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WEIGHTED ESTIMATES FOR ROUGH SINGULAR INTEGRALS

WITH APPLICATIONS TO ANGULAR INTEGRABILITY, II

FENG LIU, RONGHUI LIU ∗ AND HUOXIONG WU

(Communicated by S. Varošanec)

Abstract. This paper is devoted to studying certain singular integral operators with rough radial
kernel h and sphere kernel Ω as well as the corresponding maximal operators along polynomial
curves. The authors establish several weighted estimates for such operators by assuming that
the kernels h ≡ 1 and Ω ∈ Fβ (Sn−1) , or h ∈ Δγ(R+) and Ω ∈WFβ (Sn−1) . Here Fβ (Sn−1)
denotes the Grafakos-Stefanov kernel and WFβ (Sn−1) denotes the variant of Grafakos-Stefanov
kernel. As applications, the boundedness of such operators on the mixed radial-angular spaces
Lp
|x|L

q
θ (Rn) are obtained. Meanwhile, the corresponding vector-valued versions are also given.

Moreover, the bounds are independent of the coefficients of the polynomials in the definition of
operators.

1. Introduction

In this paper we continue with the program started in [21], which proved two
results related to the boundedness of singular integral operators and the corresponding
truncated maximal operators on the mixed radial-angular spaces. In what follows, let
Rn , n � 2, be the Euclidean space of dimension n and Sn−1 denote the unit sphere in
Rn equipped with the normalized Lebesgue measure dσ . We now recall the definition
of mixed radial-angular spaces.

DEFINITION 1. (Mixed radial-angular space). For 1 � p < ∞ and 1 � q < ∞ , the
mixed radial-angular spaces Lp

|x|L
q
θ (Rn) are defined as the collection of all measurable

functions u defined in Rn for which ‖u‖Lp
|x|L

q
θ (Rn) < ∞ , where

‖u‖Lp
|x|L

q
θ (Rn) :=

(∫ ∞

0
‖u(ρ ·)‖p

Lq(Sn−1)ρ
n−1dρ

)1/p
.

The mixed radial-angular spaces Lp
|x|L

q
θ (Rn) with p = ∞ or q = ∞ can be defined by

applying the usual modifications.
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It is easy to check that the spaces Lp
|x|L

q
θ (Rn) have the following basic properties:

(a) If 1 � p � ∞ and q = p , then

‖u‖Lp
|x|L

q
θ (Rn) = ‖u‖Lp(Rn). (1)

(b) If 1 � p � ∞ and 1 � q1 � q2 � ∞ , then

‖u‖Lp
|x|L

q1
θ (Rn) � Cn,p,q1,q2‖u‖Lp

|x|L
q2
θ (Rn).

(c) If u is a radial function on Rn and 1 � p � ∞ and 1 � q � ∞ , then

‖u‖Lp
|x|L

q
θ (Rn) � ‖u‖Lp(Rn).

Here and in the sequel the notation A � B means that there are two positive constants
C, C′ such that A � CB and B � C′A .

Let PN(t) be a real polynomial on R of degree N satisfying P(0) = 0. Let Ω be
a L1(Sn−1) function satisfying ∫

Sn−1
Ω(y)dσ(y) = 0. (2)

and h ∈ Δγ(R+) with R+ := (0,∞) . Here Δγ(R+), γ > 0, is the set of all measurable
functions h defined on R+ satisfying

‖h‖Δγ(R+) := sup
R>0

( 1
R

∫ R

0
|h(t)|γdt

)1/γ
< ∞.

It is clear that

L∞(R+) = Δ∞(R+) � Δγ2(R+) � Δγ1(R+) for 1 � γ1 < γ2 < ∞. (3)

Now we define the singular integral operator Th,Ω,PN along the “polynomial curve” PN

by

Th,Ω,PN f (x) = p.v.
∫

Rn
f (x−PN(|y|)y′)h(|y|)Ω(y′)

|y|n dy,

the corresponding truncated maximal singular integral operator T ∗
h,Ω,PN

by

T ∗
h,Ω,PN

f (x) = sup
ε>0

∣∣∣∫
|y|>ε

f (x−PN(|y|)y′)h(|y|)Ω(y′)
|y|n dy

∣∣∣,
and the corresponding maximal operator Mh,Ω,PN by

Mh,Ω,PN f (x) = sup
r>0

1
rn

∫
|y|<r

| f (x−PN(|y|)y′)||h(|y|)Ω(y′)|dy.

where y′ = y/|y| for y �= 0.
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For the sake of simplicity, we denote Th,Ω,PN = TΩ,PN , T ∗
h,Ω,PN

= T ∗
Ω,PN

and Mh,Ω,PN =
MΩ,PN if h ≡ 1; TΩ,PN = TΩ and T ∗

Ω,PN
= T ∗

Ω if PN(t) = t ; Th,Ω,PN = Th,Ω if PN(t) = t .
Singular integral theory was initiated in the seminal work of Calderón and Zyg-

mund [4] and since then has been an active area of research. A celebrated work in
this topic was due to Calderón and Zygmund [5] who showed that TΩ is bounded
on the Lebesgue spaces Lp(Rn) for 1 < p < ∞ if Ω ∈ L logL(Sn−1) by the method
of rotations. Here the function class L logL(Sn−1) denotes the set of all functions
Ω : Sn−1 → R satisfying

‖Ω‖L logL(Sn−1) :=
∫

Sn−1
|Ω(θ )| log(2+ |Ω(θ )|)dσ(θ ) < ∞.

Subsequently, the condition was extended to the case Ω ∈ H1(Sn−1) , the Hardy space
on Sn−1 , by Coifman and Weiss [6] and Connett [7] independently. In 1997, to study
the Lp -boundedness of singular integrals with rough kernels, Grafakos and Stefanov
[18] introduced the following function spaces:

Fβ (Sn−1) :=
{

Ω ∈ L1(Sn−1) : sup
ξ∈Sn−1

∫
Sn−1

|Ω(y′)| logβ 2
|ξ · y′|dσ(y′) < ∞

}
for β > 0,

and showed that
Fβ1

(Sn−1) � Fβ2
(Sn−1) for 0 < β2 < β1,⋃

q>1

Lq(Sn−1) � Fβ (Sn−1) foranyβ > 0,

and ⋂
β>1

Fβ (Sn−1) � L logL(Sn−1) ⊂ H1(Sn−1) �
⋃

β>1

Fβ (Sn−1).

Moreover, Grafakos and Stefanov [18] proved that that TΩ is of type (p, p) for p ∈
(1 + 1/β ,β + 1) if Ω ∈ Fβ (Sn−1) for some β > 1, and T ∗

Ω is of type (p, p) for

p ∈ ( 2(β+1)
2β−1 ,

2(β+1)
3 ) if Ω ∈ Fβ (Sn−1) for some β > 2. Subsequently, Fan, Guo and

Pan [13] improved and extended to these results as follows.

THEOREM A. ([13]) Let PN(t) be a real polynomial on R of degree N and satisfy
PN(0) = 0 . Suppose that Ω satisfies (2) and Ω ∈ Fβ (Sn−1) for some β > 0 .

(i) If β > 1 , then TΩ,PN is bounded on Lp(Rn) for p ∈ ( 2β
2β−1 ,2β ) .

(ii) If β > 3
2 , then T ∗

Ω,PN
is bounded on Lp(Rn) for p ∈ ( 2β−1

2β−2 ,2β −1) .
Here the bounds of the above operators are independent of the coefficients of PN .

In 1979, Fefferman [16] introduced the singular integral operator Th,Ω with h ∈
L∞(R+) and proved that Th,Ω is bounded on Lp(Rn) for all p∈ (1,∞) if Ω∈Lipα(Sn−1)
for 0 < α � 1 and h ∈ L∞(R+) . Later on, Namazi [24] improved Fefferman’s result
to the case Ω ∈ Lq(Sn−1) for some q > 1. Subsequently, Duoandikoetxea and Ru-
bio de Francia [12] used the Littlewood-Paley theory to improve h ∈ L∞(R+) to the
case h ∈ Δ2(R+) . Since then, the above results have been improved and extended by
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many authors (see [1, 14, 15, 22, 23, 25]). In particular, Fan and Sato [15] showed that
Th,Ω is bounded on Lp(Rn) for |1/p− 1/2| < min{1/γ ′, 1/2}− 1/β , provided that
h ∈ Δγ (R+) for some γ > 1 and Ω ∈ WFβ (Sn−1) for some β > max{γ ′,2} , where
WFβ (Sn−1) for β > 0 denotes the set of all functions Ω : Sn−1 → R satisfying

sup
ξ ′∈Sn−1

∫∫
Sn−1×Sn−1

|Ω(θ )Ω(u′)|
(

log+ 1
|(θ −u′) ·ξ ′|

)β
dσ(θ )dσ(u′) < ∞.

It was pointed out in [15, 20] that

Fβ (S1) ⊂WFβ (S1) and WF2β (Sn−1)\Fβ (Sn−1) �= /0 for β > 0.

⋃
r>1

Lr(Sn−1) ⊂WFβ2
(Sn−1) ⊂WFβ1

(Sn−1) for 0 < β1 < β2 < ∞.

Afterwards, the first and third authors [23] extended the result of [15] to the singular
integral along polynomial curves in mixed homogeneous setting.

THEOREM B. ([23]) Let PN(t) be a real polynomial on R of degree N and satisfy
PN(0) = 0 . Suppose that h ∈ Δγ(R+) for some γ ∈ (1,∞] and Ω ∈ WFβ (Sn−1) for
some β > max{2,γ ′} and satisfies (2). Then Th,Ω,PN is bounded on Lp(Rn) for |1/p−
1/2|< min{1/γ ′, 1/2}−1/β . Here the bounds of the above operators are independent
of the coefficients of PN .

On the other hand, the mixed radial-angular space plays an active role in singular
integral theory. Córdoba [9] first proved that TΩ is bounded on Lp

|x|L
2
θ (Rn) for all 1 <

p < ∞ if Ω ∈ C 1(Sn−1) . Later on, D’Ancona and Lucà [10] used the same argument
in [9, Theorem 2.1] to extend the above results to cover the full range 1 < p < ∞ and
1 < q < ∞ . The corresponding radial weighted results were established by Cacciafesta
and R. Lucá [3] and Duoandikoetxea and Oruetxebarria [11]. Recently, the first author
and Fan [21] extended the above result to the singular integrals along polynomial curves
with rough radial kernels and improved the size condition on the sphere kernels Ω to
the case Ω ∈ Ls(Sn−1) for s ∈ (1,∞] , which can be stated as follows:

THEOREM C. ([21]) Let PN(t) be a real polynomial on R of degree N and satisfy
PN(0) = 0 . Suppose that Ω ∈ Ls(Sn−1) satisfies (2) and h ∈ Δγ(R+) for some s, γ ∈
(1,∞] .

