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MAXIMAL VALUES OF SYMMETRIC
FUNCTIONS IN DISTANCES BETWEEN POINTS

ARTURAS DUBICKAS

(Communicated by J. Jakseti¢)

Abstract. In this note we find the maximal values of several symmetric functions in the variables
which are the squares of distances |z; —z j\z, 1 <i< j<d,between some d complex points
Zl,-..,2q in the unit disc. We compute the maximums of o©,,, for m = 1,2,3,4, explicitly and
find the conditions on zi,...,z; under which those maximal values are attained. This problem
is motivated by an inequality of Cassels (1966) and a subsequent conjecture of Alexander.

1. Introduction

Throughout, let
U:={lz]<1,z€C}
be the unit disc, and let
T:={|z|l=1, zeC}

be the unit circle. For any z1,...,z; € U, where d > 2, let
Z:={lz—z* 1<i<j<d} €))

be the list of squares of distances between the points z;.
By Hadamard’s inequality (see also [14]), the product of all d(d — 1)/2 elements
of Z does not exceed d¢, with equality iff z, ...,z are the vertices of a regular d-gon

inscribed in the circle T. For zj,...,z4 € T one can write this well-known inequality
in several equivalent forms:

[T ki—zlP= TI kzm-17=]1li—zl<d’

1<i<j<d 1<i<j<d i£j

In [5], Cassels considered a very similar product

2 2 2 2 — 2
P(p.Z2):= [I Ip’a—zlP=[llp*z—zl= [] Ip%zz—1
1<i<j<d i I1<i<j<d

— pdla-1) I1 ((p—l/p)2+|Zi—Zj|2)

I1<i<j<d
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for zj,...,z4 € T and some fixed p > 1. The last expression shows that instead of
the product of factors |z; —z;|%, the product of the shifted factors a + |z; —z;|? is con-
sidered. His motivation was an application of such products to the estimates of the
Mahler measure of a nonreciprocal algebraic number. (See also the subsequent papers
of the author [6] and [7] on the same subject, where such products are quite useful.)
Even without applications the evaluation of the maximum of the product P(p,Z) itself
seems to be a problem of interest.
Assuming that

p?
n/d) ————
cos(m/d) e
Cassels showed that the above product P(p,Z) also attains its maximum (14 p? +
o+ p22)diff 79, z4 are the vertices of a regular d-gon inscribed in T.

In [1], Alexander observed that the above condition can be slightly improved (to
cos(m/d) <2p?/(p*+1)) and still yields the same conclusion. Note that the range for
p is very narrow, roughly, 1 < p < 14 7/(2d) for d large, and there is a little chance
that using similar methods one can get the same assertion for each p > 1. Nevertheless,
in [1], Alexander conjectured that

CONIJECTURE 1. Foreach p > 1 we have
P(p,Z) < (1+p*+...4+p* 21
with equality attained iff z1,...,zq are the vertices of a regular d-gon inscribed in T.
Note that Z defined in (1) is a list of

dd—1)

L=
2

nonnegative numbers, say, Xi,...,Xxz. For each m in the range 1 <m < L, let

Oy = O'm(Z) = 2 Xip o Xiy,

1<i <....<im<L

be the mth symmetric function in the variables x;, and let

L
Sm:Sm(Z) = Zx;”: 2 |Zj—Zj|2m-
j=1 I<i<j<d
The relation between o, and the power sums s, ...,s; is given by the following for-
mula (see, e.g., [13]):
S1 1 0o ... 0
: sy 8] 2 ... 0
Om = ) . . (2)
m:

Sm—1 Sm—2 Sm—3 ---m—1
Sm Sm—1 Sm—2 --- 81



MAXIMAL VALUES OF SYMMETRIC FUNCTIONS IN DISTANCES 331

—2L

Note that the expression for P(p,Z)p can be written in the form

L
P(p,2)p = ] (a+lzi—z*)=d"+ Y " "ou(2),
1<i< j<d m=1

where a = (p — 1/p)?. So, for any given m in the range 1 < m < L, the investigation
of the maximum of ©,,(Z), where zj,...,z; all belong to U, seems to be a natural
problem.

