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ON THE AREAS OF MIDPOINT POLYGONS

CHAO WANG AND ZHONGZI WANG ∗

(Communicated by M. A. Hernández Cifre)

Abstract. For a polygon V1...Vn in the Euclidean plane, let V 1
1 ...V 1

n denote its midpoint polygon.
By induction, its m -th midpoint polygon Vm

1 ...Vm
n is defined to be the midpoint polygon of

Vm−1
1 ...Vm−1

n . In this paper, we will give different kinds of formulas of the area of Vm
1 ...Vm

n .
We will describe the limit behavior of the area as m goes to infinity, and we will determine the
infimum and the supremum of the area among all convex V1...Vn with a fixed area. Some affine
invariants derived from the area will also be discussed.

1. Introduction

Polygon sequences generated by performing iterative processes on an initial poly-
gon have been studied widely, see [6], [4], [8], [3], [5] and the reference therein. A
most popular one of such sequences is given by the midpoint polygons. It is also called
Kasner polygon sequence, after the work [11] in 1903.

The midpoint polygon sequence and its limit (with suitable normalizations) often
provide interesting figures in dynamics, geometry, as well as in topology. For example,
in general case, the limit of a midpoint polygon sequence will be an affine regular
polygon, which has been proved in the literature many times, see [2], [4], [9] and [7].
It is observed recently that a midpoint polygon sequence and its limit can keep to be
knotted for some polygon in the 3-space [13].

An elementary problem about the ratio of the areas of a convex polygon and its
midpoint polygon was posted only in later 1990’s according to [14] and [1], and the
various answers are obtained more recently, see [1], [10] and [12].

In this paper, we will give different kinds of formulas of the area of m-th midpoint
polygons for all integers m > 0. We will describe the limit behavior of the area as
m goes to infinity, and we will determine the infimum and the supremum of the area
among all convex polygons with a fixed area. Some affine invariants derived from the
area will also be discussed.

We start from some definitions. For an integer n � 3, let V1...Vn be a polygon in
the Euclidean plane E2 , where the vertices of V1...Vn can be repeated, namely there

Mathematics subject classification (2010): 51M25, 52A38, 52A40.
Keywords and phrases: Area, midpoint polygon, affine invariant.
We thank the referee for valuable comments which enhance the paper.
The first author is supported by Science and Technology Commission of Shanghai Municipality (STCSM), grant No.

18dz2271000.
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-23-28

357

http://dx.doi.org/10.7153/mia-2020-23-28


358 C. WANG AND Z. WANG

may exist j �= k such that Vj = Vk . The m-th midpoint polygon Vm
1 ...Vm

n of V1...Vn

is defined by induction: Firstly for m = 0, let V 0
j = Vj for 1 � j � n . Suppose that

Vm
1 ...Vm

n is defined, then let Vm+1
j be the midpoint of the segment Vm

j Vm
j+1 , where we

used the convention that Vj =Vj+n and Vm
j = Vm

j+n for all integers j .

DEFINITION 1.1. For a fixed right-hand coordinate system O−xy of E2 and any
two points A = (a1,a2) and B = (b1,b2) , the operation “∧” is defined by

A∧B =
1
2
(a1b2−a2b1).

It is linear in both A and B , and A∧B+B∧A = 0.

DEFINITION 1.2. For an integer t , the area function At is defined by

At(V1...Vn) =
n

∑
j=1

Vj ∧Vj+t.

This definition of At is independent of the choice of the origin O , and A1(V1...Vn)
equals the oriented area of V1...Vn if V1...Vn is simple (Lemma 2.1). Here we call a
polygon simple if it has no repeated vertices and its edges only intersect at vertices. For
any polygon V1...Vn in E2 , we will use A1(V1...Vn) to define its area.

A prime fact in the plane geometry is that A1(V 1
1 V 1

2 V 1
3 ) = A1(V1V2V3)/4 and

A1(V 1
1 V 1

2 V 1
3 V 1

4 ) = A1(V1V2V3V4)/2. However, there is no such equality anymore when
n � 5. We call a simple polygon convex if its interior angles are all smaller than π . For
convex polygons we have the following inequalities (see [12]):

1
2

<
A1(V 1

1 V 1
2 V 1

3 V 1
4 V 1

5 )
A1(V1V2V3V4V5)

<
3
4
,

1
2

<
A1(V 1

1 ...V 1
n )

A1(V1...Vn)
< 1, n � 6.

Moreover, the inequalities are sharp, namely any ratio between the lower bound and the
upper bound can be realized by a convex polygon.

In this paper, we will describe the limit behavior of A1(Vm
1 ...Vm

n ) as m goes to
infinity, and for each m we will determine the infimum and supremum of the ratio
A1(Vm

1 ...Vm
n )/A1(V1...Vn) among all convex polygons. Our study is based on the fol-

lowing formulas of A1(Vm
1 ...Vm

n ) .

THEOREM 1.3. Let r be the largest integer such that r < n/2 . For an integer k ,
let Ck

m be the coefficient of xk in the expansion of (1+ x)m . Then A1(Vm
1 ...Vm

n ) can be
given by any of the three formulas:

(1)
r

∑
s=1

cos2m πs
n

A ∞
s (V1...Vn), A ∞

s (V1...Vn) = nsin
2πs
n

As∧Bs,

(2)
r

∑
t=1

T (m, t)At(V1...Vn), T (m,t) =
2
n

n−1

∑
s=1

cos2m πs
n

sin
2πs
n

sin
2πst

n
,

(3)
r

∑
t=1

C(m, t)At(V1...Vn), C(m,t) =
1
4m ∑

k≡t

(Cm−k+1
2m −Cm−k−1

2m ),
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where k ≡ t means that k ≡ t (modn) , and As and Bs are given by

As =
2
n

n

∑
p=1

cos
2πsp

n
Vp, Bs =

2
n

n

∑
q=1

sin
2πsq

n
Vq.

Theorem 1.3(1) is an analogy of the following formula given in [13].