(i) For 1 < p < ∞ and 1 < q < ∞ , the following inequalities hold:

‖Th,Ω,PN f‖Lp
|x|L

q
θ (Rn) � Ch,Ω,s,γ,p,q,N‖ f‖Lp

|x|L
q
θ (Rn);

∥∥∥(
∑
j∈Z

|Th,Ω,PN f j|q
)1/q∥∥∥

Lp
|x|L

q
θ (Rn)

� Ch,Ω,s,γ,p,q,N

∥∥∥(
∑
j∈Z

| f j|q
)1/q∥∥∥

Lp
|x|L

q
θ (Rn)

;

∥∥∥(
∑
j∈Z

|Th,Ω,PN f j|q
)1/q∥∥∥

Lp(Rn)
� Ch,Ω,s,γ,p,q,N

∥∥∥(
∑
j∈Z

| f j|q
)1/q∥∥∥

Lp(Rn)
.
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(ii) For 1 < q � p < ∞ , the following inequalities hold:

‖T ∗
h,Ω,PN

f‖Lp
|x|L

q
θ (Rn) � Ch,Ω,s,γ,p,q,N‖ f‖Lp

|x|L
q
θ (Rn);

∥∥∥(
∑
j∈Z

|T ∗
h,Ω,PN

f j|q
)1/q∥∥∥

Lp
|x|L

q
θ (Rn)

� Ch,Ω,s,γ,p,q,N

∥∥∥(
∑
j∈Z

| f j|q
)1/q∥∥∥

Lp
|x|L

q
θ (Rn)

;

∥∥∥(
∑
j∈Z

|T ∗
h,Ω,PN

f j|q
)1/q∥∥∥

Lp(Rn)
� Ch,Ω,s,γ,p,q,N

∥∥∥(
∑
j∈Z

| f j|q
)1/q∥∥∥

Lp(Rn)
.

Here the constants Ch,Ω,s,γ,p,q,N > 0 are independent of the coefficients of PN .

Based on Theorems A-C, it is natural to ask whether or not the conclusions in
Theorem C hold under the assumption of that Ω ∈WFβ (Sn−1) for some β > 1 and
h ∈ Δγ (R+) for some γ > 1, in particular, Ω ∈ Fβ (Sn−1) for some β > 1 and h ≡ 1.

The main purpose of this paper is to address the above question. Our desired
conclusions will directly follow from the following weighted inequalities and a criterion
on the boundedness of sublinear operators on the mixed radial-angular spaces, which
will be established in Section 3. Now we formulate our main results as follows.

THEOREM 1. Let PN(t) = ∑N
i=1 biti with bi �= 0 . Assume that Ω satisfies (2) and

one of the following conditions holds:
(a) h(t) ≡ 1 , Ω ∈ Fβ (Sn−1) for some β > 1 , γ ′ = 1 and δ = β ;
(b) h∈Δγ(R+) for some γ ∈ (1,∞] and Ω∈WFβ (Sn−1) for some β > max{2,γ ′} ,

δ = β
max{2,γ ′} .
Then

(i) Let s ∈ ( δ
δ−1 ,∞) and p ∈ [2, 2δ (γ ′−1/s)

1+δ (γ ′−1) ) . Then for any nonnegative measurable
function u on Rn ,

‖Th,Ω,PN f‖Lp(u) � Ch,Ω,β ,γ ′,p,s,N‖ f‖Lp(LN,su). (4)

(ii) Let γ ∈ (2,∞] , δ ∈ ( 2
2−γ ′ ,∞) , p ∈ (δ ′γ ′,2] and s ∈ ( 2δ ′

p ,∞) . Then for any non-
negative measurable function u on Rn ,

‖Th,Ω,PN f‖Lp(u) � Ch,Ω,β ,γ ′,p,s,N‖ f‖Lp(ϒN,su). (5)

Here ϒN,su = MN
s u+M2

sM̃N
s u+HN,su , LN,su = ∑λ

i=0 Mλ+1−i
s Mσ̃

i,sMsu , Hλ u = ∑λ
i=1

M2Mσ̃
i Mλ+1−iu , Mσ̃

λ ,su = (Mσ̃
λ (us))1/s , Mk

su = (Mkus)1/s for any k ∈ N , Hλ ,su =
(Hλ us)1/s , Mσ̃

λ is defined by Mσ̃
λ f (x) = Mσ

λ f̃ (x) and Mσ
λ f (x) = supk∈Z ||σk,λ | ∗ f (x)| ,

where σk,λ and |σk,λ | are respectively defined by

∫
Rn

f (x)dσk,λ (x) =
∫

2k−1<|x|�2k
f (Pλ (|x|)x′)h(|x|)Ω(x)

|x|n dx,
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∫
Rn

f (x)d|σk,λ |(x) =
∫

2k−1<|x|�2k
f (Pλ (|x|)x′) |h(|x|)Ω(x)|

|x|n dx,

and P0(t) = 0 , Pλ (t) = ∑λ
i=1 biti for all λ ∈ {1,2, . . . ,N} . The above constants

Ch,Ω,β ,γ ′,p,s,N are independent of {bλ}N
λ=1 . The same conclusions hold for Mh,Ω,PN .

THEOREM 2. Let PN(t) = ∑N
i=1 biti with bi �= 0 . Assume that Ω satisfies (2) and

one of the following conditions holds:
(a) h(t) ≡ 1 , Ω ∈ Fβ (Sn−1) for some β > 3

2 , γ ′ = 1 and δ = β ;
(b) h∈Δγ(R+) for some γ ∈ (1,∞] and Ω∈WFβ (Sn−1) for some β > 3

2 max{2,γ ′} ,

δ = β
max{2,γ ′} .

Then for any nonnegative measurable function u on Rn ,

(i) for δ ∈ ( 3
2 ,∞) , s ∈ (( δ−1/2

δ−3/2)2,∞) and

p ∈ [2, δ (2δ−1)(1−1/
√

s)(γ ′−1/s)
(δγ ′−δ+1)(δ−1/2)(1−1/

√
s)+(1−1/s)δ−1) ,

‖T ∗
h,Ω,PN

f‖Lp(u) � Ch,Ω,β ,γ ′,p,s,N‖ f‖Lp(ΘN,s(Msu+M2
s u)); (6)

(ii) for γ ∈ (2,∞] , δ ∈ ( 2
2−γ ′ ,∞) , s ∈ (( δ−1/2

δ−3/2)2,∞) and

p ∈ (max{2δ ′( δ−3/2
δ−1/2)2, 2δ ′γ ′(2δ−1)

2δ−1+(δ ′γ ′−2)(
√

s)′ },2] ,

‖T ∗
h,Ω,PN

f‖Lp(u) � Ch,Ω,β ,γ ′,p,s,N‖ f‖Lp(ϒN,s(Msu+M2
s u)). (7)

Here ΘN,su = MN
s u+LN,su+ IN,su+ JN,su , LN,s and ϒN,s is given as in Theorem 1 ,

where Iλ ,su = ∑λ
i=1 MsMσ̃

i,sM
λ−i
s u , Jλ ,su = ∑λ

i=1 M2
sM

σ̃
i−1,sM

λ−i
s u for all 1 � λ � N .

The above constants Ch,Ω,β ,γ ′,p,s,N are independent of {bλ}N
λ=1 .

REMARK 1. In [26], Zhang established the weighted estimates for TΩ and T ∗
Ω .

Theorems 1 and 2 represent an generalization of [26, Theorems 1-2].

As applications of Theorems 1 and 2, we can get the following mixed radial-
angular integrability of Th,Ω,PN , T ∗

h,Ω,PN
and Mh,Ω,PN .

COROLLARY 1. Let PN(t) be a real polynomial on R of degree N and satisfy
PN(0) = 0 . Assume that Ω satisfies (2) and one of the following conditions holds:

(a) h(t) ≡ 1 , Ω ∈ Fβ (Sn−1) for some β > 1 , γ ′ = 1 and δ = β ;
(b) h∈Δγ(R+) for some γ ∈ (1,∞] and Ω∈WFβ (Sn−1) for some β > max{2,γ ′} ,

δ = β
max{2,γ ′} .

Then,
‖Th,Ω,PN f‖Lp

|x|L
q
θ (Rn) � Ch,Ω,β ,γ ′,p,q,N‖ f‖Lp

|x|L
q
θ (Rn); (8)

∥∥∥(
∑
j∈Z

|Th,Ω,PN f j|q
)1/q∥∥∥

Lp
|x|L

q
θ (Rn)

� Ch,Ω,β ,γ ′,p,q,N

∥∥∥(
∑
j∈Z

| f j|q
)1/q∥∥∥

Lp
|x|L

q
θ (Rn)

; (9)
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∥∥∥(
∑
j∈Z

|Th,Ω,PN f j|q
)1/q∥∥∥

Lp(Rn)
� Ch,Ω,β ,γ ′,p,q,N

∥∥∥(
∑
j∈Z

| f j|q
)1/q∥∥∥

Lp(Rn)
, (10)

provided that one of the following conditions holds:

(i) δ ∈ (1,∞) , s ∈ ( δ
δ−1 ,∞) , q ∈ [2, 2(γ ′−1/s)δ

1+δ (γ ′−1) ) , p ∈ [q, qsγ ′
sγ ′−1);

(ii) δ ∈ (1,∞) , s ∈ ( δ
δ−1 ,∞) , q ∈ ( 2δ (γ ′−1/s)

δ (γ ′−2/s+1)−1 ,2] , p ∈ ( qsγ ′
q−1+sγ ′ ,q];

(iii) γ ∈ (2,∞] , δ ∈ ( 2
2−γ ′ ,∞) , q ∈ (δ ′γ ′,2] , p ∈ [q, 2qδ ′γ ′

2δ ′γ ′−q );

(iv) γ ∈ (2,∞] , δ ∈ ( 2
2−γ ′ ,∞) , q ∈ [2, δ ′γ ′

δ ′γ ′−1 ) , p ∈ ( 2qδ ′γ ′
q+2δ ′γ ′ ,q] .

