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OPTIMAL BOUNDS OF THE ARITHMETIC MEAN

IN TERMS OF NEW SEIFFERT–LIKE MEANS

MONIKA NOWICKA AND ALFRED WITKOWSKI ∗

(Communicated by I. Pinelis)

Abstract. We provide the optimal bounds for the arithmetic mean in terms of the arithmetic,
harmonic, quadratic, inverse quadratic and geometric combination of means generated by sine,
tangent, hyperbolic sine and hyperbolic tangent functions.

1. Introduction, definitions and notation

The four means defined for positive x,y by

Marcsin(x,y) =

⎧⎨
⎩

x− y

2arcsin x−y
x+y

x �= y

x x = y
, (first Seiffert mean)

Marctan(x,y) =

⎧⎨
⎩

x− y

2arctan x−y
x+y

x �= y

x x = y
, (second Seiffert mean)

Marsinh(x,y) =

⎧⎨
⎩

x− y

2arsinh x−y
x+y

x �= y

x x = y
, (Neuman-Sándor mean)

and

Martanh(x,y) =

⎧⎨
⎩

x− y

2artanh x−y
x+y

x �= y

x x = y
(logarithmic mean)

are known in the literature for quite a long time and are subject to intensive research.
In [5] one of the coauthors investigated means of the form

M f (x,y) =

⎧⎪⎨
⎪⎩

|x− y|
2 f

( |x−y|
x+y

) x �= y

x x = y

, (1)
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and discovered that both sine and tangent functions as well as their hyperbolic compan-
ions also create means

Msin(x,y) =

⎧⎨
⎩

x− y

2sin x−y
x+y

x �= y

x x = y
, (sine mean)

Mtan(x,y) =

⎧⎨
⎩

x− y

2tan x−y
x+y

x �= y

x x = y
, (tangent mean)

Msinh(x,y) =

⎧⎨
⎩

x− y

2sinh x−y
x+y

x �= y

x x = y
, (hyperbolic sine mean)

and

Mtanh(x,y) =

⎧⎨
⎩

x− y

2tanh x−y
x+y

x �= y

x x = y
. (hyperbolic tangent mean)

The aim of this paper is to determine optimal bounds for the arithmetic mean in terms
of these means. In [5] it was shown that Mtan < A < Msin and Msinh < A < Mtanh . Here
we improve the above inequalities by providing the optimal bounds of the arithmetic
mean in terms of several weighted means of the pairs of the above-mentioned means.

The main concept we use here is the notion of Seiffert function, i.e. the function
f from the formula (1). For every symmetric homogeneous mean defined for positive
arguments we have

M(x,y) =
x+ y

2
M

(
x+ y− (y− x)

x+ y
,
x+ y+(y− x)

x+ y

)

=
|y− x|

2
z

M(1+ z,1− z)

, (2)

where z = |x−y|
x+y . Clearly if x,y are positive that z assumes values in [0,1) .

From [5] we know that there is a one-to-one correspondence between symmetric and
homogeneous means defined on R+ and the functions f : [0,1) → R satisfying z

1+z �
f (z) � z

1−z , and this correspondence is described by the equation:

f (z) =
z

M f (1− z,1+ z)
. (3)

REMARK 1.1. If M(x,y) and N(x,y) are means, then we write M < N to indicate
the inequality M(x,y) < N(x,y) holds for all x �= y .
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Every inequality between means can be replaced by the inequality between their
Seiffert functions, because from (1) we easily deduce that Mf < Mg is equivalent to
g < f . Obvious inequalities sin z < z < tanz and tanhz < z < sinhz are the basis for
our considerations.

REMARK 1.2. This paper shows striking similarity of the trigonometric functions
and their hyperbolic twins.

For the reader’s convenience in the sections that follows we place the main results
with their proofs, while all lemmas and technical details can be found in the last section
of this paper.

2. Arithmetic bounds

Given three means K < L < M one may try to find the best α,β satisfying double
inequality (1−α)K + αM < L < (1−β )K + βM or equivalently α < L−K

M−K < β . If
k, l,m are respective Seiffert functions, then the latter can be written as

α <
1
l − 1

k
1
m − 1

k

< β . (4)

Thus the problem reduces to finding the upper and lower bounds for certain function
defined on the interval (0,1) .