Vm
j =

1
n

n

∑
t=1

Vt +
r

∑
s=1

cosm πs
n

Wm
j,s, Wm

j,s = cos
πs(m+2 j)

n
As + sin

πs(m+2 j)
n

Bs,

where m > 0. Even though the polygon Wm
1,s...W

m
n,s is dependent on m , there are es-

sentially at most two such polygons, and they have the same area (see [13]). Actually,
a direct computation shows that

A1(Wm
1,s...W

m
n,s) = A ∞

s (V1...Vn), ∀m > 0.

Analogous to the result of [13], we have the following theorem.

THEOREM 1.4. Let Vm
1 ...Vm

n be the m-th midpoint polygon of V1...Vn , then

lim
m→∞

A1(Vm
1 ...Vm

n ) = 0.

If A1(Vm
1 ...Vm

n ) �= 0 for some m � 0 , then there exists a smallest integer k such that
1 � k < n/2 and A ∞

k (V1...Vn) �= 0 . Then

lim
m→∞

(cos2m πk
n

)−1A1(Vm
1 ...Vm

n ) = A ∞
k (V1...Vn).

As a special case, if V1...Vn is convex, then A ∞
1 (V1...Vn) �= 0 .

Theorem 1.3(2) and Theorem 1.3(3) will be useful in estimation and concrete com-
putation. In fact, the trigonometric coefficient T (m,t) and the combinatoric coefficient
C(m,t) are identical (Lemma 2.5). This coefficient is zero when m+1 < t and is posi-
tive when m+1 � t (Lemma 2.6). If V1...Vn is convex, then the area function At with
1 < t < n/2 satisfies the sharp inequality (Proposition 4.1)

0 <
At(V1...Vn)
A1(V1...Vn)

< min{t,n−2t}.

With these results we have the following theorem.

THEOREM 1.5. If V1...Vn is a convex polygon with n � 5 , then for m > 0 ,

T (m,1) <
A1(Vm

1 ...Vm
n )

A1(V1...Vn)
< ∑

1�t<n/2

T (m,t)min{t,n−2t},

C(m,1) <
A1(Vm

1 ...Vm
n )

A1(V1...Vn)
< ∑

1�t<n/2

C(m,t)min{t,n−2t}.

Moreover, any ratio satisfying the inequalities can be realized by a convex polygon.
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Similarly, the “limit area” A ∞
1 (V1...Vn) can be presented as a linear combination

of At(V1...Vn) with positive coefficients (Proposition 3.1), and we have the following
estimation of the ratio A ∞

1 (V1...Vn)/A1(V1...Vn) for convex polygons.

THEOREM 1.6. If V1...Vn is a convex polygon with n � 5 , then

4
n

sin2 2π
n

<
A ∞

1 (V1...Vn)
A1(V1...Vn)

<
4
n ∑

1�t<n/2

sin
2π
n

sin
2πt
n

min{t,n−2t}.

Moreover, any ratio satisfying the inequality can be realized by a convex polygon.

By Theorem 1.3(1), if n = 3 or n = 4, then A ∞
1 (V1...Vn) = A1(V1...Vn) , and the

ratio in Theorem 1.5 is 1/4m or 1/2m respectively. In Theorem 1.5, the case when m =
1 gives the results in [12]. Note that all the above ratios of areas are affine invariants.
They confine the shape of the polygon and measure the distance between polygons in
certain degree. Actually, if we let A m

1 (V1...Vn) = A1(Vm
1 ...Vm

n ) for m � 0, then we
have three kinds of functions defined on polygons, A m

1 , A ∞
s , At , and any ratio of two

of them will give us an affine invariant.

THEOREM 1.7. Let r be the largest integer such that r < n/2 . Then for any given
integers k,m � 0 , any A m

1 , A ∞
s , At can be presented as a linear combination of the

functions in any of the following three sets:

{A k+1
1 ,A k+2

1 , . . . ,A k+r
1 },{A ∞

1 ,A ∞
2 , . . . ,A ∞

r },{A1,A2, . . . ,Ar}.
Moreover, the map from the set of polygons to the r -dimensional vector space Rr de-
fined by the functions in the same set is surjective.

Let Pn be the set of polygons V1...Vn , where A1(Vm
1 ...Vm

n ) �= 0 for some m � 0.
Then by the above theorem, the functions in any of the three sets give us a function
from Pn onto the (r−1)-dimensional real projective space RPr−1 , which is an affine
invariant, and the three invariants differ by projective transformations.

REMARK 1.8. The midpoint polygon is also called the Kasner polygon. In [11],
Kasner considered the problem whether a polygon V1...Vn can be realized as a midpoint
polygon of another polygon. He showed that if n is odd, then there exists a unique
polygon U1...Un such that U1

1 ...U1
n equals V1...Vn ; if n is even, then either there exists

no such U1...Un or there exists infinitely many such U1...Un ; moreover, if n is even
and there exists such U1...Un , then there exists a unique such U1...Un such that U1...Un

can also be realized as a midpoint polygon.
By Theorem 1.7, all the possible U1...Un have the same area. Hence any midpoint

polygon belongs to a unique two sided infinite sequence of midpoint polygons with the
areas determined by the given polygon (Theorem 5.1 and Corollary 5.3).

The structure of the paper is as follows.
In Section 2, we give some basic lemmas, mainly about the definition of the area

function and the properties of the binomial coefficients Ck
m .
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In Section 3, we give the proofs of Theorem 1.3 and Theorem 1.4.
In Section 4, we will consider the so called “weakly convex” polygons, and prove

a generalized version of Theorem 1.5 and Theorem 1.6 for them.
Finally, in Section 5, we will restate Theorem 1.3 in terms of matrices, and use

it to prove Theorem 1.7. Then we will give an example about the hexagons, which
illustrates our main results.