The above constants Ch,Ω,β ,γ ′,p,q,N > 0 are independent of the coefficients of PN . The
same conclusions hold for Mh,Ω,PN if one of the conditions (i) and (iii) holds.

REMARK 2. It should be pointed out that the range of q will be enlarged and the
range of p will be shrink as s enlarges in the condition (i) of Corollary 1. Specially,
the range of q is just empty set when s = δ ′ , and the range of p is just empty set when
s = ∞ .

In particular, we can get the following conclusions.

COROLLARY 2. Let PN(t) be a real polynomial on R of degree N and satisfy
PN(0) = 0 . Assume that Ω satisfies (2) and Ω ∈ Fβ (Sn−1) for some β > 1 . Then,

‖TΩ,PN f‖Lp
|x|L

q
θ (Rn) � CΩ,β ,p,q,N‖ f‖Lp

|x|L
q
θ (Rn); (11)

∥∥∥(
∑
j∈Z

|TΩ,PN f j|q
)1/q∥∥∥

Lp
|x|L

q
θ (Rn)

� CΩ,β ,p,q,N

∥∥∥(
∑
j∈Z

| f j|q
)1/q∥∥∥

Lp
|x|L

q
θ (Rn)

; (12)

∥∥∥(
∑
j∈Z

|TΩ,PN f j|q
)1/q∥∥∥

Lp(Rn)
� CΩ,β ,p,q,N

∥∥∥(
∑
j∈Z

| f j|q
)1/q∥∥∥

Lp(Rn)
, (13)

provided that one of the following conditions holds:
(i) s ∈ (β ′,∞) , q ∈ [2, 2β

s′ ) , p ∈ [q,qs′);
(ii) s ∈ (β ′,∞) , q ∈ ( 2β

2β−s′ ,2] , p ∈ ( qs
q−1+s ,q];

(iii) β ∈ (2,∞) , q ∈ (β ′,2] , p ∈ [q, 2qβ ′
2β ′−q);

(iv) β ∈ (2,∞) , q ∈ [2,β ) , p ∈ ( 2qβ ′
2β ′+q ,q] .

The above constants CΩ,β ,p,q,N > 0 are independent of the coefficients of PN . The same
conclusions hold for MΩ,PN if one of the conditions (i) and (iii) holds.

COROLLARY 3. Let PN(t) be a real polynomial on R of degree N and satisfy
PN(0) = 0 . Assume that Ω satisfies (2) and Ω∈⋂

β>1 Fβ (Sn−1) . Then the inequalities
(11)-(13) hold provided that one of the following conditions holds:

(i) 1 < p, q � 2 ;
(ii) 2 � p, q < ∞ .
The same results hold for MΩ,PN if 1 < q � p � 2 or 2 � q � p < ∞ .
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COROLLARY 4. Let PN(t) be a real polynomial on R of degree N and satisfy
PN(0) = 0 . Assume that Ω satisfies (2) and one of the following conditions holds:

(a) h(t) ≡ 1 , Ω ∈ Fβ (Sn−1) for some β > 3
2 , γ ′ = 1 and δ = β ;

(b) h∈Δγ(R+) for some γ ∈ (1,∞] and Ω∈WFβ (Sn−1) for some β > 3
2 max{2,γ ′} ,

δ = β
max{2,γ ′} .

Then,
‖T ∗

h,Ω,PN
f‖Lp

|x|L
q
θ (Rn) � Ch,Ω,β ,γ ′,p,q,N‖ f‖Lp

|x|L
q
θ (Rn); (14)

∥∥∥(
∑
j∈Z

|T ∗
h,Ω,PN

f j|q
)1/q∥∥∥

Lp
|x|L

q
θ (Rn)

� Ch,Ω,β ,γ ′,p,q,N

∥∥∥(
∑
j∈Z

| f j|q
)1/q∥∥∥

Lp
|x|L

q
θ (Rn)

; (15)

∥∥∥(
∑
j∈Z

|T ∗
h,Ω,PN

f j|q
)1/q∥∥∥

Lp(Rn)
� Ch,Ω,β ,γ ′,p,q,N

∥∥∥(
∑
j∈Z

| f j|q
)1/q∥∥∥

Lp(Rn)
, (16)

provided that one of the following conditions holds:

(i) δ ∈ ( 3
2 ,∞) , s ∈ (( δ−1/2

δ−3/2 )2,∞) , q ∈ [2, δ (2δ−1)(1−1/
√

s)(γ ′−1/s)
(δγ ′−δ+1)(δ−1/2)(1−1/

√
s)+(1−1/s)δ−1) ,

p ∈ [q, qsγ ′
sγ ′−1 );

(ii) γ ∈ (2,∞] , δ ∈ ( 2
2−γ ′ ,∞) , s ∈ (( δ−1/2

δ−3/2)2,∞) ,

q ∈ (max{2δ ′( δ−3/2
δ−1/2)2, 2δ ′γ ′(2δ−1)

2δ−1+(δ ′γ ′−2)(
√

s)′ },2] , p ∈ [q, 2qδ ′γ ′
2δ ′γ ′−q ) .

The above constants Ch,Ω,β ,γ ′,p,q,N > 0 are independent of the coefficients of PN .

The rest of this paper is organized as follows. In Section 2, we shall prove Theo-
rems Theorems 1 and 2. The proofs of Corollaries 1-4 will be given in Section 3. We
would like to remark that our arguments are greatly motivated by [21], but our methods
and techniques are more delicate and complex than those in [21]. The main ingredients
are to establish two criterions of weighted boundedness for the operators of convolution
type and the corresponding maximal operators (see Lemmas 1 and 2). The proofs of
Corollaries 1-4 are based on Theorems 1 and 2 and the criterion established in Section
3 (see Proposition 1).

Throughout this paper, for any p ∈ (1,∞) , we let p′ denote the dual exponent to
p defined as 1/p+ 1/p′ = 1. In what follows, for any function f , we define f̃ by
f̃ (x) = f (−x) . Let N = {1,2, . . .} . We denote by Mk the Hardy-Littlewood maximal
operator M iterated k times for all k ∈ N . Specially, Mk = M when k = 1. For s > 1
and k ∈ N , we denote Msu = (Mus)1/s and Mk

su = (Mkus)1/s . For f ∈ Lp(u) , we set

‖ f‖Lp(u) :=
(∫

Rn | f (x)|pu(x)dx
)1/p

.

2. Proofs of Theorems 1 and 2

This section is devoted to proving Theorems 1 and 2. Before presenting our proofs,
let us establish two general criterions on the weighted boundedness of the convolution
operators, which are the heart of our proofs.

LEMMA 1. Let γ ∈ [1,∞) , β ∈ (1,∞) , Λ∈N\{0} and {σk,λ : 0 � λ � Λ and k ∈
Z} be a family of uniformly bounded Borel measures on Rn . Let {aλ : 1 � λ � Λ} be
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a family of nonzero numbers. Suppose that there exist constants C > 0 such that the
following conditions hold for any 1 � λ � Λ , k ∈ Z and ξ ∈ Rn :

(a) σk,0(ξ ) = 0 and ‖σk,λ‖ � C;

(b) max{|σ̂k,λ (ξ )|, ∣∣|̂σk,λ |(ξ )
∣∣} � C;

(c) max{|σ̂k,λ (ξ )|, ∣∣|̂σk,λ |(ξ )
∣∣} � C(log |2kλ aλ ξ |)−β if |2kλ aλ ξ | > 1;

(d) max
{|σ̂k,λ (ξ )− σ̂k,λ−1(ξ )|, ∣∣|̂σk,λ |(ξ )− ̂|σk,λ−1|(ξ )

∣∣} � C|2kλ aλ ξ |;
(e) Mσ

0 f (x) � C| f (x)| and ‖Mσ
λ f‖Lq(Rn) � Cq‖ f‖Lq(Rn) for all q ∈ (γ,∞) , where

Mσ
λ f (x) = sup

k∈Z
||σk,λ | ∗ f (x)|.

Then for any nonnegative measurable function u on Rn ,

(i) for s ∈ (β ′,∞) and p ∈ [2, 2β (γ−1/s)
1+β (γ−1) ) ,∥∥∥ ∑

k∈Z
σk,Λ ∗ f

∥∥∥
Lp(u)

� C‖ f‖Lp(LΛ,su),

where LΛ,su = ∑Λ
i=0 MΛ+1−i

s Mσ̃
i,sMsu , Mσ̃

λ ,su = (Mσ̃
λ us)1/s , and Mσ̃

λ f (x) := Mσ
λ f̃ (x);

(ii) for γ ∈ [1,2) , β ∈ ( 2
2−γ ,∞) , p ∈ (β ′γ,2] and s ∈ ( 2β ′

p ,∞) . Then∥∥∥ ∑
k∈Z

σk,Λ ∗ f
∥∥∥

Lp(u)
� C‖ f‖Lp(ϒΛ,su),

where ϒΛ,su = MΛ
s u + M2

sM̃Λ
s u + HΛ,su , Hλ u = ∑λ

i=1 M2Mσ̃
i Mλ+1−iu and Hλ ,su =

(Hλ us)1/s . Here, the constants C > 0 are independent of {aλ}Λ
λ=1 , but depend on

Λ .

Proof. Let u be a nonnegative measurable function defined on Rn . In what fol-
lows, we will prove (i) and (ii), respectively.

The proof of (i): For 1 � λ � Λ , we define the Borel measures {μk,λ}k∈Z on Rn

by
μ̂k,λ (ξ ) = σ̂k,λ (ξ )Φλ+1(ξ )− σ̂k,λ−1(ξ )Φλ (ξ ),

where Φλ is defined by Φλ (ξ ) = ∏Λ
j=λ φ(|2k ja jξ |) and φ is a nonnegative Schwartz

function supported in {|t|� 1} satisfying φ(t) = 1 when |t|< 1/2. It is easy to check
that

σk,Λ =
Λ

∑
λ=1

μk,λ ; (17)

Mμ
λ f (x) � MΛ−λ Mσ

λ | f |(x)+MΛ−λ+1Mσ
λ−1| f |(x); (18)
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|μ̂k,λ (x)| � Cmin{1, |2kλaλ x|}; (19)

|μ̂k,λ (x)| � C(log |2kλ aλ x|)−β , if |2kλ aλ x| > 1. (20)

Then, by (17), we can write

∑
k∈Z

σk,Λ ∗ f (x) = ∑
k∈Z

Λ

∑
λ=1

μk,λ ∗ f (x) =
Λ

∑
λ=1

∑
k∈Z

μk,λ ∗ f (x) =:
Λ

∑
λ=1

Tλ f (x), (21)

and note that u � Msu , Msu ∈ A1 (see [8]), it follows from (18) that

Λ

∑
λ=1

MsM
μ̃
λ ,sMsu �

Λ

∑
λ=1

(MΛ+1−λ
s Mσ̃

λ ,sMsu+MΛ+2−λ
s Mσ̃

λ−1,sMsu) � 2LΛ,su.

