+28 a_{2}-21 d^{2}\right)
\end{aligned}
$$

Here, the terms involving a_{2} are

$$
-6 y^{2} a_{2}+3 a_{2}^{2}+6 a_{2}\left(4 y-d^{2}\right)+48 y a_{2}-168 a_{2}=3 a_{2}\left(a_{2}-2 y^{2}+24 y-2 d^{2}-56\right)
$$

The factor $a_{2}-2 y^{2}+24 y-2 d^{2}-56$ is negative, because $d^{2}-a_{2} \geqslant 0$ and

$$
\begin{aligned}
2 y^{2}-24 y+2 d^{2}+56-a_{2} & \geqslant 2 y^{2}-24 y+d^{2}+56 \\
& =2(y-6)^{2}+d^{2}-16>0
\end{aligned}
$$

by $d \geqslant 5$. This shows that $\Phi\left(y, a_{2}, 0,0\right)$ attains the maximum only if $a_{2}=0$.
Inserting $a_{2}=0$ into Φ we find that

$$
\begin{aligned}
G(y) & :=\Phi(y, 0,0,0)=y^{4}-6 y^{2}\left(4 y-d^{2}\right)+3\left(4 y-d^{2}\right)^{2} \\
& +8 y\left(15 y-5 d^{2}\right)-6\left(56 y-21 d^{2}\right) \\
& =y^{4}-24 y^{3}+\left(6 d^{2}+168\right) y^{2}-\left(64 d^{2}+336\right) y+3 d^{4}+126 d^{2}
\end{aligned}
$$

Note that

$$
G^{\prime}(y)=4 y^{3}-72 y^{2}+\left(12 d^{2}+336\right) y-\left(64 d^{2}+336\right)
$$

and

$$
G^{\prime \prime}(y)=12 y^{2}-144 y+12 d^{2}+336=12\left((y-6)^{2}+d^{2}-8\right)>0 .
$$

Hence, $G^{\prime}(y)$ is increasing in \mathbb{R}. As $G^{\prime}(0)<0$, the only root y_{d} of $G^{\prime}(y)=0$ is positive. This means that $G(y)$ is decreasing in $\left[0, y_{d}\right]$ and increasing in $\left[y_{d},+\infty\right)$. Observe that

$$
\begin{aligned}
G^{\prime}\left(d^{2}\right) & =4 d^{6}-72 d^{4}+12 d^{4}+336 d^{2}-64 d^{2}-336 \\
& =4 d^{6}-60 d^{4}+272 d^{2}-336>0
\end{aligned}
$$

for $d \geqslant 5$. As $G^{\prime}(y) \leqslant 0$ for $0 \leqslant y \leqslant y_{d}$, this yields $y_{d}<d^{2}$. Hence, the maximum of $G(y)$ in the interval $\left[0, d^{2}\right]$ is attained at one of its endpoints $y=0$ or $y=d^{2}$. The inequality

$$
3 d^{4}+126 d^{2}=G(0)<G\left(d^{2}\right)=d^{8}-18 d^{6}+107 d^{4}-210 d^{2}
$$

is equivalent to

$$
d^{6}-18 d^{4}+104 d^{2}-336>0
$$

which clearly holds for $d \geqslant 5$. Therefore, the maximum of the function G in $\left[0, d^{2}\right]$ is attained at the right endpoint of the interval only, that is,

$$
\max _{0 \leqslant y \leqslant d^{2}} G(y)=G\left(d^{2}\right)=\Phi\left(d^{2}, 0,0,0\right)
$$

This concludes the proof of (iv). The proof of Theorem 1 is completed.
Note that by the same method one can obtain similar results for linear forms in $\sigma_{m}(Z)$. For instance, by (8) and (9), we obtain the following identity:

$$
\begin{aligned}
2\left(\sigma_{2}(Z)-k \sigma_{1}(Z)\right) & =s_{1}(Z)^{2}-s_{2}(Z)-2 k s_{1}(Z) \\
& =\left(d^{2}-a_{1}\right)^{2}-\left(3 d^{2}-4 a_{1}+a_{2}\right)-2 k\left(d^{2}-a_{1}\right) \\
& =d^{4}-(2 k+3) d^{2}-a_{1}\left(2 d^{2}-2 k-4-a_{1}\right)-a_{2}
\end{aligned}
$$