2. Some preliminary facts

LEMMA 2.1. The definition of At is independent of the choice of the origin O,
and At(V1...Vn) = −At(Vn...V1) , where Vn...V1 is obtained by reversing the order of
the vertices of V1...Vn . If V1...Vn is simple, then the absolute value of A1(V1...Vn)
equals the area of V1...Vn .

Proof. Let V be an arbitrary point in E2 , then

n

∑
j=1

(Vj −V )∧ (Vj+t −V)

=
n

∑
j=1

Vj ∧Vj+t −
n

∑
j=1

Vj ∧V −V ∧
n

∑
j=1

Vj+t

=
n

∑
j=1

Vj ∧Vj+t .

Namely At is unchanged if we use V as the origin. For Vn...V1 , we have

At(Vn...V1) =
n

∑
j=1

Vj ∧Vj−t = −
n

∑
j=1

Vj−t ∧Vj = −At(V1...Vn).

Note that in Definition 1.1 the area of the triangle OAB is A1(OAB) if OAB is
anticlockwise and is −A1(OAB) if OAB is clockwise. If V1...Vn is a triangle, then we
can choose O to be V1 , and the result holds. For general V1...Vn , we will divide it into
triangles by adding suitable vertices and edges.

If V1...Vn is convex, then we add edges V1Vj for 2 < j < n , and we have

A1(V1...Vn) =
n−1

∑
j=2

A1(V1VjVj+1).

Otherwise, we can assume that the interior angle ∠VnV1V2 � π . Then we can add a
vertex V and an edge V1V such that: V is in the interior of some edge VjVj+1 with
1 < j < n , V1V divides ∠VnV1V2 into two angles smaller than π , and the interior of
V1V does not intersect V1...Vn . This edge V1V divides V1...Vn into two simple polygons
V1...VjV and V1VVj+1...Vn , and

A1(V1...Vn) = A1(V1...VjV )+A1(V1V...Vj+1Vn).
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By induction, we can repeat this process until all the polygons are convex. Then we can
divide the polygons into triangles. Since in each step the function A1 is additive and
all the triangles will have the same orientation, anticlockwise or clockwise, we get the
result by the triangle case.

LEMMA 2.2. Ck
m = 0 if k < 0 or k > m, and Ck

m = Ck
m−1 +Ck−1

m−1 when m > 0 .

Proof. It can be obtained by comparing the coefficient of xk in the expansions of
the two sides of the equality (1+ x)m = (1+ x)m−1 + x(1+ x)m−1 .

LEMMA 2.3. Let ε = cos 2π
n + isin 2π

n be the unit n-th root, then

n−1

∑
s=0

εsk =

{
n n | k
0 n � k

LEMMA 2.4. For a given integer t ,

∑
k≡t

Ck
m =

1
n

n−1

∑
s=0

(1+ εs)mε−st ,

where k ≡ t means that k ≡ t (modn) .

Proof. By Lemma 2.2, the summation on the left side is for the k such that k ≡ t
and 0 � k � m . By the definition of Ck

m , we have

1
n

n−1

∑
s=0

(1+ εs)mε−st =
1
n

n−1

∑
s=0

m

∑
k=0

Ck
mεskε−st =

1
n

m

∑
k=0

Ck
m

n−1

∑
s=0

εs(k−t) = ∑
k≡t

Ck
m.

For the last equality, we have used Lemma 2.3.

LEMMA 2.5. For m � 0 and any integer t , T (m, t) = C(m,t) .

Proof. By Lemma 2.4,

C(m, t) =
1
4m ∑

k≡t

(Cm−k+1
2m −Cm−k−1

2m )

=
1

4mn

n−1

∑
s=0

(1+ εs)2m(ε−s(m−t+1) − ε−s(m−t−1))

=
1

4mn

n−1

∑
s=0

(1+ cos
2πs
n

+ isin
2πs
n

)2mεs(t−m)(ε−s− εs)

=
1

4mn

n−1

∑
s=1

(2cos2 πs
n

+2isin
πs
n

cos
πs
n

)2mεs(t−m)(ε−s − εs)



ON THE AREAS OF MIDPOINT POLYGONS 363

=
1
n

n−1

∑
s=1

cos2m πs
n

εsmεs(t−m)(ε−s− εs)

=
2
n

n−1

∑
s=1

cos2m πs
n

sin
2πs
n

sin
2πst

n
= T (m,t).

For the last equality, we have used the fact that C(m,t) is a real number.

LEMMA 2.6. For m � 0 and 1 � t < n/2 , C(m, t) = 0 when m + 1 < t , and
C(m,t) > 0 when m+1 � t .

Proof. The term in the summation of C(m,t) is nonzero only if −m− 1 � k �
m+1. When m+1 < t , we have −m−1 > −t > t −n . Then k ≡ t (modn) does not
hold when −m−1 � k � m+1. Hence C(m,t) = 0.

Similarly when m + 1 = t , we have −m− 1 = −t > t − n . Then k ≡ t (modn)
holds only if k = m+1. Hence C(m,t) = 1/4m > 0. Since n � 3, by Lemma 2.5, we
have C(m,1) = T (m,1) > 0. By Lemma 2.2, for m > 0 we have

C(m, t) =
1
4m ∑

k≡t

(Cm−k+1
2m −Cm−k−1

2m )

=
1
4m ∑

k≡t

(Cm−k+1
2m−1 +Cm−k

2m−1−Cm−k−1
2m−1 −Cm−k−2

2m−1 )

=
1
4m ∑

k≡t

(Cm−k+1
2m−2 +2Cm−k

2m−2−2Cm−k−2
2m−2 −Cm−k−3

2m−2 )

=
1
2
C(m−1,t)+

1
4m ∑

k≡t

(Cm−k+1
2m−2 −Cm−k−3

2m−2 )

=
1
2
C(m−1,t)+

1
4
C(m−1,t−1)+

1
4
C(m−1,t +1).

Let r be the largest integer such that r < n/2. By the above relation and induction, we
only need to show that C(m,r) > 0 when m+1 > r . By the above relation,

C(m,r) =
1
2
C(m−1,r)+

1
4
C(m−1,r−1)+

1
4
C(m−1,r+1).