Therefore, it suffices to show that

‖Tλ f‖Lp(u) � C‖ f‖Lp(MsMũ
λ ,su) (22)

for all 1 � λ � Λ , p ∈ [2, 2β (γ−1/s)
1+β (γ−1) ) , s ∈ (β ′,∞) and u ∈ A1 .

We now prove (22). Fix u ∈ A1 . For 1 � λ � Λ , let Ψλ (t) ∈ C ∞
c ((1/4,1))

such that 0 � Ψλ � 1 and ∑k∈Z(Ψλ (2kλ |aλ ξ |))3 = 1. Define the Fourier multiplier
operators {Sk,λ}k∈Z by Sk,λ f (x) = Θk,λ ∗ f (x) , where Θ̂k,λ (ξ ) = Ψλ (2kλ |aλ ξ |) . Then
it follows from [19] that for 1 < p < ∞ and w ∈ Ap ,∥∥∥(

∑
k∈Z

|Sk,λ f |2
)1/2∥∥∥

Lp(w)
� Cp,w,λ‖ f‖Lp(w) (23)

and ∥∥∥ ∑
k∈Z

Sk,λ fk
∥∥∥

Lp(w)
� Cp,w,λ

∥∥∥(
∑
k∈Z

| fk|2
)1/2∥∥∥

Lp(w)
. (24)

And we can write

Tλ f (x) = ∑
k∈Z

∑
j∈Z

S3
j+k,λ (μk,λ ∗ f )(x) = ∑

j∈Z
∑
k∈Z

S3
j+k,λ (μk,λ ∗ f )(x) =: ∑

j∈Z
Tλ , j f (x).

So,
‖Tλ f‖Lp(u) � ∑

j∈Z
‖Tλ , j f‖Lp(u). (25)

Now we estimate ‖Tλ , j f‖Lp(u) . By (19)-(20) and Plancherel’s theorem,

‖μk,λ ∗ S j+k,λ f‖L2(Rn) � C(1+ | j|)−β‖ f‖L2(Rn).

On the other hand, for s > 1, we have

‖μk,λ ∗ S j+k,λ f‖L2(us) � (‖μk,λ‖‖Θ j+k,λ‖L1(Rn))
1/2

×
(∫

Rn |μk,λ | ∗ |Θ j+k,λ | ∗ | f |2(x)us(x)dx
)1/2

� C‖ f‖
L2(MMμ̃

λ us)
.



WEIGHTED ESTIMATES FOR ROUGH SINGULAR INTEGRALS 403

Thus, an interpolation of L2 -spaces with change of measure ([2, Theorem 5.4.1]) im-
plies that

‖μk,λ ∗ S j+k,λ f‖L2(u) � C(1+ | j|)−β (1−1/s)‖ f‖
L2(MsM

μ̃
λ ,su). (26)

This combing with (23) yields that

‖Tλ , j f‖L2(u) =
∥∥∥ ∑

k∈Z
S3

j+k,λ μk,λ ∗ f
∥∥∥

L2(u)

� Cλ

(
∑
k∈Z

‖μk,λ ∗ S2
j+k,λ f‖2

L2(u)

)1/2

� C(1+ | j|)−β (1−1/s)
∥∥∥(

∑
k∈Z

|S j+k,λ f |2
)1/2∥∥∥

L2(MsM
μ̃
λ ,su)

� C(1+ | j|)−β (1−1/s)‖ f‖
L2(MsM

μ̃
λ ,su)

,

(27)

since MsMũ
λ ,su ∈ Ap .

Next we will prove

‖Tλ , j f‖Lp(u) � C‖ f‖
Lp(MsM

μ̃
λ ,su), p ∈ (2,

2(γ −1/s)
γ −1

). (28)

Fix p ∈ (2, 2(γ−1/s)
γ−1 ) , and choose a function v ∈ L(p/2)′(u) with unit norm such that

∥∥∥(
∑
k∈Z

|μk,λ ∗ gk|2
)1/2∥∥∥2

Lp(u)
=

∫
Rn

∑
k∈Z

|μk,λ ∗ gk(x)|2 · v(x)u(x)dx,

which together with the fact that ‖μk,λ‖ � C leads to

∥∥∥(
∑
k∈Z

|μk,λ ∗ gk|2
)1/2∥∥∥2

Lp(u)
� C

∫
Rn

∑
k∈Z

|gk(x)|2
∣∣|μ̃k,λ | ∗ (vu)(x)

∣∣dx.

And for r := ps
2 , the Hölder inequality tells us that∣∣|μ̃k,λ | ∗ (vu)

∣∣ � (|μ̃k,λ | ∗ us)1/r(|μ̃k,λ | ∗ (ur′/(p/2)′vr′))1/r′ .

Hence, by Hölder’s inequality with exponents p
2 and ( p

2 )′ again, we get

∥∥∥(
∑
k∈Z

|μk,λ ∗ gk|2
)1/2∥∥∥2

Lp(u)

� C
∫

Rn
∑
k∈Z

|gk(x)|2(Mμ̃
λ us)1/r(Mμ̃

λ (ur′/(p/2)′vr′))1/r′(x)dx

� C
∥∥∥(

∑
k∈Z

|gk|2
)1/2∥∥∥2

Lp(Mμ̃
λ ,su)

‖Mμ̃
λ (ur′/(p/2)′vr′)‖1/r′

L(p/2)′/r′ (Rn)
.

Also, it follows from our assumptions (e) and (18) that

‖Mμ̃
λ f‖Lt(Rn) � C‖ f‖Lt(Rn), ∀t ∈ (γ, ∞),
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which leads to

‖Mμ̃
λ (ur′/(p/2)′vr′)‖1/r′

L(p/2)′/r′ (Rn)
� C‖ur′/(p/2)′vr′ ‖1/r′

L(p/2)′/r′ (Rn)
� C,

since (p/2)′ > r′γ . Consequently, for p ∈ (2, 2(γ−1/s)
γ−1 ) and s ∈ (1,∞) ,

∥∥∥(
∑
k∈Z

|μk,λ ∗ gk|2
)1/2∥∥∥

Lp(u)
� C

∥∥∥(
∑
k∈Z

|gk|2
)1/2∥∥∥

Lp(Mμ̃
λ ,su)

.

Noticing that Mμ̃
λ ,su � MsM

μ̃
λ ,su , and invoking (23)-(24), we deduce that

‖Tλ , j f‖Lp(u) =
∥∥∥ ∑

k∈Z
S3

j+k,λ μk,λ ∗ f
∥∥∥

Lp(u)

� C
∥∥∥(

∑
k∈Z

|μk,λ ∗ S2
j+k,λ f |2

)1/2∥∥∥
Lp(u)

� C
∥∥∥(

∑
k∈Z

|S2
j+k,λ f |2

)1/2∥∥∥
Lp(Mμ̃

λ ,su)

� C‖ f‖
Lp(MsM

μ̃
λ ,su)

for all p ∈ (2, 2(γ−1/s)
γ−1 ) . This proves (28).

Since β/s′ > 1, for p ∈ [2, 2β (γ−1/s)
1+β (γ−1) ) , there exist p1 ∈ [2, 2(γ−1/s)

γ−1 ) and θ ∈
(s′/β ,1] such that 1/p = θ/2+(1−θ )/p1 . Then interpolating between (27) and (28)
yields that

‖Tλ , j f‖Lp(u) � C(1+ | j|)−θβ (1−1/s)‖ f‖
Lp(MsM

μ̃
λ ,su)

.

This together with (25) yields (22) and completes the proof of (i).

The proof of (ii): Let γ ∈ [1,2) and β ∈ ( 2
2−γ ,∞) . Employing the notation in the

proof of (i), we need to show that

‖Tλ f‖Lp(u) � C‖ f‖Lp(ϒΛ,su) (29)

for all 1 � λ � Λ , p ∈ (β ′γ,2] and s ∈ (2β ′/p,∞) . Note that

(MΛus +M2M̃Λus +HΛus)1/s � MΛ
s u+M2

sM̃Λ
s u+HΛ,su = ϒΛ,su.

It suffices to prove that

‖Tλ f‖Lp(u1/s) � C‖ f‖
Lp((MΛu+M2M̃Λu+HΛu)1/s)

(30)

for all 1 � λ � Λ , p ∈ (β ′γ,2] and s ∈ (2β ′/p,∞) .
We now prove (30). Define the family of Borel measures {ωk,λ}k∈Z on Rn by

ω̂k,λ (ξ ) = |̂σk,λ |(ξ )−ψk,λ (ξ ) ̂|σk,λ−1|(ξ ), (31)
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where ψk,λ is defined by ψ̂k,λ (ξ ) = φ(2kλ |aλ ξ |) . One can easily verify that

|ω̂k,λ (x)| � Cmin{1, |2kλ aλ x|}; (32)

|ω̂k,λ (x)| � C(log |2kλ aλ x|)−β , if |aλ x| > 1; (33)

Mω
λ f (x) � Mσ

λ | f |(x)+MMσ
λ−1| f |(x); (34)

Mσ
λ f (x) � MMσ

λ−1| f |(x)+Gω
λ f (x), (35)

where

Mω
λ f (x) := sup

k∈Z
||ωk,λ | ∗ f (x)| and Gω

λ f (x) :=
(

∑
k∈Z

|ωk,λ ∗ f (x)|2
)1/2

.

Then for s > 1, it follows from (35) that

‖Mσ
λ f‖Lp(u1/s) � ‖MMσ

λ−1| f |‖Lp(u1/s) +‖Gω
λ f‖Lp(u1/s), 1 < p < ∞. (36)

And the well-known Fefferman-Stein inequality for M (see [17]) tells us that

‖M f‖Lp(u) � Cp‖ f‖Lp(Mu), 1 < p < ∞, (37)

which deduces that

‖MMσ
λ−1| f |‖Lp(u1/s) � C‖Mσ

λ−1| f |‖Lp(Mu1/s) � C‖Mσ
λ−1| f |‖Lp((Mu)1/s), 1 < p < ∞.