THEOREM 2.1. The inequalities

(1−α)Mtan + αMsin < A < (1−β )Mtan + βMsin

hold if and only if α � cos1−sin1
cos1−1 ≈ 0.6551 and β � 2

3 .

Proof. The Seiffert function of the arithmetic mean is the identity function, so by
the formula (4) we should investigate the function

h(z) =
1
z − 1

tan z
1

sin z − 1
tan z

= −
sinz
z −1

cosz−1
+1.

To show that h decreases we use Lemma 7.1. We have(
sinz
z −1

)′
(cosz−1)′

=
1
z

(
1
z
− 1

tanz

)
=:

1
z
p(z). (5)

The function p satisfies limz→0 p(z) = 0 and p′′(z) = 2
sin3 z

(
sin3 z
z3

− cosz
)

> 0 (by

Lemma 7.2), so by Property 7.2 the function in (5) increases and this implies that the
function h decreases.
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We complete the proof by noting that

h(z) = −1− z2
6 +o(z3)−1

1− z2
2 +o(z3)−1

+1 → 2
3

as z → 0.

REMARK 2.1. In the theorems that follow the limit of the function h at z = 0 can
be calculated in a similar way, so we skip the details.

And here comes the hyperbolic version of the previous theorem.

THEOREM 2.2. The inequalities

(1−α)Msinh + αMtanh < A < (1−β )Msinh + βMtanh

hold if and only if α � sinh1−1
cosh1−1 ≈ 0.3226 and β � 1

3 .

Proof. The function to be considered here is

h(z) =
1
z − 1

sinhz
1

tanhz − 1
sinhz

=
sinhz

z −1

coshz−1
.

We follow the same line as in the proof of Theorem 2.1. We have

(
sinhz

z −1
)′

(coshz−1)′
=

1
z

(
1

tanhz
− 1

z

)
=:

1
z
p(z). (6)

The function p satisfies limz→0 p(z) = 0 and p′′(z) = 2
sinh3 z

(
coshz− sinh3 z

z3

)
< 0 (by

Lemma 7.3), so by Property 7.2 the function in (6) decreases and so does the function
h .

We complete the proof by noting that limz→0 h(z) = 1
3 .

3. Harmonic bounds

Here we look for the optimal bounds for means K < L < M of the form 1−α
M + α

K <
1
L < 1−β

M + β
K or, in terms of their Seiffert functions,

α <
l− k
m− k

< β .

THEOREM 3.1. The inequalities

1−α
Msin

+
α

Mtan
<

1
A

<
1−β
Msin

+
β

Mtan

hold if and only if α � 1−sin1
tan1−sin1 ≈ 0.2214 and β � 1

3 .
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Proof. To prove the theorem we will show that the function

h(z) =
z− sinz

tanz− sinz
=

z
sin z −1
1

cosz −1

is decreasing. But (
z

sin z −1
)′( 1

cosz −1
)′ =

1
tan2 z

− z
tan3 z

decreases by Lemma 7.4 so by Lemma 7.1 the function h also decreases. We complete
the proof by noting that limz→0 h(z) = 1

3 .

THEOREM 3.2. The inequalities

1−α
Mtanh

+
α

Msinh
<

1
A

<
1−β
Mtanh

+
β

Msinh

hold if and only if α � 1−tanh1
sinh1−tanh1 ≈ 0.5764 and β � 2

3 .

Proof. The function to investigate is

h(z) =
z− tanhz

sinhz− tanhz
=

z
tanh z −1

coshz−1
.

We shall show that h decreases. But(
z

tanh z −1
)′

(coshz−1)′
=

coshz

sinh2 z
− z

sinh3 z

decreases by Lemma 7.5 so by Lemma 7.1 the function h also decreases. We complete
the proof by noting that limz→0 h(z) = 2

3 .

4. Quadratic bounds

Given three means K < L < M one may try to find the best α,β satisfying dou-
ble inequality

√
(1−α)K2 + αM2 < L <

√
(1−β )K2 + βM2 or equivalently α <

L2−K2

M2−K2 < β . If k, l,m are respective Seiffert functions, then the latter can be written as

α <
1
l2
− 1

k2

1
m2 − 1

k2

< β . (7)

Thus the problem reduces to finding the upper and lower bound for certain function
defined on the interval (0,1) .