If n is odd, then n = 2r + 1 and T (m− 1,r) + T (m− 1,r + 1) = 0. If n is even,
then n = 2r + 2 and T (m− 1,r + 1) = 0. Hence by Lemma 2.5, C(m,r) is a linear
combination of C(m− 1,r) and C(m− 1,r− 1) with positive coefficients. Then we
have C(m,r) > 0 by induction.

3. The area formulas

By Lemma 2.5, we know that Theorem 1.3(2) and Theorem 1.3(3) are equiva-
lent. In what follows, we will first show that Theorem 1.3(1) and Theorem 1.3(2) are
equivalent. Then we will prove Theorem 1.3(1) and use it to prove Theorem 1.4.
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PROPOSITION 3.1. Let r be the largest integer such that r < n/2 , then

A ∞
s (V1...Vn) =

4
n

r

∑
t=1

sin
2πs
n

sin
2πst

n
At(V1...Vn).

Proof. We represent As ∧Bs as a linear combination of At(V1...Vn) , t = 1, . . . ,r ,
as follows:

As ∧Bs =
4
n2

n

∑
p=1

n

∑
q=1

cos
2πsp

n
sin

2πsq
n

Vp∧Vq

=
2
n2

n

∑
p=1

n

∑
q=1

(cos
2πsp

n
sin

2πsq
n

− sin
2πsp

n
cos

2πsq
n

)Vp∧Vq

=
2
n2

n

∑
p=1

n

∑
q=1

sin
2πs(q− p)

n
Vp∧Vq

=
2
n2

n

∑
p=1

n

∑
q=1

sin
2πsq

n
Vp∧Vp+q.

Then we divide the summation about q into two parts.

As∧Bs =
2
n2

n

∑
q=1

n

∑
p=1

sin
2πsq

n
Vp∧Vp+q

=
2
n2

r

∑
q=1

n

∑
p=1

sin
2πsq

n
Vp∧Vp+q +

2
n2

n−1

∑
q=n−r

n

∑
p=1

sin
2πsq

n
Vp∧Vp+q

=
2
n2

r

∑
q=1

n

∑
p=1

sin
2πsq

n
Vp∧Vp+q +

2
n2

r

∑
q=1

n

∑
p=1

sin
2πsq

n
Vp−q∧Vp

=
4
n2

r

∑
q=1

sin
2πsq

n

n

∑
p=1

Vp∧Vp+q.

By the definition of A ∞
s (V1...Vn) , we have the result.

Proof of Theorem 1.3. By Proposition 3.1, the right side of the identity

n
r

∑
s=1

cos2m πs
n

sin
2πs
n

As∧Bs =
n
2

n−1

∑
s=1

cos2m πs
n

sin
2πs
n

As ∧Bs

equals Theorem 1.3(2). The left side is Theorem 1.3(1). Hence, by Lemma 2.5, the
three formulas of Theorem 1.3 are identical. We only need to show that the above
quantity equals A1(Vm

1 ...Vm
n ) .

We first show the following identity by induction.

Vm
j =

1
2m

m

∑
k=0

Ck
mVj+k.
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It is clear when m = 0. Suppose that it is true for m . For m+1 we have

Vm+1
j =

1
2
(Vm

j +Vm
j+1)

=
1
2
(

1
2m

m

∑
k=0

Ck
mVj+k +

1
2m

m

∑
k=0

Ck
mVj+1+k)

=
1

2m+1 (C0
mVj +

m

∑
k=1

Ck
mVj+k +

m−1

∑
k=0

Ck
mVj+1+k +Cm

mVj+1+m)

=
1

2m+1 (C0
m+1Vj +

m

∑
k=1

Ck
mVj+k +

m

∑
k=1

Ck−1
m Vj+k +Cm+1

m+1Vj+1+m)

=
1

2m+1

m+1

∑
k=0

Ck
m+1Vj+k.

For the last equality, we have used Lemma 2.2. Then we have

Vm
j =

1
2m

m

∑
k=0

Ck
mVj+k =

1
2m

n−1

∑
t=0

∑
k≡t

Ck
mVj+k =

1
2m

n−1

∑
t=0

∑
k≡t

Ck
mVj+t .

Let Em
t denote the coefficient of Vj+t . By Definition 1.2, we have

A1(Vm
1 ...Vm

n ) =
n

∑
j=1

Vm
j ∧Vm

j+1

=
n

∑
j=1

(
n−1

∑
p=0

Em
p Vj+p)∧ (

n−1

∑
q=0

Em
q Vj+1+q)

=
n

∑
j=1

(
n−1

∑
p=0

Em
p− jVp)∧ (

n−1

∑
q=0

Em
q− j−1Vq)

=
n−1

∑
p=0

n−1

∑
q=0

(
n

∑
j=1

Em
p− jE

m
q− j−1)Vp∧Vq.

By Lemma 2.4, the coefficient of Vp∧Vq in the last sum is given by

n

∑
j=1

Em
p− jE

m
q− j−1 =

1
4mn2

n

∑
j=1

n−1

∑
s=0

(1+ εs)mε−s(p− j)
n−1

∑
t=0

(1+ εt)mε−t(q− j−1)

=
1

4mn2

n−1

∑
s=0

n−1

∑
t=0

(1+ εs)m(1+ εt)mε−sp−tq+t
n

∑
j=1

ε j(s+t)

=
1

4mn

n−1

∑
s=0

(1+ εs)m(1+ ε−s)mε−sp+sq−s
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=
1
n

n−1

∑
s=0

cos2m πs
n

ε−sp+sq−s

=
1
n

n−1

∑
s=0

cos2m πs
n

cos
2πs(q− p−1)

n
.