(38)
For Gω

λ f , by Minkowski’s inequality, we have

Gw
λ f (x) =

(
∑
k∈Z

∣∣∣ωk,λ ∗ ∑
j∈Z

S3
j+k,λ f (x)

∣∣∣2)1/2
� ∑

j∈Z

(
∑
k∈Z

|ωk,λ ∗ S3
j+k,λ f (x)|2

)1/2

=: ∑
j∈Z

Gλ , j f (x).

Consequently,
‖Gw

λ f‖Lp(u1/s) � ∑
j∈Z

‖Gλ , j f‖Lp(u1/s).

In what follows, we estimate ‖Gλ , j f‖Lp(u1/s) . It is not difficult to see that

‖ωk,λ ∗ f‖L∞(Rn) � C‖ f‖L∞(Rn),

and
‖ωk,λ ∗ f‖L1(u) � C‖ f‖L1(Mσ̃

λ u+Mσ̃
λ−1Mu) � C‖ f‖L1(MMσ̃

λ u+MMσ̃
λ−1Mu).

An interpolation gives

‖ωk,λ ∗ f‖Lp(u) � C‖ f‖Lp(MMσ̃
λ u+MMσ̃

λ−1Mu), 1 < p < ∞,
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which implies that∥∥∥(
∑
k∈Z

|ωk,λ ∗ fk|p
)1/p∥∥∥

Lp(u)
� C

∥∥∥(
∑
k∈Z

| fk|p
)1/p∥∥∥

Lp(MMσ̃
λ u+MMσ̃

λ−1Mu)
, 1 < p < ∞.

(39)
On the other hand, by (34) and our assumption (e), we have∥∥∥sup

k∈Z
|ωk,λ ∗ fk|

∥∥∥
Lp(Rn)

� C
∥∥∥ sup

k∈Z
| fk|

∥∥∥
Lp(Rn)

(40)

for all p ∈ (γ,2] . Interpolating between (39) and (40) gives∥∥∥(
∑
k∈Z

|ωk,λ ∗ fk|2
)1/2∥∥∥

Lp(u1/t1)
� C

∥∥∥(
∑
k∈Z

| fk|2
)1/2∥∥∥

Lp((MMσ̃
λ u+MMσ̃

λ−1Mu)1/t1)

for all p ∈ (γ,2] , where t1 = 2/p . This leads to∥∥∥(
∑
k∈Z

|ωk,λ ∗ fk|2
)1/2∥∥∥

Lp(u)
� C

∥∥∥(
∑
k∈Z

| fk|2
)1/2∥∥∥

Lp((MMσ̃
λ ut1+MMσ̃

λ−1Mut1)1/t1 )

� C
∥∥∥(

∑
k∈Z

| fk|2
)1/2∥∥∥

Lp((Mt1Mσ̃
λ ,t1

u+Mt1Mσ̃
λ−1,t1

Mt1u))
.

(41)

Hence,

‖Gλ , j f‖Lp(u) =
∥∥∥(

∑
k∈Z

|ωk,λ ∗ S3
j+k,λ f |2

)1/2∥∥∥
Lp(u)

� C
∥∥∥(

∑
k∈Z

|S3
j+k,λ f |2

)1/2∥∥∥
Lp(Mt1Mσ̃

λ ,t1
u+Mt1Mσ̃

λ−1,t1
Mt1u)

� C‖ f‖Lp(Mt1Mσ̃
λ ,t1

u+Mt1Mσ̃
λ−1,t1

Mt1u), γ < p � 2,

since Mt1M
σ̃
λ ,t1

u+Mt1M
σ̃
λ−1,t1

Mt1u∈A1 , and the weighted Littlewood-Paley theory and

(41). Substituting u1/t1 for u , we get

‖Gλ , j f‖Lp(u1/t1) � C‖ f‖Lp((MMσ̃
λ u+MMσ̃

λ−1Mu)1/t1), γ < p � 2. (42)

By (32)-(33) and the arguments similar to those used in deriving (26), we can obtain
that for s > 1,

‖ωk,λ ∗ S j+k,λ f‖L2(u) � C(1+ | j|)−β (1−1/s)‖ f‖L2(MsMω̃
λ ,su).

This together with (24) deduces that

‖Gλ , j f‖L2(u) =
∥∥∥(

∑
k∈Z

|ωk,λ ∗ S3
j+k,λ f |2

)1/2∥∥∥
L2(u)

�
∥∥∥(

∑
k∈Z

|ωk,λ ∗ S2
j+k,λ f |2

)1/2∥∥∥
L2(u)

� C(1+ | j|)−β (1−1/s)
∥∥∥(

∑
k∈Z

|S j+k,λ f |2
)1/2∥∥∥

L2(MsMω̃
λ ,su)

� C(1+ | j|)−β (1−1/s)‖ f‖L2(MsMω̃
λ ,su).

(43)
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Take s = t1 and substitute u1/t1 for u in (43), we obtain

‖Gλ , j f‖L2(u1/t1) � C(1+ | j|)−β (1−1/t1)‖ f‖L2((MMω̃
λ u)1/t1). (44)

Note that by (34)

MMω̃
λ u � MMσ̃

λ u+M2Mσ̃
λ−1u � MMσ̃

λ Mu+M2Mσ̃
λ−1Mu.

It follows from (44) that

‖Gλ , j f‖L2(u1/t1) � C(1+ | j|)−β (1−1/t1)‖ f‖L2((MMσ̃
λ Mu+M2Mσ̃

λ−1Mu)1/t1). (45)

Also, for β ∈ (2,∞) , p∈ (γβ ′,2] and s∈ ( 2β ′
p ,∞) , there exists q∈ (γ,2) such that p∈

(qβ ′,2] , s = 2/q and θ ∈ (s′/β ,1] satisfying 1/p = θ/2+(1−θ )/q . An interpolation
between (42) and (45) leads to

‖Gλ , j f‖Lp(u1/s) � CA(1+ | j|)−θβ/s′‖ f‖Lp((MMσ̃
λ Mu+M2Mσ̃

λ−1Mu)1/s).

So,
‖Gω

λ f‖Lp(u1/s) � ∑
j∈Z

‖Gλ , j f‖Lp(u1/s) � C‖ f‖Lp((MMσ̃
λ Mu+M2Mσ̃

λ−1Mu)1/s)

for all β > 2, p∈ (β ′γ,2] and s∈ (2β ′/p,∞) . This together with (36) and (38) implies
that

‖Mσ
λ f‖Lp(u1/s) � C(‖Mσ

λ−1| f |‖Lp((Mu)1/s) +‖ f‖Lp((MMσ̃
λ Mu+M2Mσ̃

λ−1Mu)1/s)) (46)

for all p ∈ (β ′γ,2] and s ∈ (2β ′/p,∞) .
We now prove that

‖Mσ
λ f‖Lp(u1/t1) � C‖ f‖

Lp((Mλ u+M2M̃λ u+Hλ u)1/t1)
(47)

for all 1 � λ � Λ , p ∈ (β ′γ,2] , s ∈ (2β ′/p,∞) and t1 = 2/p .
When λ = 1, we get from our assumption (e) and (46) that

‖Mσ
1 f‖Lp(u1/s) � C(‖Mσ

0 | f |‖Lp((Mu)1/s) +‖ f‖Lp((MMσ̃
1 Mu+M2Mσ̃

0 Mu)1/s))
� C‖ f‖Lp((Mu+M2M̃u+MMσ̃

1 Mu)1/s)
� C‖ f‖Lp((Mu+M2M̃u+H1u)1/s)

for any p∈ (β ′γ,2] , which proves (47) for λ = 1. Assume that (47) holds for λ = ι −1
with ι ∈ {2, . . . ,Λ} . Combining this assumption with (46) yields that

‖Mσ
ι f‖Lp(u1/s) � C(‖Mσ

ι−1| f |‖Lp((Mu)1/s) +‖ f‖Lp((MMσ̃
ι Mu+M2Mσ̃

ι−1Mu)1/s))
� C(‖ f‖

Lp((Mι−1Mu+M2M̃ι−1Mu+Hι−1Mu)1/s)
+‖ f‖Lp((MMσ̃

ι Mu+M2Mσ̃
ι−1Mu)1/s)

� C‖ f‖
Lp((Mιu+M2M̃ι u+Hι Mu)1/s)
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for all p ∈ (β ′γ,2] . This yields (47) for λ = ι . Then (47) is proved.
Using (18), (47) and (37), we have

‖Mμ
λ f‖Lp(u1/s) � ‖MΛ−λ Mσ

λ | f |‖Lp(u1/s) +‖MΛ−λ+1Mσ
λ−1| f |‖Lp(u1/s)

� C(‖Mσ
λ | f |‖Lp((MΛ−λ u)1/s) +‖Mσ

λ−1| f |‖Lp((MΛ−λ+1u)1/s))
� C(‖ f‖

Lp((Mλ (MΛ−λ u)+M2 ˜Mλ (MΛ−λ u)+Hλ (MΛ−λ u))1/s)
+‖ f‖

Lp((Mλ−1(MΛ−λ+1u)+M2 ˜Mλ−1(MΛ−λ+1u)+Hλ−1(MΛ−λ+1u))1/s)
)

� C‖ f‖
Lp((MΛu+M2M̃Λu+HΛu)1/s)

(48)

for all 1 � λ � Λ , p ∈ (β ′γ,2] and s ∈ (2β ′/p,∞) . Then (30) follows from (48) and
Lemma in [26, p.1574]. Lemma 1 is proved.

LEMMA 2. Let γ, β , Λ, {σk,λ}k, {aλ}Λ
λ=1, Mσ

λ , LΛ,s , ϒN,s and a1,a2 be given as
in Lemma 1.

(i) Let β ∈ (1,∞) , s ∈ (β ′,∞) and p ∈ [2, 2β (γ−1/s)
1+β (γ−1) ) . Then for any nonnegative

measurable function u on Rn ,

‖Mσ
Λ f‖Lp(u) � C‖ f‖Lp(ΘΛ,sMsu);

(ii) Let γ ∈ [1,2) , β ∈ ( 2
2−γ ,∞) , p ∈ (β ′γ,2] and s ∈ ( 2β ′

p ,∞) . Then for any non-
negative measurable function u on Rn ,

‖Mσ
Λ f‖Lp(u) � C‖ f‖Lp(ϒΛ,sMsu);

(iii) Let β ∈ ( 3
2 ,∞) , s∈ ((β−1/2

β−3/2)2,∞) and p∈ [2, β (2β−1)(1−1/
√

s)(γ−1/s)
(β γ−β+1)(β−1/2)(1−1/

√
s)+(1−1/s)β−1) .