THEOREM 4.1. The inequalities√
(1−α)M2

tan + αM2
sin < A <

√
(1−β )M2

tan + βM2
sin

hold if and only α � 1− 1
tan2 1

≈ 0.5877 and β � 2
3 .
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Proof. By the formula (7) we should investigate the function

h(z) =

1
z2 − 1

tan2 z
1

sin2 z
− 1

tan2 z

=
1
z2 − 1

tan2 z
.

Since h′(z) = 2
sin3 z

(
cosz− sin3 z

z3

)
< 0 (by Lemma 7.2), the function h decreases. We

complete the proof by noting that limz→0 h(z) = 2
3 .

THEOREM 4.2. The inequalities√
(1−α)M2

sinh + αM2
tanh < A <

√
(1−β )M2

sinh + βM2
tanh

hold if and only if α � 1− 1
sinh2 1

≈ 0.2759 and β � 1
3 .

Proof. The function to be considered here is

h(z) =

1
z2 − 1

sinh2 z
1

tanh2 z
− 1

sinh2 z

=
1
z2 − 1

sinh2 z
.

Its derivative equals h′(z)= 2
sinh3 z

(
coshz− sinh3 z

z3

)
. By Lemma 7.3 we have that h′(z)<

0, so the function h decreases. We complete the proof by noting that limz→0 h(z) = 1
3 .

5. Bounds by weighted power mean of order −2

In this section we look for the optimal bounds for means K < L < M of the form√
1−α
M2 + α

K2 < 1
L <

√
1−β
M2 + β

K2 or, in terms of their Seiffert functions,

α <
l2 −m2

k2 −m2 < β . (8)

THEOREM 5.1. The inequalities√
1−α
M2

sin
+

α
M2

tan
<

1
A

<

√
1−β
M2

sin
+

β
M2

tan

hold if and only if α � cot4 1 ≈ 0.1700 and β � 1
3 .

Proof. Taking into account the formula (8) we should investigate the function

h(z) =
z2− sin2 z

tan2 z− sin2 z
=

cos2 z

sin4 z
(z2 − sin2 z).
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We shall show that h decreases. Observe that

h′(z) =
cosz

sin5 z
(zsin2z− (z2 +1)cos2z−3z2 +1).

The function p(z) = zsin2z−(z2 +1)cos2z−3z2 +1 satisfies p(0) = p′(0) = p′′(0) =
p′′′(0) = 0 and p(4)(z) = −16z(3sin2z+ zcos2z).
Since 3sin2z+ zcos2z > zsin2z+ zcos2z =

√
2zsin(2z+ π/4) > 0 we conclude that

p is negative and so is h′ . Consequently, h decreases. We complete the proof by noting
that limz→0 h(z) = 1

3 .

THEOREM 5.2. The inequalities√
1−α
M2

tanh
+

α
M2

sinh
<

1
A

<

√
1−β
M2

tanh
+

β
M2

sinh

hold if and only if α � 1
sinh4 1

≈ 0.5243 and β � 2
3 .

Proof. Use the formula (8) we should investigate the function

h(z) =
z2 − tanh2 z

sinh2 z− tanh2 z
=

cosh2 z

sinh4 z
(z2 − tanh2 z).

We shall show that h decreases. Its derivative equals

h′(z) =
coshz

sinh5 z
(zsinh2z− (z2−1)cosh2z−3z2−1).

The function p(z)= zsinh2z−(z2−1)cosh2z−3z2−1 satisfies p(0)= p′(0)= p′′(0)=
p′′′(0) = 0 and

p(4)(z) = −16z(3sinh2z+ zcosh2z) < 0.

Thus p is negative and so is h′ . Consequently, h decreases. We complete the proof by
noting that limz→0 h(z) = 2

3 .

6. Geometric bounds

In this section we establish the best bounds for the arithmetic mean by expressions
of the form M1−α

tan Mα
sin and M1−α

tanh Mα
sinh . We begin with the following Theorem

THEOREM 6.1. The inequalities

M1−α
tan Mα

sin < A < M
1−β
tan M

β
sin (9)

hold if and only if α � 2
3 and β � logcot1

logcos1 ≈ 0.7196 .
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Proof. Writing the inequalities (9) in terms of Seiffert functions we obtain

1
tan1−α zsinα z

<
1
z

<
1

tan1−β zsinβ z
,

or equivalently
cosβ−1 zsinz− z < 0 < cosα−1 zsin z− z. (10)

By Lemma 7.2 the second inequality in (10) holds for −1 < α −1 � −1/3 i.e. if 0 <
α � 2/3, while the first one holds for all z ∈ (0,1) if and only if cosβ−1 1sin1−1 � 0.