For the third equality, we have used Lemma 2.3, and for the last equality, we have used
the fact that this coefficient is a real number. Finally we have

A1(Vm
1 ...Vm

n ) =
1
n

n−1

∑
p=0

n−1

∑
q=0

n−1

∑
s=0

cos2m πs
n

cos
2πs(q− p−1)

n
Vp∧Vq

=
1
n

n−1

∑
s=0

cos2m πs
n

n

∑
p=1

n

∑
q=1

cos
2πs(q− p−1)

n
Vp∧Vq

=
1
n

n−1

∑
s=1

cos2m πs
n

n

∑
p=1

n

∑
q=1

sin
2πs
n

sin
2πs(q− p)

n
Vp∧Vq

=
2
n

n−1

∑
s=1

cos2m πs
n

sin
2πs
n

n

∑
p=1

n

∑
q=1

cos
2πsp

n
sin

2πsq
n

Vp∧Vq

=
n
2

n−1

∑
s=1

cos2m πs
n

sin
2πs
n

As∧Bs.

For the third and fourth equalities, we have used Vp∧Vq = −Vq∧Vp .

Proof of Theorem 1.4. First note that

1 > cos
π
n

> cos
2π
n

> · · · > cos
rπ
n

> 0,

where r is the largest integer such that r < n/2. Hence by Theorem 1.3(1), as m goes
to infinity, A1(Vm

1 ...Vm
n ) converges to 0. If A1(Vm

1 ...Vm
n ) �= 0 for some m � 0, then

by Theorem 1.3(1) the required integer k exists, and

lim
m→∞

(cos2m πk
n

)−1A1(Vm
1 ...Vm

n )

= lim
m→∞

r

∑
s=k

(cos
πs
n

/cos
πk
n

)2mA ∞
s (V1...Vn)

=A ∞
k (V1...Vn).

If V1...Vn is convex and A ∞
1 (V1...Vn) = 0, then A1 and B1 are linearly dependent.

Hence there exists θ ∈ R1 such that

sinθ
n

∑
t=1

cos
2πt
n

Vt + cosθ
n

∑
t=1

sin
2πt
n

Vt = 0.
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By Lemma 2.3, we have

n

∑
t=1

sin(θ +
2πt
n

) = sinθ
n

∑
t=1

cos
2πt
n

+ cosθ
n

∑
t=1

sin
2πt
n

= 0.

Namely the sum of the coefficients of those Vt is zero. Since n � 3, there exists a
coefficient which is nonzero. There are integers 1 � p � q � n such that sin(θ + 2πt

n )
is positive (or negative) for p � t � q and is non-positive (or non-negative) for q < t <
n+ p . Then

q

∑
t=p

sin(θ +
2πt
n

)Vt = −
n+p−1

∑
t=q+1

sin(θ +
2πt
n

)Vt .

Multiply the equation by (∑q
t=p sin(θ + 2πt

n ))−1 , then all the coefficients become non-
negative and the sum of the coefficients of each side is 1.

The point given by the left side is in the convex hull of Vp...Vq , and the point given
by the right side is in the convex hull of Vq+1...Vn+p−1 . Since V1...Vn is convex, the
two convex hulls do not intersect, and we get a contradiction.

4. The area inequalities

We call a polygon weakly convex if it is in the boundary of its convex hull such
that its edges only intersect at vertices and it is not a single point. We will first prove
the following proposition about weakly convex polygons. Then we will use it to prove
Theorem 4.2, which contains Theorem 1.5 and Theorem 1.6 as a part.

PROPOSITION 4.1. If V1...Vn is a weakly convex polygon with n � 5 , then

0 � At(V1...Vn)
A1(V1...Vn)

� min{t,n−2t}, ∀1 < t <
n
2
.

Moreover, except for the bounds, any ratio satisfying the inequality can be realized by
a convex polygon, the bounds can only be realized by weakly convex polygons, and
there exist two weakly convex polygons such that one realizes the lower bounds for all
1 < t < n/2 and the other realizes the upper bounds for all 1 < t < n/2 .

Proof. We first prove the inequality for a fixed t . Since V1...Vn is not a single
point and its edges only intersect at vertices, its convex hull has nonzero area. Then
since it is in the boundary of its convex hull and its edges only intersect at vertices, it
can be obtained by adding vertices to a convex polygon U1...Un′ and as the subscript of
Vj increases it turns around U1...Un′ for one lap.

Suppose that among the n vertices exactly k of them coincide at a point U . We
call U a point of multiplicity k . Since U ∧U = 0, the quantity At(V1...Vn) has the
form U ∧V +W , where V is a linear combination of the remaining n− k vertices and
W is the sum of the terms which do not involve U . Let U move in a line segment
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AB . We have U = (1− s)A+ sB , where 0 � s � 1. Then At(V1...Vn) becomes a linear
function of s . Hence it takes extremum when s = 0 and s = 1.

In what follows, we will move the vertices of V1...Vn along line segments such that
At(V1...Vn) does not increase (or does not decrease), A1(V1...Vn) does not change, and
the polygon keeps to be weakly convex. When the vertices coincide, we will move
them together as one point.

Case 1: If there exist vertices of V1...Vn in the interior of edges of U1...Un′ . Sup-
pose that U is a point of multiplicity k in the interior of U1U2 . We can move U in two
directions along U1U2 until it meets other vertices of V1...Vn . We do the movement
such that At(V1...Vn) does not increase (or does not decrease). When U meets other
vertices, it becomes a point of multiplicity k′ with k′ > k . We can repeat this process
until no vertices of V1...Vn lie in the interior of edges of U1...Un′ .

Case 2: If n′ > 3 and no vertices of V1...Vn lie in the interior of edges of U1...Un′ .
Suppose that U2 is a point of multiplicity k . Let L be the line passing U2 and parallel
to U1U3 . Let U ′

1 and U ′
3 be the intersections of L and the lines containing Un′U1 and

U3U4 respectively. We can move U2 in two directions along U ′
1U

′
3 until it meets the

intersections. We do the movement such that At(V1...Vn) does not increase (or does
not decrease). When U2 meets U ′

1 or U ′
3 , we get a new convex polygon with n′ − 1

edges, and there exist vertices of V1...Vn in the interior of its edges.
In each case, A1(V1...Vn) does not change, and V1...Vn keeps to be weakly convex.