We remark that the maximum of the sum ¥, ;. ;<4 |2 —z/|, where z1,...,20 € U,
has been evaluated by Fejes Téth in [8] (see also [9]), who showed that it is attained
iff z1,...,24 are the vertices of a regular d-gon inscribed in T. There is a huge liter-
ature related to maximization (or minimization) of various functions in |z; — z;| when
Z1,...,2q lie in a higher dimensional sphere T¢ (energy-minimizing point configura-
tions, so-called Thomson problem, best packing problems, etc.). One can find many
references on this in the review paper [4], for instance. See also [2], [3], [1 1], [12], [15]
for some other nice extremal problems when the points zj,...,z; belong to T or to a
sphere. (On a sphere it is nontrivial already to place 5 points so that that the mutual
distance sum between those points is maximal [10].)

In our context it seems likely that the following is true:

CONIJECTURE 2. For any positive integers d >3 and m, |l <m<L—1, L=
d(d—1)/2, and any Z as in (1) the maximum of 6,,(Z) is attained iff z1,...,2g € T
and satisfy

ijpin(m.,Ld/ZJ) —0. 3

M=

2
%
1 J

7=
1 J

R
VR

1

J

The case m = L is excluded, since we already know that

oZ)= II la—zl

1<i<j<d

attains its maximum d“ iff z;,...,z; € T and are the vertices of a regular d-gon. The
case d =2 is also excluded, because it is trivial. As the points z; = >"U~1/d  j =
1,...,d, satisfy the condition (3), one can calculate the maximal value of 6,,(Z) by
inserting those points into (2) and using Lemma 2 below (where s1(Z),...,s,(Z) have
been evaluated).

Note that Conjecture 2 immediately implies Conjecture 1, because the points
Z1,..-,2¢ € T for which (3) holds for m > |d/2] must be the vertices of a regular
d-gon inscribed into T. Indeed, for

f@)=Gz-21)...c—za) = a1z +.. .+ co
with z1,...,zg € T we have
o+ M+ 1=2F(1/2) = cof(z) = co(z + T + .. +T0),

so that ¢; = cocg—; for i =1,...,d — 1. Hence, (3) with m = |d/2] implies not only
Cl=...=Clq) =0 butalso c;=...=c4_1 =0.
In this note we shall prove Conjecture 2 for m = 1,2,3 and 4.
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THEOREM 1. Let d > 3 andlet Z be as in (1). Then, for each m in the range 1 <
m< L=d(d—1)/2 the maximum of 6,(Z) is attained for zy,...,zqg € T. Furthermore,

(i) 01(Z) < d?* with equality iff zy,...,zq € T and fozlzj =0.

(ii) 02(Z) < (d* —3d?)/2 with equality iff z1,...,2q € T and

(iv) 04(Z) < (d®—18d°+107d*—210d?)/24 (for d > 5) with equality iff z1, ..., 24 €
T and

d d
z?zEz?zsz-:O. “4)

For d = 3 in part (iii) the maximum of 03(Z) is equal to d¢ = 27 and is attained
at the roots of z — 0 = 0, where 8 € T. For d =4 in part (iv) the condition (4) cannot
hold, and the maximum of o4(Z) is different.

In the next section we shall prove two useful lemmas. Then, in Section 3 we will
conclude the proof of Theorem 1.

2. Auxiliary results

LEMMA 1. Suppose fi,...,fr are holomorphic functions in a bounded domain
D C C and continuous up to the boundary of D. Then, the function | f1(z)|+...+|fi(2)]
attains its maximum in D on the boundary of D.