Then for any nonnegative measurable function u on Rn ,∥∥∥sup
k∈Z

∣∣∣ ∞

∑
j=k

σ j,Λ ∗ f
∣∣∣∥∥∥

Lp(u)
� C‖ f‖Lp(ΘΛ,s(Msu+M2

s u));

(iv) Let γ ∈ [1,2) , β ∈ ( 2
2−γ ,∞) , s ∈ ((β−1/2

β−3/2)2,∞) and

p ∈ (max{2β ′(
β −3/2
β −1/2

)2,
2β ′γ(2β −1)

2β −1+(β ′γ −2)(
√

s)′
},2].

Then for any nonnegative measurable function u on Rn ,∥∥∥sup
k∈Z

∣∣∣ ∞

∑
j=k

σ j,Λ ∗ f
∣∣∣∥∥∥

Lp(u)
� C‖ f‖Lp(ϒΛ,s(Msu+M2

s u)).

Here ΘΛ,su = MΛ
s u+LΛ,su+ IΛ,su+ JΛ,su , where

Iλ ,su =
λ

∑
i=1

MsM
σ̃
i,sM

λ−i
s u, Jλ ,su =

λ

∑
i=1

M2
sM

σ̃
i−1,sM

λ−i
s u, ∀1 � λ � Λ.
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The constants C > 0 are independent of {aλ}Λ
λ=1 , but depend on Λ .

Proof. Let u be a nonnegative measurable function defined on Rn . In what fol-
lows, we will prove (i)–(iv), respectively.

The proof of (i): Employing the notation in the proof of Lemma 1, by the argu-
ments similar to those used in deriving (2), we can get∥∥∥(

∑
k∈Z

|ωk,λ ∗gk|2
)1/2∥∥∥

Lp(u)
�C

∥∥∥(
∑
k∈Z

|gk|2
)1/2∥∥∥

Lp(Mω̃
λ ,su)

,1 < s < ∞,2 < p <
2(γ −1/s)

γ −1
.

Applying the weighted Littlewood-Paley theory and the fact that MsMω̃
λ ,su∈ A1 , we get

‖Gλ , j f‖Lp(u) =
∥∥∥(

∑
k∈Z

|ωk,λ ∗ S3
j+k f |2

)1/2∥∥∥
Lp(u)

� C
∥∥∥(

∑
k∈Z

|S3
j+k f |2

)1/2∥∥∥
Lp(MsMω̃

λ ,su)

� C‖ f‖Lp(MsMω̃
λ ,su), 1 < s < ∞, 2 < p <

2(γ −1/s)
γ −1

.

(49)

On the other hand, similarly to the arguments in proving (43), we can deduce that

‖Gλ , j f‖L2(u) � C(1+ | j|)−β/s′‖ f‖
L2(MsM

μ̃
λ u)

. (50)

Note that β/s′ > 1, for p ∈ [2, 2(γ−1/s)β
1+β (γ−1) ) , there exist p1 ∈ (2, 2(γ−1/s)

γ−1 ) and θ ∈
(s′/β ,1] such that 1/p = θ/2 + (1−θ )/p1. An interpolation between (49) and (50)
implies that

‖Gλ , j f‖Lp(u) � C(1+ | j|)−θβ/s′‖ f‖
Lp(MsM

μ̃
λ ,su).

So,

‖Gω
λ f‖Lp(u) � ∑

j∈Z
‖Gλ , j f‖Lp(u) �C‖ f‖Lp(MsMω̃

s u), β ′ < s < ∞, 2 � p <
2β (γ −1/s)
1+ β (γ −1)

.

This together with (34) deduces that

‖Gω
λ f‖Lp(u) � C‖ f‖Lp(MsMσ̃

λ ,su+M2
sM

σ̃
λ−1,su), β ′ < s < ∞, 2 � p <

2β (γ −1/s)
1+ β (γ −1)

.

Therefore, by (35) and (37) we get

‖Mσ
λ f‖Lp(u) � ‖MMσ

λ−1| f |‖Lp(u) +‖Gω
λ f‖Lp(u)

� Cp‖Mσ
λ−1| f |‖Lp(Mu) +C‖ f‖Lp(MsMσ̃

λ ,su+M2
s M

σ̃
λ−1,su)

(51)

for s ∈ (β ′,∞) and p ∈ [2, 2β (γ−1/s)
1+β (γ−1) ) . This together with an induction argument and

our assumption (e) deduces that

‖Mσ
λ f‖Lp(u) � C‖ f‖Lp(Mλ u+Iλ ,su+Jλ ,su), ∀1 � λ � Λ,
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which leads to

‖Mσ
λ f‖Lp(u) � C‖ f‖

Lp(Mλ+1
s u+Iλ ,sMsu+Jλ ,sMsu), β ′ < s < ∞, 2 � p <

2β (γ −1/s)
1+ β (γ −1)

,

(52)
since u � Msu and Msu � A1 . This proves (i).

The proof of (ii): By (48), we have

‖Mσ
λ f‖Lp(u) � C‖ f‖

Lp(Mλ
s u+M2

s M̃λ
s u+Hλ ,su)

(53)

holds for all 1 � λ � Λ , β ∈ ( 2
2−γ ,∞) , p ∈ (β ′γ,2] and s ∈ (2β ′/p,∞) . (ii) is proved.

The proof of (iii): By (17), we can write

sup
k∈Z

∣∣∣ ∞

∑
j=k

σ j,Λ ∗ f (x)
∣∣∣ �

Λ

∑
λ=1

sup
k∈Z

∣∣∣ ∞

∑
j=k

μ j,λ ∗ f (x)
∣∣∣,

and

sup
k∈Z

∣∣∣ ∞

∑
j=k

μ j,λ ∗ f (x)
∣∣∣

= sup
k∈Z

∣∣∣ψk,λ ∗Tλ f (x)−ψk,λ ∗
k

∑
j=−∞

μ j,λ ∗ f (x)+ (δ −ψk,λ )∗
∞

∑
j=k+1

μ j,λ ∗ f (x)
∣∣∣

� sup
k∈Z

|ψk,λ ∗Tλ f (x)|+ sup
k∈Z

∣∣∣ψk,λ ∗
k

∑
j=−∞

μ j,λ ∗ f (x)
∣∣∣

+sup
k∈Z

∣∣∣(δ −ψk,λ )∗
∞
∑

j=k+1
μ j,λ ∗ f (x)

∣∣∣
=: A1,λ f (x)+A2,λ f (x)+A3,λ f (x),

where ψk,λ is given as in (31), Tλ is given as in (21) and δ is the Dirac-Delta. There-
fore, we need only to estimate ‖Ai,λ f‖Lp(u) , i = 1, 2, 3.

For A1,λ f , noting that Mu � Msu ∈ A1 , by (37) and (22), we obtain

‖A1,λ f‖Lp(u) � ‖M(Tλ f )‖Lp(u) � Cp‖Tλ f‖Lp(Mu) � Cp‖Tλ f‖Lp(Msu)
� C‖ f‖Lp(ϒΛ,sMsu) � C‖ f‖Lp(ΘΛ,sMsu)

for all p ∈ [2, 2β (γ−1/s)
1+β (γ−1) ) and s ∈ (β ′,∞) .

For A2,λ f , we write

A2,λ f (x) = sup
k∈Z

∣∣∣ ∞

∑
j=0

ψk,λ ∗ μk− j,λ ∗ f (x)
∣∣∣ �

∞

∑
j=0

sup
k∈Z

|ψk,λ ∗ μk− j,λ ∗ f (x)| =:
∞

∑
j=0

I j f (x).

Consequently,

‖A2,λ f‖Lp(u) �
∞

∑
j=0

‖I j f‖Lp(u), 1 < p < ∞.
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By (37), (18) and (52), we obtain

‖I j f‖Lp(u) � ‖MMμ
λ | f |‖Lp(u) � Cp‖Mμ

λ | f |‖Lp(Mu)
� Cp(‖Mσ

λ | f |‖Lp(MΛ−λ+1u) +‖Mσ
λ−1| f |‖Lp(MΛ−λ+2u))

� C‖ f‖
Lp(MΛ+2

s u+Iλ ,sM
Λ−λ+2
s u+Iλ ,sM

Λ−λ+3
s u+Jλ ,sM

Λ−λ+2
s u+Jλ−1,sM

Λ−λ+3
s u)

� C‖ f‖Lp(MΛ+2
s u+IΛ,sM2

s u+JΛ,sM2
s u) � C‖ f‖Lp(ΘΛ,sM2

s u)

(54)

for all p ∈ [2, 2β (γ−1/s)
1+β (γ−1) ) and s ∈ (β ′,∞) . Also, by (19) and Plancherel’s theorem, we

have

‖I j f‖2
L2(Rn) �

∥∥∥(
∑
k∈Z

|ψk,λ ∗ μk− j,λ ∗ f |2
)1/2∥∥∥2

L2(Rn)

� ∑
k∈Z

∫
{|aλ ξ |�2−kλ }

|μ̂k− j,λ (ξ )|2| f̂ (ξ )|2dξ

� C
∫

Rn
∑
k∈Z

|μ̂k− j,λ (ξ )|2χ{|aλ ξ |�2−kλ }| f̂ (ξ )|2dξ

� C sup
ξ∈Rn

∑
k∈Z

|aλ 2λ (k− j)ξ |2χ{|aλ ξ |�2−kλ }‖ f‖2
L2(Rn)

� C2−2λ j sup
ξ∈Rn

∑
k∈Z

|2kλ aλ ξ |2χ{|aλ ξ |�2−kλ }‖ f‖2
L2(Rn)

� C2−2λ j‖ f‖2
L2(Rn),

where in the last inequality we have used the properties of lacunary sequence. It follows
that

‖I j f‖L2(Rn) � C2−λ j‖ f‖L2(Rn).

On the other hand, by (54) with p = 2 and replacing u by us , we get

‖I j f‖L2(us) � C‖ f‖L2(ΘΛ,sM2
s us), s > β ′.