We can do the movements in the two cases alternately, and finally we can move V1...Vn

to a triangle ABC such that no vertices of V1...Vn lie in the interior of its edges. Assume
that V1...Vn is moved to W1...Wn , where W1, . . . ,Wa coincide at A , Wa+1, . . . ,Wa+b

coincide at B , Wa+b+1, ...,Wa+b+c coincide at C , and a + b + c = n . Then we only
need to prove

0 � At(W1...Wn)
A1(W1...Wn)

� min{t,n−2t}.

In the summation formula of At(W1...Wn) we call A∧B , B∧C , C∧A the posi-
tive terms, and B∧A , C∧B , A∧C the negative terms. By Lemma 2.1, A1(W1...Wn)
and At(W1...Wn) are independent of the choice of the origin O . If O = A , then
A1(W1...Wn) = B∧C , and each Wj ∧Wj+t is either zero, or B∧C , or C ∧B . Sup-
pose that there are p terms of B∧C and q terms of C∧B . Then

At(W1...Wn)
A1(W1...Wn)

= p−q.

Proof of the lower bound: If there is a negative term Wj ∧Wj+t = B∧A , namely
Wj = B and Wj+t = A , then c < t . Hence, if there is a negative term for each edge of
ABC , then a,b,c < t . Then since t < n/2, for any negative term Wj ∧Wj+t , its “next”
term Wj+t ∧Wj+2t is a positive term for the same edge. Hence p � q . Otherwise, we
can assume that there exists no negative term for BC , and we also have p � q . Hence
we always have p−q � 0.

Proof of the upper bound: Since p � t , we have p− q � t . We need to show
that n− 2t is also an upper bound. If there are two of a , b , c bigger than t , we can
assume that a,b > t . Then c < n−2t , and p < n−2t . Hence p−q < n−2t . If there
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are two of a , b , c having the sum not bigger than t , we can assume that b + c � t .
Then p = q = 0. Below we assume that b,c � t , and the sum of any two of a , b , c is
bigger than t . Then p = b+ c− t . If a > t , then q = 0, and we have

p−q = (b+ c− t)−0= n−a− t < n−2t.

If a � t , then q = t−a , and we have

p−q = (b+ c− t)− (t−a) = n−2t.

Then we consider the realization problem. By the above discussion, when b =
c = 1, we have b+c � t for 1 < t < n/2. Then p−q = 0 for 1 < t < n/2. On the other
hand, let [x] denote the largest integer which is not bigger than x , then when [n/3] �
a � b � c � [n/3]+ 1, we have p− q = min{t,n− 2t} for 1 < t < n/2. Actually, if
t � [n/3] , then p = t and q = 0. Hence p− q = t . If t � [n/3]+ 1, then a,b,c � t .
Since n � 5, the sum of any two of a , b , c is bigger than n/2, which is bigger than t .
Hence by the above discussion, p−q = n−2t .

Hence there exist two weakly convex polygons such that one realizes the lower
bounds for 1 < t < n/2 and the other realizes the upper bounds for 1 < t < n/2. Below
we show that the bounds can not be realized by convex polygons, and any other ratios
satisfying the inequality can be realized by convex polygons.

If V1...Vn is convex, then the first movement belongs to Case 2. If Vj−tVj+t is not
parallel to Vj−1Vj+1 , then we can move Vj , and At(V1...Vn) will change after the first
movement. If Vj−tVj+t is parallel to Vj−1Vj+1 for all j , then At(V1...Vn) will change
after the second movement, which belongs to Case 1. Hence in each case At(V1...Vn)
will decrease (or increase) when we move V1...Vn to a triangle, and it can not equal any
of the bounds.

To realize the possible ratios, consider a convex polygon V1...Vn inscribed in a
circle. We can move its vertices along the circle such that no vertices coincide. Then
the result follows from the facts that V1...Vn can be moved to converge to any weakly
convex polygon W1...Wn inscribed in the circle, At are continuous functions for 1 �
t < n/2, and the bounds can be realized by weakly convex polygons.

THEOREM 4.2. If V1...Vn is a weakly convex polygon with n � 5 , then for m > 0 ,

T (m,1) �A1(Vm
1 ...Vm

n )
A1(V1...Vn)

� ∑
1�t<n/2

T (m,t)min{t,n−2t},

C(m,1) �A1(Vm
1 ...Vm

n )
A1(V1...Vn)

� ∑
1�t<n/2

C(m,t)min{t,n−2t},

4
n

sin2 2π
n

�A ∞
1 (V1...Vn)

A1(V1...Vn)
� 4

n ∑
1�t<n/2

sin
2π
n

sin
2πt
n

min{t,n−2t}.

Moreover, except for the bounds, any ratio satisfying the inequalities can be realized
by a convex polygon, the bounds can only be realized by weakly convex polygons, and
there exist two weakly convex polygons such that one realizes all the lower bounds and
the other realizes all the upper bounds.
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Proof. By Theorem 1.3, Proposition 3.1, Proposition 4.1, Lemma 2.6, Lemma
2.5, we have the inequalities. The two weakly convex polygons realizing the bounds in
Proposition 4.1 realize all the lower bounds and the upper bounds. Since n � 5 and m >
0, by Lemma 2.5 and Lemma 2.6, the coefficients T (m,2) and C(m,2) are positive.
Then since the bounds in Proposition 4.1 can not be realized by convex polygons, the
bounds in the theorem can not be realized by convex polygons. Finally, by the last
paragraph in the proof of Proposition 4.1, all other ratios satisfying the inequalities can
be realized by convex polygons.

COROLLARY 4.3. If V1...Vn is weakly convex, then A ∞
1 (V1...Vn) �= 0 .