Proof. The result is evident if f;, i=1,...,¢, are all constants. Assume that at
least one of the functions f; is not a constant and that the sum |f;(z)|+ ...+ |f¢(2)]
attains its maximum at the point zo € D. Clearly, for each j € {1,...,¢} there exists
;€ T such that f;(z0) = |fj(z0)|E;. Consider the function

o
8(x):= Y, fi(2)G.
=
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It is holomorphic in D, continuous up to the boundary of D and not a constant. Fur-
thermore, by our assumption and the definition of {; and zo, one has

4

\—)zf, Tl < T |\c,|—z|f, <3 1)

P2 py
e PR
= XSG = g0) = ()l
j:

This contradicts to the maximum modulus principle for the holomorphic function g,
which is not a constant, and hence our initial assumption on zo were false.

LEMMA 2. Let k,d €N, d >2 and zy,...,z4 € T. Then,
d* (2k k 2k
s(2)= 3, |Zi—Zj2k=7<k>+Z(—1)s<k )an (5)
1<i<j<d

where

(6)

for seZ.

Proof. From z;,z; € T it follows that

zi—zjl* = (i — 7))@ — 7)) = (Z"_Zj)<l a i> T

i Zj

(Zi - Zj)2

ZiZj
Therefore,

2k
G = <—1>"2<—1>2’<-f(2")zs g

t

and consequently
2k 2k 1)kt 2k 4k gt
Z |zi — 2] 2 |z — 2 2 Z 4 Zj -
I<i<j<d lj 1 i,j=1t=

By changing the summation and taking into account (6), we find that the latter
expression is equal to

1 & k+t L L k—t 1 & k+t 2k
;21 ( )ZZ? 23 =321 (t)at_k. (7)
j=1

t=0 =1 =0

Since ay = d?, the term corresponding to 7 = k gives the first summand

d? (2k
2 \ k
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on the right hand side of (5). From (6) and zj,...,z5 € T it follows that a_; = a;.

Hence,
k—1 2k
2k _ 2k
ZH)M(z )a"": D t(zk_t>a""

t=0 t=k+1

= % (- (ik)azk,

t=k+1

so the sum of all the other terms of the right hand side of (7) (corresponding to ¢ # k)

equals
S 0 (Fai= T (X o= T (o

t=k+1 s=1

which is the sum on the right hand side of (5). Thus, (7) equals the right hand side of
(5), as claimed.

3. Proof of Theorem 1

Fix m in the range 1 <m < L and i, 1 < i< d. Notice that the mth symmetric
function 6,,(Z) is of the form | f (z;)| +... +|fe(zi)|, where fi,..., f; are polynomials
in z;. Hence, by Lemma 1, the maximum of o,,(Z) is attained when z;,...,z5 € T.
So, from now on, we will assume that z;,...,z; € T.

By (5) with k=1, we obtain

01(Z2) =51(2) =d*—ay. (8)
Here, a; > 0 by (6), and hence 0,(Z) < d? with equality iff z;,...,z; € T and a; =0.
This proves (i).
Inserting £ = 2 into (5) we find that
52(Z) = 3d* — day + ay = 451 (Z) + ar — d*. )
So, by (8), (9) and (2) with m =2,

205(Z) =51 (Z)2 —5(Z2)= (d2 — a1)2 —3d? +4a; —ay
=d*-3d>— 2d2a1 + a% +4a; —as.

The inequality 02(Z) < (d* —3d?)/2 is equivalent to
—2d*a; +a} 4 4a; — ay < 0. (10)
Clearly, 0 < a; < d? by (6). So a; < 2d*>—4 and

—2d%a) +a*+4a, = aj(a —2d*>+4) <0
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with equality iff a; = 0. Trivially, —a, < 0 with equality iff a = 0. This proves
(10). Moreover, equality in (10) is attained iff a; = a» = 0. The proof of part (ii) is
completed.