From $0 \leqslant a_{1}, a_{2} \leqslant d^{2}$, it is easy to see that its right hand side is less than or equal to $d^{4}-(2 k+3) d^{2}$ when $k \leqslant d^{2} / 2-2$ with equality attained iff $a_{1}=a_{2}=0$. (The case $\left(a_{1}, a_{2}\right)=\left(d^{2}, 0\right)$ for $k=d^{2} / 2-2$ is impossible, since $a_{1}=d^{2}$ yields $a_{2}=d^{2}$ by (6).) Thus, the following statement (more general than Theorem 1 (ii)) is true:

Proposition 1. Let $d \geqslant 3, k \in\left(-\infty, d^{2} / 2-2\right]$ and let Z be as in (1) with $z_{1}, \ldots, z_{d} \in \mathbb{U}$. Then,

$$
\sigma_{2}(Z)-k \sigma_{1}(Z) \leqslant \frac{d^{4}-(2 k+3) d^{2}}{2}
$$

with equality iff $z_{1}, \ldots, z_{d} \in \mathbb{T}$ and $\sum_{j=1}^{d} z_{j}=\sum_{j=1}^{d} z_{j}^{2}=0$.

REFERENCES

[1] R. Alexander, On an inequality of J. W. S. Cassels, Amer. Math. Monthly, 79, (1972), 883-884.
[2] R. Alexander, On the sum of distances between n points on a sphere, Acta Math. Acad. Sci. Hung., 23, (1972), 443-448.
[3] G. Ambrus, K. M. Ball and T. Erdélyi, Chebyshev constants for the unit circle, Bull. Lond. Math. Soc., 45, (2013), 236-248.
[4] J. S. Brauchart and P. J. Grabner, Distributing many points on spheres: minimal energy and designs, J. Complexity, 31, (2015), 293-326.
[5] J. W. S. Cassels, On a problem of Schinzel and Zassenhaus, J. Math. Sciences, 1, (1966), 1-8.
[6] A. Dubickas, The maximal conjugate of a non-reciprocal algebraic integer, Lith. Math. J., 37, (1997), 129-133.
[7] A. Dubickas, On the measure of a nonreciprocal algebraic number, Ramanujan J., 4, (2000), 291298.
[8] L. Fejes Tóth, On the sum of distances determined by a pointset, Acta Math. Acad. Sci. Hung., 7, (1956), 397-401.
[9] E. Horvat, The sum of a power of distances, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 17, (1975), 125-129.
[10] X. Hou and J. ShaO, Spherical distribution of 5 points with maximal distance sum, Discrete Comput. Geom., 46, (2011), 156-174.
[11] N. Nikolov and R. Rafailov, On the sum of powered distances to certain sets of points on the circle, Pacific J. Math., 253, (2011), 157-168.
[12] N. Nikolov and R. Rafailov, On extremums of sums of powered distances to a finite set of points, Geom. Dedicata, 167, (2013), 69-89.
[13] V. V. Prasolov, Polynomials, Algorithms and Computation in Mathematics 11, 2nd. ed., SpringerVerlag, Berlin, 2010.
[14] I. SCHUR, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., 1, (1918), 377-402.
[15] K. Stolarsky, The sum of the distances to certain pointsets on the unit circle, Pac. J. Math., 59, (1975), 241-251.
(Received February 7, 2019)
Artūras Dubickas Institute of Mathematics
Faculty of Mathematics and Informatics, Vilnius University
Naugarduko 24, LT-03225 Vilnius, Lithuania
e-mail: arturas.dubickas@mif.vu.1t