5. The matrix forms of the area formulas

By the recursion formula given in the proof of Lemma 2.6, we can reformulate
Theorem 1.3 in terms of matrices in the following Theorem 5.1. It gives a more clear
picture of the relations between the functions A m

1 , A ∞
s , At where m � 0, 1 � s,t <

n/2. We will use it to prove Theorem 1.7.

THEOREM 5.1. Let r be the largest integer such that r < n/2 . Then for any
integer k � 0 , the functions A m

1 , A ∞
s , At where m � 0 , 1 � s,t < n/2 satisfy:

(1)

⎛
⎜⎜⎜⎝

A k
1

A k+1
1
...

A k+r−1
1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

cos2k π
n cos2k 2π

n · · · cos2k rπ
n

cos2(k+1) π
n cos2(k+1) 2π

n · · · cos2(k+1) rπ
n

...
...

...
cos2(k+r−1) π

n cos2(k+r−1) 2π
n · · · cos2(k+r−1) rπ

n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

A ∞
1

A ∞
2
...

A ∞
r

⎞
⎟⎟⎟⎠

(2)

⎛
⎜⎜⎜⎝

A k
1

A k+1
1
...

A k+r−1
1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

C(0,1) C(0,2) · · · C(0,r)
C(1,1) C(1,2) · · · C(1,r)

...
...

...
C(r−1,1) C(r−1,2) · · · C(r−1,r)

⎞
⎟⎟⎟⎠Mk

r

⎛
⎜⎜⎜⎝

A1

A2
...

Ar

⎞
⎟⎟⎟⎠

where when n � 5 , Mr is given by the left matrix below if n is odd, and is given by the
right matrix below if n is even; when n = 3 , Mr = 1/4 ; when n = 4 , Mr = 1/2 .

⎛
⎜⎜⎜⎜⎜⎝

1
2

1
4

1
4

1
2

1
4

. . .
. . .

. . .
1
4

1
2

1
4

1
4

1
4

⎞
⎟⎟⎟⎟⎟⎠

r×r

⎛
⎜⎜⎜⎜⎜⎝

1
2

1
4

1
4

1
2

1
4

. . .
. . .

. . .
1
4

1
2

1
4

1
4

1
2

⎞
⎟⎟⎟⎟⎟⎠

r×r

REMARK 5.2. We can also reformulate Proposition 3.1 in terms of matrices, which
gives the relation between A ∞

s and At , where 1 � s,t < n/2.
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Proof of Theorem 1.7. The transformation matrix in Theorem 5.1(1) equals

⎛
⎜⎜⎜⎝

1 · · · 1
cos2 π

n · · · cos2 rπ
n

...
...

cos2(r−1) π
n · · · cos2(r−1) rπ

n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

cos2k π
n

cos2k 2π
n

. . .
cos2k rπ

n

⎞
⎟⎟⎟⎠

which is the product of a Vandermonde matrix and a diagonal matrix. Since

1 > cos
π
n

> cos
2π
n

> · · · > cos
rπ
n

> 0,

its determinant is nonzero. By Lemma 2.6, the determinant of the transformationmatrix
in Theorem 5.1(2) is nonzero if the determinant of Mr is nonzero when n � 5. Let Dr

denote the determinant of Mr , then we have

Dr =
1
2
Dr−1− 1

16
Dr−2, ∀r � 3.

Hence

4rDr −4r−1Dr−1 = 4r−1Dr−1 −4r−2Dr−2 = · · · = 42D2−4D1,

and we have

4rDr −4D1 = (r−1)(42D2−4D1).

If n is odd, then D1 = 1/4 and D2 = 1/16, hence Dr = 1/4r . If n is even, then
D1 = 1/2 and D2 = 3/16, hence Dr = (r+1)/4r . In each case, the determinant of Mr

is nonzero. Hence the transformation matrices in Theorem 5.1 are all invertible. Note
that A ∞

s = A ∞
s+n = A ∞−s , A ∞

n/2 = 0 when n is even, and At = At+n = −A−t , we have
that any A m

1 , A ∞
s , At can be presented as a linear combination of the functions in any

of the three sets:

{A k+1
1 ,A k+2

1 , . . . ,A k+r
1 },{A ∞

1 ,A ∞
2 , . . . ,A ∞

r },{A1,A2, . . . ,Ar}.

To finish the proof, we only need to show that

V1...Vn 
→ (A ∞
1 (V1...Vn), . . . ,A ∞

r (V1...Vn))

is a surjective map from the set of polygons to Rr . Consider the polygon given by

Wj,t = (cos
2 jtπ

n
,sin

2 jtπ
n

), ∀1 � j � n,
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where t is an integer. For 1 � s < n/2 and θ ∈ R1 , by Lemma 2.3, we have

2
n

n

∑
p=1

cos
2πsp

n
sin(θ +

2πt p
n

)+ i
2
n

n

∑
q=1

sin
2πsq

n
sin(θ +

2πtq
n

)

=
2
n

n

∑
p=1

εsp(sinθ cos
2πt p

n
+ cosθ sin

2πt p
n

)

=
sinθ

n

n

∑
p=1

εsp(εt p + ε−t p)+ i
cosθ

n

n

∑
p=1

εsp(−εt p + ε−t p)

=

⎧⎪⎨
⎪⎩

sinθ + icosθ s ≡ t (modn)
sinθ − icosθ s ≡−t (modn)
0 otherwise

Hence let θ = π/2 and θ = 0 respectively, then

2
n

n

∑
p=1

cos
2πsp

n
Wp,t + i

2
n

n

∑
q=1

sin
2πsq

n
Wq,t

=

⎧⎪⎨
⎪⎩

(1,0)+ i(0,1) s ≡ t (modn)
(1,0)− i(0,1) s ≡−t (modn)
0 otherwise

Now for xt ,yt ∈ R , 1 � t � r , consider the polygon V1...Vn given by

Vj =
r

∑
t=1

xtWj,t +
r

∑
t=1

ytWj,−t , ∀1 � j � n.

We have

A ∞
s (V1...Vn) = (x2

s − y2
s )nsin

2πs
n

, ∀1 � s � r.