To prove part (iii) note that, by (5),

53(Z) = 10d® — 15a; 4 6a; — a3 = 155, (Z) + 6a; — a3 — 5d>. (11)
Now, using (2) with m = 3, we obtain
603(Z) = 51(Z)* = 351(Z)52(2) + 253(2), (12)
which in view of (8), (9), (11) equals
(d* —ar)® = 3(d* — a1)(3d* — 4a; + az) +20d> — 30a; + 12a; — 2as.
We need to show that the above expression, denoted by F(d,a;,a;,as3), does not exceed
F(d,0,0,0) = d® —9d* + 204>

with equality iff a; = a, = a3 =0.

It is evident that F(d,a;,as,a3) < F(d,a1,a3,0), with equality iff a3 = 0. Next,
the coefficient for ay is 12 — 3d?+ 3a;. Consider two cases: a; < d*>—4 and a; >
d>—4.

In the first case, a; < d* — 4, the coefficient for a, is negative. Consequently,
F(d,a,a;,0) < F(d,a;,0,0) with equality iff a; = 0. It remains to show that

F(d,a;,0,0) = (d* — a,)* = 3(d* — a1) (3d* — 4a;) + 20d° — 30a,

attains its maximum in a; € [0,d?] at a; = 0. Indeed, the difference F(d,a;,0,0) —
F(d,0,0,0) is equal to

—ay(a} — (3d* — 12)a; 4 3d* — 21d° + 30).

Evidently, this is zero if a; = 0, whereas for a; > 0 the above expression is negative,
because —a; < 0 and a2 — (3d*> — 12) +3d* —21d> + 30 > 0. The latter inequality is
indeed true, since the discriminant of the quadratic polynomial is negative for d > 4:

(3d> — 12)> — 4(3d* — 21d> +30) = —3((d* —2)*— 12) < 0.

We now turn to the alternative case, namely, a; > d>—4.Then, 0<d*—a 1 <4,
and hence s1(Z)? < (d —a1)? < 64. In view of s{(Z),52(Z),az >0 and 0 < ap < d?,
by (11) and (12), we get

603(Z) < 51(2)> +253(Z) < 64+30s1(Z) + 12a; — 10d>

<
<61+ 120+ 12d% — 10d* = 181 +2d>.
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It is easy to see that
181+ 2d* < F(d,0,0,0) = d°® — 9d* 4 204>

for d > 4, so in the second case the value F(d,0,0,0) of the function 603(Z) is not
attained. This completes the proof of (iii).
In part (iv), by (2) with m =4, we obtain

24e4(Z) = 51(Z)* — 651(2)*52(Z) + 352(2)* + 851(Z)s53(Z) — 654(Z).
By (5).

54(Z) = 35d° — 56a; +28a; — 8az +ay
= 56s1(Z) +28a; — 8az +as — 21d>.

Combining this with (9) and (11), we find that 24e4(Z) equals

D(y,a2,a3,a4) = y* — 6y*(dy+a, — d*) + 3(4y + ay — d*)* (13)
+8y(15y + 6ay — az — 5d°)
—6(56y +28as — 8az +as — 21d>),

where
y:=s1(2) =d*—a

by (8).

In all what follows we will show that the maximum of the function ®(y,a;,as,as)
in the range 0 < y,a2,a3,a4 < d* (plus some extra restrictions coming from the in-
equalities s3(Z),s3(Z),s4(Z) > 0 which we will not specify) is attained at the unique
point

(v,az,a3,a4) = (d*,0,0,0).

This would complete the proof of (iv), because
®(d?,0,0,0) = d® — 184° + 107d* — 210d>

by (13).

Clearly, the maximum of ®(y,a,,as3,a4) is attained only if a4 = 0, since the only
term containing a4 is —6as. The coefficient for a3 is 48 — 8y = 8(6 —y). We will
show that y > 6, and so in the maximum point a3 must be zero too.

Indeed, in case y < 6 in view of 0 < as,a3 < d* and s, (Z),54(Z) = 0 we deduce
that

D(y,az,a3,0) < y* +3(4y+ay— d*)* +8y(15y + 6as — a3 — 5d°).