Thus, an interpolation leads to

‖I j f‖L2(u) �C2−(1−1/s)λ j‖ f‖L2((ΘΛ,sM2
s us)1/s) �C2−(1−1/s)λ j‖ f‖L2(ΘΛ,s2M2

s2
u), s > β ′,

which implies that

‖I j f‖L2(u) � C2−(1−1/
√

s)λ j‖ f‖L2(ΘΛ,sM2
s u),

√
s > β ′. (55)

Interpolating between (55) and (54) yields that

‖I j f‖Lp(u) � C2−ς(p,s) j‖ f‖Lp(ΘΛ,sM2
s u),

for all p ∈ [2, 2β (γ−1/s)
1+β (γ−1) ) and s > ( β

β−1)2 , where ς(p,s) > 0. Then,

‖A2,λ f‖Lp(u) �
∞

∑
j=0

‖I j f‖Lp(u) � C‖ f‖Lp(ΘΛ,sM2
s u)
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for all p ∈ [2,
2β (γ−1/s)
1+β (γ−1) ) and s ∈ ((β ′)2,∞) .

Fore A3,λ f , we write

A3,λ f (x) = sup
k∈Z

∣∣∣ ∞

∑
j=1

(δ −ψk,λ )∗ μk+ j,λ ∗ f (x)
∣∣∣

�
∞

∑
j=1

sup
k∈Z

|(δ −ψk,λ )∗ μk+ j,λ ∗ f (x)| =:
∞

∑
j=1

Jj f (x).

It follows that

‖A3,λ f‖Lp(u) �
∞

∑
j=1

‖Jj f‖Lp(u), 1 < p < ∞.

By the argument similar to those used in deriving (54), we get

‖Jj f‖Lp(u) � C‖ f‖Lp(ΘΛ,sM2
s u) (56)

for all p ∈ [2, 2β (γ−1/s)
1+β (γ−1) ) and s ∈ (β ′,∞) .

On the other hand, by (20) and Plancherel’s theorem, we have

‖Jj f‖2
L2(Rn) �

∥∥∥(
∑
k∈Z

|(δ −ψk,λ )∗ μ j+k,λ ∗ f |2
)1/2∥∥∥2

L2(Rn)

� ∑
k∈Z

∫
{2kλ aλ ξ |�1}

|μ̂ j+k,λ (ξ )|2| f̂ (ξ )|2dξ

� ∑
k∈Z

∞

∑
i=−k

∫
{2λ i�|aλ ξ |<2λ(i+1)}

|μ̂ j+k,λ (ξ )|2| f̂ (ξ )|2dξ

� C ∑
k∈Z

∞

∑
i=−k

(k+ j + i)−2β
∫
{2λ i�|aλ ξ |<2λ(i+1)}

| f̂ (ξ )|2dξ

� C ∑
k∈Z

∞

∑
i=0

(i+ j)−2β
∫
{2λ(i−k)�|aλ ξ |<2λ(i−k+1)}

| f̂ (ξ )|2dξ

� C
∞

∑
i=0

(i+ j)−2β‖ f‖2
L2(Rn)

� C j1−2β‖ f‖2
L2(Rn).

Hence,
‖Jj f‖L2(Rn) � C(1+ j)1/2−β‖ f‖L2(Rn).

Also, by (56) with p = 2 and replacing u by us , we get

‖Jj f‖L2(us) � C‖ f‖L2(ΘΛ,sM2
s us), s > β ′.

Then, an interpolation yields that for s > β ′ ,

‖Jj f‖L2(u) �C j−(β−1/2)(1−1/s)‖ f‖L2((ΘΛ,sM2
s us)1/s) �C j−(β−1/2)(1−1/s)‖ f‖L2(ΘΛ,s2M2

s2
u),

which leads to

‖Jj f‖L2(u) � C j−(β−1/2)(1−1/
√

s)‖ f‖L2(ΘΛ,sM2
s u),

√
s > β ′. (57)
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Note that β ∈ ( 3
2 ,∞) and s ∈ ((β−1/2

β−3/2)2 , we know that (β − 1/2)(1− 1/
√

s) > 1.
Therefore, for

p ∈
[
2,

β (2β −1)(1−1/
√

s)(γ −1/s)
(β γ −β +1)(β −1/2)(1−1/

√
s)+ (1−1/s)β −1

)
,

there exist p1 ∈ (2, 2β (γ−1/s)
1+β (γ−1) ) and θ ∈ ( 1

(β−1/2)(1−1/
√

s) ,1] such that 1/p = θ/2+(1−
θ )/p1 . Interpolation between (57) and (56) gives

‖Jj f‖Lp(u) � C j−θ(β−1/2)(1−1/
√

s)‖ f‖Lp(ΘΛ,sM2
s u).

Consequently,

‖A3,λ f‖Lp(u) �
∞

∑
j=1

‖Jj f‖Lp(u) � C‖ f‖Lp(ΘΛ,sM2
s u)

for all p ∈ [2, β (2β−1)(1−1/
√

s)(γ−1/s)
(β γ−β+1)(β−1/2)(1−1/

√
s)+(1−1/s)β−1) , β ∈ ( 3

2 ,∞) and s ∈ ((β−1/2
β−3/2)

2,∞) .
This completes the proof of (iii).

The proof of (iv): Employing the notation in the proof of (iii), we need only to
estimate ‖Ai,λ f‖Lp(u) , i = 1, 2, 3.

For A1,λ f , by (37) and (29), we have

‖A1,λ f‖Lp(u) � C‖M(Tλ f )‖Lp(u) � Cp‖Tλ f‖Lp(Mu) � C‖ f‖Lp(ϒΛ,sMu)

for any 1 � λ � Λ , β ∈ ( 2
2−γ ,∞) , p ∈ (β ′γ,2] and s ∈ ( 2β ′

p ,∞) .
For A2,λ f , it follows from (37), (18) and (53) that

‖I j f‖Lp(u) � C‖MMμ
λ f‖Lp(u) � Cp‖Mμ

λ f‖Lp(Mu)
� Cp(‖Mσ

λ | f |‖Lp(MΛ−λ+1u) +‖Mσ
λ−1| f |‖Lp(MΛ−λ+2u))

� C‖ f‖
Lp(MΛ

s Mu+M2
s M̃Λ

s Mu+Hλ ,sMΛ−λ+1u+Hλ−1,sMΛ−λ+2u)

� C‖ f‖
Lp(MΛ

s Mu+M2
s M̃Λ

s Mu+HΛ,sMu)
� C‖ f‖Lp(ϒΛ,sM2

s u)

(58)

for 1 � λ � Λ , β ∈ ( 2
2−γ ,∞) , p ∈ (β ′γ,2] and s ∈ (2β ′/p,∞) . Also, similarly to (55),

we can get
‖Ji f‖L2(u) � C2−(1−1/

√
s)λ j‖ f‖L2(ϒΛ,sM2

s u).

Therefore, interpolation theorem tells us that

‖I j f‖Lp(u) � C2−δ (p,s) j‖ f‖Lp(ϒΛ,sM2
s u)

for all 1 � λ � Λ , β ∈ ( 2
2−γ ,∞) , s ∈ (max{ 2β ′

p ,( β
β−1)2},∞) and p ∈ (β ′γ,2] , were

δ (p,s) > 0. So,

‖A2,λ f‖Lp(u) �
∞

∑
j=1

‖Jj f‖Lp(u) � C‖ f‖Lp(ϒΛ,sM2
s u)
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for all 1 � λ � Λ , β ∈ ( 2
2−γ ,∞) , p ∈ (β ′γ,2] and s ∈ (max{2β ′/p,(β ′)2},∞) .

For A3,λ f , by the argument similar to those used to derive (58), we get

‖Jj f‖Lp(u) � C‖ f‖Lp(ϒΛ,sM2
s u) (59)

holds for all 1 � λ � Λ , β ∈ ( 2
2−γ ,∞) , p ∈ (β ′γ,2] and s ∈ ( 2β ′

p ,∞) . And similarly to
the arguments in deriving (57), we have

‖Ji f‖Lp(u) � C j−(β−1/2)(1−1/
√

s)‖ f‖L2(ϒΛ,sM2
s u).

Note that β ∈ ( 2
2−γ ,∞) , and s∈ (max{(β−1/2

β−3/2)
2, 2β ′

p },∞) , then (β −1/2)(1−1/
√

s) >

1. Thus, for p∈ ( 2β ′γ(2β−1)
2β−1+(β ′γ−2)(

√
s)′ ,2] there exist p1 ∈ (β ′γ,2] and θ ∈ ( 1

(β−1/2)(1−1/
√

s) ,1]

such that 1
p = θ

2 + 1−θ
p1

. Interpolation between (57) and (59) yields that

‖Jj f‖Lp(u) � C j−θ(β−1/2)(1−1/
√

s)‖ f‖Lp(ϒΛ,sM2
s u)

Consequently,

‖A3,λ f‖Lp(u) �
∞

∑
j=1

‖Jj f‖Lp(u) � C‖ f‖Lp(ϒΛ,sM2
s u)

for β ∈ ( 2
2−γ ,∞) , s ∈ (max{(β−1/2

β−3/2)
2, 2β ′

p },∞) and p ∈ ( 2β ′γ(2β−1)
2β−1+(β ′γ−2)(

√
s)′ ,2] . Sum-

ming up the estimates of ‖Ai,λ f‖Lp(u) ( i = 1, 2, 3), we completes the proof of (iv).
Lemma 2 is proved.

We now turn to prove Theorems 1 and 2.
Proof of Theorems 1 and 2 . Let P0(t) = 0 and {Pλ}N

λ=1 be given as in Theorem
1. Let σk,λ , |σk,λ | , {Mσ

λ }N
λ=1 be defined as in Theorem 1 and δ , γ be given as in

Theorem 1. One can easily check that

Th,Ω,PN f (x) = ∑
k∈Z

σk,N ∗ f (x);

T ∗
h,Ω,PN

f (x) � Mσ
N f (x)+ sup

k∈Z

∣∣∣ ∞

∑
j=k

σ j,N ∗ f (x)
∣∣∣;

Mh,Ω,PN f (x) � C sup
k∈Z

||σk,N | ∗ f (x)|;

σk,0(ξ ) = 0;

Mσ
0 f (x) � C| f (x)|;

max{|σ̂k,λ (ξ )|, ∣∣|̂σk,λ |(ξ )
∣∣,‖σk,λ‖} � C;

max
{|σ̂k,λ (ξ )− σ̂k,λ−1(ξ )|, ∣∣|̂σk,λ |(ξ )− ̂|σk,λ−1|(ξ )

∣∣} � C|2kλ bλ ξ |.