Since this can be any real number, this finishes the proof.

As we mentioned in Remark 1.8, for any polygon V1...Vn and any integer m � 0,
the midpoint polygon V 1

1 ...V 1
n can be realized as a (m+1)-st midpoint polygon of some

polygon U1...Un . We can define A −m
1 (V1...Vn) to be A1(U1...Un) . Then by Theorem

1.7, the function A −m
1 is well defined.

COROLLARY 5.3. The formulas in Theorem 5.1 hold for any integer k .

Proof. Let M and D be the following two matrices, respectively.⎛
⎜⎜⎜⎝

1 · · · 1
cos2 π

n · · · cos2 rπ
n

...
...

cos2(r−1) π
n · · · cos2(r−1) rπ

n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

cos2 π
n

cos2 2π
n

. . .
cos2 rπ

n

⎞
⎟⎟⎟⎠
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For any polygon V1...Vn and any integer k � 0, there exists a polygon U1...Un such
that Uk+1

1 ...Uk+1
n equals V 1

1 ...V 1
n . Then by Theorem 5.1(1),

⎛
⎜⎜⎜⎝

A −k
1 (V1...Vn)

A −k+1
1 (V1...Vn)

...
A −k+r−1

1 (V1...Vn)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

A 0
1 (U1...Un)

A 1
1 (U1...Un)

...
A r−1

1 (U1...Un)

⎞
⎟⎟⎟⎠ = M

⎛
⎜⎜⎜⎝

A ∞
1 (U1...Un)

A ∞
2 (U1...Un)

...
A ∞

r (U1...Un)

⎞
⎟⎟⎟⎠

= MD−k−1M−1

⎛
⎜⎜⎜⎝

A 0
1 (V 1

1 ...V 1
n )

A 1
1 (V 1

1 ...V 1
n )

...
A r−1

1 (V 1
1 ...V 1

n )

⎞
⎟⎟⎟⎠ = MD−k

⎛
⎜⎜⎜⎝

A ∞
1 (V1...Vn)

A ∞
2 (V1...Vn)

...
A ∞

r (V1...Vn)

⎞
⎟⎟⎟⎠

Hence Theorem 5.1(1) also holds for negative integers. Similarly Theorem 5.1(2) holds
for all integers.

COROLLARY 5.4. For any polygon V1...Vn and any integer k � 0 ,

(1)A ∞
s (Vk

1 ...Vk
n ) = cos2k πs

n
A ∞

s (V1...Vn), ∀1 � s <
n
2
.

(2)

⎛
⎜⎜⎜⎝

A1(Vk
1 ...Vk

n )
A2(Vk

1 ...Vk
n )

...
Ar(Vk

1 ...Vk
n )

⎞
⎟⎟⎟⎠ = Mk

r

⎛
⎜⎜⎜⎝

A1(V1...Vn)
A2(V1...Vn)

...
Ar(V1...Vn)

⎞
⎟⎟⎟⎠

Proof. In the proof of Corollary 5.3, let V1...Vn =Uk
1 ...Uk

n , then we can get (1) for
the polygon U1...Un . The proof of (2) is similar.

As the end of the paper, we give an example about the hexagons, which illustrates
our main results. Since n = 6, by Theorem 1.3 and Proposition 3.1, we have

(1)A1(Vm
1 ...Vm

6 ) =
3m

4m A ∞
1 (V1...V6)+

1
4m A ∞

2 (V1...V6),

(2)A1(Vm
1 ...Vm

6 ) =
3m +1
2×4m A1(V1...V6)+

3m −1
2×4m A2(V1...V6),

(3)A ∞
1 (V1...V6) =

1
2
A1(V1...V6)+

1
2
A2(V1...V6).

If A m
1 (V1...V6) �= 0 for some m � 0, then by Theorem 1.4,

lim
m→∞

A1(Vm+1
1 ...Vm+1

n )
A1(Vm

1 ...Vm
n )

exists. It is 3/4 if A ∞
1 (V1...V6) �= 0, and is 1/4 if A ∞

1 (V1...V6) = 0.
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For convex hexagons, by Theorem 1.5 and Theorem 1.6, for m > 0 we have

3m +1
2×4m <

A1(Vm
1 ...Vm

6 )
A1(V1...V6)

<
3m+1−1
2×4m ,

1
2

<
A ∞

1 (V1...V6)
A1(V1...V6)

<
3
2
.

Moreover, any ratio satisfying the inequalities can be realized by a convex hexagon.
The inequalities are derived from (2), (3) and Proposition 4.1, which says that

0 <
A2(V1...V6)
A1(V1...V6)

< 2.

By Theorem 1.7, each of the function pairs {A 1
1 ,A 2

1 } , {A ∞
1 ,A ∞

2 } and {A1,A2}
defines a surjective map from the set of hexagons to R2 , and they differ by linear
transformations of R2 . Especially, for any pair of real numbers (x,y) ∈ R2 , there
exists a hexagon with area x such that its midpoint hexagon has area y .

Since n = 6 is even, by [11], V1...V6 is a midpoint hexagon if and only if

V1 +V3 +V5 = V2 +V4 +V6.

In this case, from any point U1 in E2 we can construct a hexagon U1...U6 such
that U1

1 ...U1
6 equals V1...V6 . By Theorem 1.7, they have the same area. Moreover,

the hexagon V1...V6 corresponds to a unique two sided infinite sequence of midpoint
hexagons Hm , such that H0 = V1...V6 and Hm+1 is the midpoint hexagon of Hm . By
Theorem 5.1 and Corollary 5.3, the formulas (1) and (2) hold for any integer m . Then
combined with Corollary 5.4, among convex H0 , we can estimate any ratio of two
of A k

1 (Hm) , A ∞
1 (Hm) , A ∞

2 (Hm) and A2(Hm) , where k and m can be any integers.
Actually, all the ratios are fractional linear functions of A2(H0)/A1(H0) .
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