From 0 < 55(Z) = 4y +ay —d* < 4y and

0 < s54(Z) = 15y + 6as — a3 — 5d* < 15y + d?,
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it follows that

D(y,a3,a3,0) < y* +48y> + 8y(15y + d°)
< 6% +48-6%+120- 6%+ 484% = 7344 + 484°,
which is strictly less than d® — 184° +107d* —210d? for each d > 5. Thus, y > 6 and

so a3 must be zero.
Inserting a3 = a4 =0 into @ defined in (13) we obtain

D(y,a,0,0) =y* — 6y*(4y+ay —d*) + 3(dy+ ay — d°)*
+8y(15y + 6a; — 5d°) — 6(56y +28a, — 21d°).

Here, the terms involving a, are
—6y%ay + 3a3 + 6ay(4y — d*) + 48yay — 168ay = 3as(ay — 2y° + 24y — 2d° — 56).
The factor a, — 2y> + 24y — 2d*> — 56 is negative, because d> — a, > 0 and
2y? — 24y +2d° + 56 — ap > 2y* — 24y +d*> + 56
=2(y—6)*+d*~16>0

by d > 5. This shows that ®(y,a,,0,0) attains the maximum only if a, = 0.
Inserting a; = 0 into @ we find that
G(y) : = ®(y,0,0,0) = y* — 6y*(4y — d*) + 3(4y — d*)?
+8y(15y — 5d°) — 6(56y — 21d?)
= y* —24y% 4 (6d% + 168)y* — (64d> +336)y + 3d* + 1264>.
Note that
G'(y) = 4y® —72y% + (12d* + 336)y — (64d> +336)

and
G'(y) = 12y* — 144y + 12d°+336 = 12((y — 6)> + d*> — 8) > 0.

Hence, G'(y) is increasing in R. As G'(0) < 0, the only root y; of G'(y) =0 is
positive. This means that G(y) is decreasing in [0,y,] and increasing in [yg,+o°).
Observe that
G'(d?) = 4d® — 72d* + 12d* + 336d> — 64d*> — 336
= 4d°® — 60d* +272d* —336 >0
for d >5. As G'(y) <0 for 0 <y < y,, this yields y; < d*>. Hence, the maximum

of G(y) in the interval [0,d?] is attained at one of its endpoints y = 0 or y = d>. The
inequality

3d* +126d*> = G(0) < G(d*) = d® — 18d° + 107d* — 210d*
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is equivalent to
d® —18d* +104d*> — 336 > 0,

which clearly holds for d > 5. Therefore, the maximum of the function G in [O,dz] is
attained at the right endpoint of the interval only, that is,

max_G(y) = G(d*) = ®(d*,0,0,0).
0<y<d2

This concludes the proof of (iv). The proof of Theorem 1 is completed.
Note that by the same method one can obtain similar results for linear forms in
0, (Z). For instance, by (8) and (9), we obtain the following identity:

2(05(Z) — ko1 (Z)) = $1(2)* — 52(Z) — 2ks, (Z)
= (d* — a))* — (3d* — 4a) + ay) — 2k(d* — ay)
=d* — (2k+3)d*> —a;(2d*> — 2k —4 —a;) —ay.

From 0 < ay,a; < d?, it is easy to see that its right hand side is less than or equal to
d* — (2k+3)d? when k < d?/2 — 2 with equality attained iff a; = ay = 0. (The case
(ay,a2) = (d?,0) for k =d?/2—2 is impossible, since a; = d* yields a, = d* by (6).)
Thus, the following statement (more general than Theorem 1 (ii)) is true:

PROPOSITION 1. Let d > 3, k € (—o0,d*/2 —2] and let Z be as in (1) with
yoooy2q € U. Then,

d* — (2k+3)d?
0:(Z)— ko1 (Z) < %
with equality iff z, . . ,ZdETandZ _13j = 2712—
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