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WEIGHTED ESTIMATES FOR ROUGH SINGULAR INTEGRALS
WITH APPLICATIONS TO ANGULAR INTEGRABILITY, II

FENG L1u, RONGHUI L1U* AND HUOXIONG WU

(Communicated by S. Varosanec)

Abstract. This paper is devoted to studying certain singular integral operators with rough radial
kernel & and sphere kernel Q as well as the corresponding maximal operators along polynomial
curves. The authors establish several weighted estimates for such operators by assuming that
the kernels h=1 and Q € F5(S"!), or h € Ay(R.) and Q € W.F(S""!). Here F5(S" 1)

denotes the Grafakos-Stefanov kernel and W.7g (S"~1) denotes the variant of Grafakos-Stefanov
kernel. As applications, the boundedness of such operators on the mixed radial-angular spaces

L"l ‘LZ (R") are obtained. Meanwhile, the corresponding vector-valued versions are also given.

Moreover, the bounds are independent of the coefficients of the polynomials in the definition of
operators.

1. Introduction

In this paper we continue with the program started in [21], which proved two
results related to the boundedness of singular integral operators and the corresponding
truncated maximal operators on the mixed radial-angular spaces. In what follows, let
R", n > 2, be the Euclidean space of dimension n and S"—1 denote the unit sphere in
R"™ equipped with the normalized Lebesgue measure do . We now recall the definition
of mixed radial-angular spaces.

DEFINITION 1. (Mixed radial-angular space). For 1 < p < oo and 1 < g < o, the
mixed radial-angular spaces L"; ‘L‘é (R™) are defined as the collection of all measurable

functions u defined in R” for which ||u||;p ;4 gay < e, where
x| 9( )

0o l/P
- p n—1
leell g 1 ery = (/0 (o) o (sn-1)P dp) :

p

The mixed radial-angular spaces L‘X

applying the usual modifications.

‘L‘é (R") with p = e or g = o can be defined by
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It is easy to check that the spaces Lf; IL‘é (R™) have the following basic properties:
(a)If 1 < p< oo and g=p,then

HMH%LZ(W) = [ul| Lr gn).- ey
®)If 1 < p<eeand 1 < g1 < ga < oo, then
”””L";‘LZI ®Y S C"7P7111=‘12||u||L";‘LZZ (&)
(c) If u is aradial function on R"” and 1 < p < e and 1 < g < oo, then
H”H%LZ(RH) =~ |ul| Lo gy
Here and in the sequel the notation A ~ B means that there are two positive constants
C,C’" suchthat A< CB and B < C/A.
Let Py(t) be areal polynomial on R of degree N satisfying P(0) = 0. Let Q be
a L'(S"~1) function satisfying
- Q(y)do(y) =0. 2)

and h € Ay(R,) with Ry := (0,e0). Here Ay(Ry), v > 0, is the set of all measurable
functions / defined on R satisfying

1 (R 1y
= — Y, o]
Il e. 2= sup (7 [ o) 7 <o
It is clear that
LOO(RJr) :AM(RJF) _,C4_ AYZ(R+) g AVI (R+) for 1 < N < <oo. (3)

Now we define the singular integral operator 7j, o p, along the “polynomial curve” Py

by
Tuanf () =pv. [ fix— PN(W)W

the corresponding truncated maximal singular integral operator 7", Py by

)

h(lyDQ(')

ThTQPNf (x) = SUP‘
e>0"J|y[>¢

and the corresponding maximal operator M, q p, by

My pyf (x) = sup i1 £ Ge= Py (VDY) IR(yDQ0)|dy.

>0 " Jyl<r

where y' = y/|y| for y # 0.
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For the sake of simplicity, we denote 7j,.o py = Tapy» Ty o p, = 1o p, and My py, =
MQJJN ifh=1; TQJJN =Tgo and T&PN = Té if PN(I) =1, Th7Q7PN = Th.’Q if PN(I) =t.

Singular integral theory was initiated in the seminal work of Calderén and Zyg-
mund [4] and since then has been an active area of research. A celebrated work in
this topic was due to Calderén and Zygmund [5] who showed that T is bounded
on the Lebesgue spaces LP(R") for 1 < p < oo if Q € LlogL(S""!) by the method
of rotations. Here the function class LlogL(S""!) denotes the set of all functions
Q: "1 — R satisfying

9 sogrgsr )= [, 19:0)]log(2+ |2(6) )do(6) <.

Subsequently, the condition was extended to the case Q € H'(S"~!), the Hardy space
on §"~!, by Coifman and Weiss [6] and Connett [7] independently. In 1997, to study
the LP-boundedness of singular integrals with rough kernels, Grafakos and Stefanov
[18] introduced the following function spaces:

2

Zpe)={act e s [ 100/’

do(y') < oo} for B >0,
gesn—l

and showed that
Fp(S"1) € Fp, (8" for0 < By < By,

U Li(s"h ¢ 9/3(8"_1) foranyf3 > 0,
g>1
and
() Zp(s" 1) & LlogL(S" ") c H'(S" ") ¢ | Fp(S" ).
B>1 B>1
Moreover, Grafakos and Stefanov [18] proved that that T is of type (p, p) for p €
(1+1/B.B+1) if Qe F(S" ") for some B > 1, and T is of type (p, p) for
pE (%7 @) if Qe 9/3(8"’1) for some 3 > 2. Subsequently, Fan, Guo and
Pan [13] improved and extended to these results as follows.