WEIGHTED ESTIMATES FOR ROUGH SINGULAR INTEGRALS 415

By the arguments similar to those used in deriving [13, Lemma 2.2] and [23, Lemma
2.2], we can get

max{|σ̂k,λ (ξ )|, ∣∣|̂σk,λ |(ξ )
∣∣} � C(log |2kλ bλ ξ |)−δ , if |2kλ bλ ξ | > 1.

And, the arguments similar to those used in deriving [23, Lemma 2.5] can deduces that

‖Mσ
λ f‖Lq(Rn) � Cq‖ f‖Lq(Rn), q ∈ (γ ′,∞). (60)

Therefore, applying Lemmas 1 and 2 with the estimates above, we can obtain the de-
sired conclusions of Theorems 1 and 2 and complete our proofs.

3. Proofs of Corollaries 1-4

Before proving Corollaries 1-4, let us introduce an useful proposition, which is a
variant of [21, Proposition 2.1].

PROPOSITION 1. Let 1 < q < ∞ , δ ∈ [1,∞) and s0 ∈ [1,∞) . Let T be a sublinear
operator such that

‖T f‖Lq(u) � Cq,s,s0‖ f‖Lq(Θs(u)) (61)

for all s ∈ (s0,∞) and any nonnegative measurable function u on Rn , where the oper-
ator Θs satisfies

‖Θs( f )‖Lr(Rn) � Cr‖ f‖Lr(Rn) (62)

for all r ∈ (sδ ,∞) and all radial functions f . Then for any fixed s ∈ [s0,∞) and
p ∈ (q, qδ s

δ s−1) , the following inequalities hold:

‖T f‖Lp
|x|L

q
θ (Rn) � Cp,q‖ f‖Lp

|x|L
q
θ (Rn); (63)

∥∥∥(
∑
j∈Z

|T f j|q
)1/q∥∥∥

Lp
|x|L

q
θ (Rn)

� Cp,q

∥∥∥(
∑
j∈Z

| f j|q
)1/q∥∥∥

Lp
|x|L

q
θ (Rn)

; (64)

∥∥∥(
∑
j∈Z

|T f j|q
)1/q∥∥∥

Lp(Rn)
� Cp,q

∥∥∥(
∑
j∈Z

| f j|q
)1/q∥∥∥

Lp(Rn)
. (65)

Proof. We only prove (63) since (64) and (65) can be obtained similarly. The
argument is essentially same as in the proof of [21, Proposition 2.1]. Fix s ∈ [s0,∞) .
Let p ∈ (q, qδ s

δ s−1) . We write r = p
p−q and fix τ ∈ (s, r

δ ) . It is clear that r > δτ . Let

X denote the set of all functions g ∈ S (R) with
∫ ∞
0 gr(ρ)ρn−1dρ � 1. By changes of

variables, one has

‖T f‖q
Lp
|x|L

q
θ (Rn)

=
(∫ ∞

0

(∫
Sn−1

|T f (ρθ )|qdσ(θ )
)p/q

ρn−1dρ
)q/p

= sup
g∈X

∫ ∞

0

∫
Sn−1

|T f (ρθ )|qg(ρ)ρn−1dσ(θ )dρ

= sup
g∈X

∫
Rn

|T f (x)|qg(|x|)dx.

(66)
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Fix g ∈ X . Let I(g) :=
∫
Rn |T f (x)|pg(|x|)dx and h(x) = g(|x|) . By (61)-(62), Hölder’s

inequality and changes of variables, we have

I(g) � Cq,s,s0

∫
Rn

| f (x)|qΘs(h)(x)dx

� Cq,s,s0

∫ ∞

0

∫
Sn−1

| f (ρθ )|qdσ(θ )Θs(g)(ρ)ρn−1dρ

� Cq,s,s0

∫ ∞

0

(∫
Sn−1

| f (ρθ )|qdσ(θ )
)p/q

ρn−1dρ
)q/p(∫ ∞

0
(Θs(g)(ρ))rρn−1dρ

)1/r

� Cp,q‖ f‖q
Lp
|x|L

q
θ (Rn)

‖Θs(h)‖Lr(Rn)

� Cp,q‖ f‖q
Lp
|x|L

q
θ (Rn)

,

which together with (66) leads to (63).
We now prove Corollaries 1-4.
Proof of Corollary 1. We only prove Corollary 1 for the operator Th,Ω,PN since the

conclusions for Mh,Ω,PN can be obtained similarly.
(i) By (60), we have

‖LN,s f‖Lr(Rn) � C‖ f‖Lr(Rn)

for any s ∈ (δ ′,∞) and r ∈ (sγ ′,∞) . This together with (4) and Proposition 1, we have

that (8)-(10) hold for s ∈ (δ ′,∞) , q ∈ [2, 2δ (γ ′−1/s)
1+δ (γ ′−1) ) and p ∈ (q, qsγ ′

sγ ′−1) .
When the condition (a) holds, we have δ = β and γ ′ = 1. By Theorem A, (1)

and the fact that 2β (1− 1/s) � 2β , we have that (8)-(10) hold for s ∈ (β ′,∞) , q ∈
[2,2β (γ ′ −1/s)) and p = q .

When the condition (b) holds, we have δ = β
max{2,γ ′} . By Theorem B we have

that Th,Ω,PN is bounded on Lp(Rn) for p ∈ ( 2max{2,γ ′}δ
(max{2,γ ′}+2)δ−2 ,

2max{2,γ ′}δ
(max{2,γ ′}−2)δ+2) . This

together with (1) and the fact that 2δ (γ ′−1/s)
1+δ (γ ′−1) � 2max{2,γ ′}δ

(max{2,γ ′}−2)δ+2 yields that (8)-(10) hold

for s ∈ (δ ′,∞) , q ∈ [2, 2δ (γ ′−1/s)
1+δ (γ ′−1) ) and p = q .

By duality we have that (8)-(10) hold for s ∈ (δ ′,∞) , q ∈ ( 2δ (γ ′−1/s)
δ (γ ′−2/s+1)−1 ,2] and

p ∈ ( qsγ ′
q−1+sγ ′ ,q] . This proves (i).

(ii) Let δ ∈ ( 2
2−γ ′ ,∞) and q ∈ (δ ′γ ′,2] . By (60), we have

‖ϒN,s f‖Lr(Rn) � C‖ f‖Lr(Rn), 2δ ′/p < s < ∞, sγ ′ < r < ∞,

which together with (5) and Proposition 1 implies that (8)-(10) hold for all q∈ (δ ′γ ′,2] ,
p ∈ (q, 2qδ ′γ ′

2δ ′γ ′−q ) .
When the condition (a) holds. Then we have δ ′γ ′ = β ′ . Hence we have that

(8)-(10) hold for all q ∈ (δ ′γ ′,2] , and p = q by Theorem A and (1).
When the condition (b) holds and γ ∈ (2,∞] . Then δ = β

2 . By Theorem B we

have that Th,Ω,PN is bounded on Lp(Rn) for p ∈ ( β
β−1 ,β ) . This together with (1) and

the fact that (β
2 )′γ ′ � β

β−1 yields that (8)-(10) hold for q ∈ (δ ′γ ′,2] and p = q .
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By duality, we can obtain (8)-(10) hold for δ ∈ ( 2
2−γ ′ ,∞) , q ∈ [2, δ ′γ ′

δ ′γ ′−1) , p ∈
( 2qδ ′γ ′

2δ ′γ ′+q ,q] . This proves Corollary 1.
Proof of Corollary 2. Taking γ = ∞ , Corollary 2 follows easily from Corollary 1.
Proof of Corollary 3. We only consider the operator TΩ,PN since the corresponding

results for MΩ,PN can be proved similarly.

Let s =
√

β√
β−1

. Corollary 2 implies that (11)-(13) hold for q ∈ [2,2
√

β ) and

p ∈ [q, q
√

β ) .
Let 2 � q � p < ∞ . There exists β ∈ (1,∞) such that q ∈ [2,2

√
β ) and p ∈

[q,q
√

β ) . This proves (11)-(13) for the case 2 � q � p < ∞ . By duality we have that
(11)-(13) hold for the case 1 < p � q � 2.

On the other hand, let q∈ (1,2] and p∈ [q, 2] , there exists β > max{( 1
2( 1

q− 1
p )

)′
,q′,2}

such that q ∈ (β ′,2] and p ∈ [q, 2β ′q
2β ′−q) . This together with Corollary 2 implies that

(11)-(13) for the case 1 < q � p � 2. By duality, we have that (11)-(13) hold for the
case 2 � p � q < ∞ . This finishes the proof of Corollary 3.

Proof of Corollary 4. (i) By (60), we have

‖ΘN,s(Ms f +M2
s f )‖Lr(Rn) � C‖ f‖Lr(Rn)

for any s∈ (( δ−1/2
δ−3/2)2,∞) and r ∈ (sγ ′,∞) . This together with (6) and Proposition 1 im-

plies that (14)-(16) hold for s∈ (( δ−1/2
δ−3/2)2,∞) , q∈ [2, δ (2δ−1)(1−1/

√
s)(γ ′−1/s)

(δγ ′−δ+1)(δ−1/2)(1−1/
√

s)+(1−1/s)δ−1)

and p ∈ (q, qsγ ′
sγ ′−1) .

(ii) Let γ ∈ (2,∞] , δ ∈ ( 2
2−γ ′ ,∞) , s ∈ (( δ−1/2

δ−3/2)2,∞) and

q ∈ (max{2δ ′( δ−3/2
δ−1/2)2, 2δ ′γ ′(2δ−1)

2δ−1+(δ ′γ ′−2)(
√

s)′ },2] . It follows from (60) that

‖ϒN,s(Ms f +M2
s f )‖Lr(Rn) � C‖ f‖Lr(Rn), sγ ′ < r < ∞,

which together with (7) and Proposition 1 deduces that (14)-(16) hold for s∈ (( δ−1/2
δ−3/2)2,∞) ,

q∈ (max{2δ ′( δ−3/2
δ−1/2)2, 2δ ′γ ′(2δ−1)

2δ−1+(δ ′γ ′−2)(
√

s)′ },2] and p∈ [q, 2qδ ′γ ′
2δ ′γ ′−q) . Corollary 4 is proved.
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