For the functions Msinh and Mtanh we have similar result:

THEOREM 6.2. The inequalities

M1−α
sinh Mα

tanh < A < M
1−β
sinh M

β
tanh (11)

hold if and only if α � 1
3 and β � logsinh1

logcosh1 ≈ 0.3722 .

Proof. The proof goes along the same line as above. The inequalities (11) can be
rewritten as

cosh−β zsinhz− z < 0 < cosh−α zsinhz− z. (12)

By Lemma 7.3 the second inequality in (12) holds for −1/3 � −α < 0 i.e. if 0 < α �
1/3, while the first one holds for all z ∈ (0,1) if and only if cosh−β 1sinh1−1 � 0.

7. Tools and lemmas

In this section we place the all technical details needed to prove our main results.

PROPERTY 7.1. A function f : (a,b) → R is convex if and only if for every a <

θ < b its divided difference f (x)− f (θ)
x−θ increases for x �= θ .

Simple consequence of Property 7.1 is

PROPERTY 7.2. If a function f : (a,b)→ R is convex and limx→a f (x) = Θ , then

the function f (x)−Θ
x−a increases.

The next lemma can be found in [1, Theorem 1.25] or in [4].

LEMMA 7.1. Suppose f ,g : (a,b)→R are differentiable with g′(x) �= 0 and such
that limx→a f (x) = limx→a g(x) = 0 or limx→b f (x) = limx→b g(x) = 0 . Then

1. if f ′
g′ is increasing on (a,b) , then f

g is increasing on (a,b) ,

2. if f ′
g′ is decreasing on (a,b) , then f

g is decreasing on (a,b) .
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LEMMA 7.2. (Mitrinović & Adamović [3]) Consider the functions fu : [0,π/2)→
R

fu(x) = cosu xsinx− x, −1 < u < 0.

For −1 < u � −1/3 the functions fu are positive.
For −1/3 < u < 0 there exists 0 < xu < π/2 such that fu is negative in (0,xu) and
positive in (xu,∞) .

Proof. We have fu(0) = f ′u(0) = 0 and

f ′′u (x) = u(u−1)sinxcosu x

[
tan2 x− 1+3u

u(u−1)

]
.

For −1 < u � −1/3 we have 3u+1
u(u−1) � 0, so fu is convex, thus positive.

For −1/3 < u < 0 the equation tan2 x− 1+3u
u(u−1) = 0 has exactly one solution ξu , so fu

is concave and negative on (0,ξu) . Then it becomes convex and tends to infinity, thus
assumes zero at exactly one point xu .

LEMMA 7.3. (Lazarević [2]) Consider the functions gu : [0,∞) → R

gu(x) = coshu xsinhx− x, −1 < u < 0.

For −1/3 � u < 0 the functions gu are positive.
For −1 < u < −1/3 there exists xu > 0 such that gu is negative in (0,xu) and positive
in (xu,∞) .

Proof. We have gu(0) = g′u(0) = 0 and

g′′u(x) = u(u−1)sinhxcoshu x

[
tanh2 x+

1+3u
u(u−1)

]
.

If −1/3 � u < 0 we have 1+3u
u(u−1) � 0, so gu is convex thus positive.

For −1 < u < −1/3 the equation tanh2 x+ 1+3u
u(u−1) = 0 has exactly one solution ξu , so

gu is concave and negative on (0,ξu) . Then it becomes convex and tends to infinity,
thus assumes zero at exactly one point xu .

LEMMA 7.4. The function f (z) = 1
tan2 z

− z
tan3 z

decreases for 0 < z < π/2.

Proof. Its derivative equals cosz
sin4 z

(3zcosz− 3sinz + sin3 z) . The function q(z) =

3zcosz−3sinz+ sin3 z satisfies q(0) = 0 and q′(z) = − 3
2 sinz(2z− sin2z) < 0, which

completes the proof.

LEMMA 7.5. The function f (z) = coshz
sinh2 z

− z
sinh3 z

decreases for z > 0 .

Proof. Its derivative equals sin−4 z(3zcoshz− 3sinhz− sinh3 z) . The function
q(z)= 3zcoshz−3sinhz−sinh3 z satisfies q(0)= 0 and q′(z)= 3

2 sinhz(2z−sinh2z)<
0, which completes the proof.
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