THEOREM A. ([13]) Let Py(t) be a real polynomial on R of degree N and satisfy
Pyn(0) = 0. Suppose that Q satisfies (2) and Q € Fg (™YY for some B > 0.

) If B > 1, then Tq p, is bounded on LP(R") for p € (%,2[3)

(i) If B > 3, then 13 p, is bounded on LP(R") for p € (%—:;2[3 —1).

Here the bounds of the above operators are independent of the coefficients of Py.

In 1979, Fefferman [16] introduced the singular integral operator 7, o with & €
L=(R.) and proved that 7}, ¢ is bounded on LP(R") forall p € (1,0) if Q € Lip,,(S"!)
for 0 < a <1 and h € L*(R;). Later on, Namazi [24] improved Fefferman’s result
to the case Q € L9(S""!) for some ¢ > 1. Subsequently, Duoandikoetxea and Ru-
bio de Francia [12] used the Littlewood-Paley theory to improve i € L*(R.) to the
case h € Ap(R4). Since then, the above results have been improved and extended by
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many authors (see [1, 14, 15,22, 23, 25]). In particular, Fan and Sato [15] showed that
Ty is bounded on LP(R") for |1/p—1/2| < min{1/y,1/2} — 1/, provided that
h € Ay(Ry) for some y> 1 and Q € W.Z5(S""") for some B > max{y,2}, where
W.Zg(S""!) for B > 0 denotes the set of all functions Q: "' — R satisfying

/ 1 P ,
0 [l 100020601 (108" (g r ) do(0)io) <

5/63"71
It was pointed out in [15, 20] that

Fp(S") cWFg(S') and W.Fpp(S" 1)\ Fp(S" ") #0 for B > 0.

UL (" cwFg, (8" c WFp, (S for0< By < B < oo

r>1
Afterwards, the first and third authors [23] extended the result of [15] to the singular
integral along polynomial curves in mixed homogeneous setting.

THEOREM B. ([23]) Let Py(t) be a real polynomial on R of degree N and satisfy
Py(0) = 0. Suppose that h € Ay(Ry) for some y € (1,0 and Q € W.Z5(S""") for
some B> max{2,Y} and satisfies (2). Then Tj,q p, is bounded on LP(R") for |1/p—
1/2| <min{1/y, 1/2} —1/B. Here the bounds of the above operators are independent
of the coefficients of Py.

On the other hand, the mixed radial-angular space plays an active role in singular
integral theory. Cérdoba [9] first proved that Tg is bounded on Lf; |L%, (R*) forall 1 <
p <ooif Q€ ¢1(S"!). Later on, D’ Ancona and Luca [10] used the same argument
in [9, Theorem 2.1] to extend the above results to cover the full range 1 < p < e and
1 < g < e=. The corresponding radial weighted results were established by Cacciafesta
and R. Luca [3] and Duoandikoetxea and Oruetxebarria [1 1]. Recently, the first author
and Fan [21] extended the above result to the singular integrals along polynomial curves
with rough radial kernels and improved the size condition on the sphere kernels € to
the case Q € L5(S"!) for s € (1,], which can be stated as follows:

THEOREM C. ([21]) Let Py(t) be a real polynomial on R of degree N and satisfy
Py(0) = 0. Suppose that Q € L*(S"™") satisfies (2) and h € Ay(Ry.) for some s,y €
(1,00].

(1) For 1 < p <eoand 1 < q < oo, the following inequalities hold:

1 Thcpy fll1r 10 (R") < Crosypan|fller 1o (R
x| ™6 x| ™6

|(Z manse) |,

JEZ |x|

1/q
< Ch797.v,y7p,q,NH ( > |fj\q>
JEZ

L LE (R

x|

LY (R")

1/q
< Ch.,Q.,s,%p’q’NH ( > |fj‘q> HLI’(R”).

JEL

H ( 2 |Th=Q=Pij|q> "

jez Lr(R)
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(i) For 1 < g < p < oo, the following inequalities hold:

1 Tya.p f ||L"’X‘LZ &) < Crasypanllf ||L"’X‘LZ (Rn)>

(3 mansi)

1/q
<G () ]
(Rn) hs.v.pa:N jé|f1> L LY (R)

P ra
L7 L v/ Lo

k™6

H (je%wh’igfzvfﬂq)l/q

Here the constants Cyq 5y, pqn > 0 are independent of the coefficients of Py.

1/q
<Guasaran|(Z50) ey
LP(R") hQ,s,y,0.4.N ,e% |fj‘ LP(R")

Based on Theorems A-C, it is natural to ask whether or not the conclusions in
Theorem C hold under the assumption of that Q € W.%g(S""!) for some > 1 and
h € Ay(Ry) for some y > 1, in particular, Q € F (S"~1) forsome B> 1 and h=1.

The main purpose of this paper is to address the above question. Our desired
conclusions will directly follow from the following weighted inequalities and a criterion
on the boundedness of sublinear operators on the mixed radial-angular spaces, which
will be established in Section 3. Now we formulate our main results as follows.

THEOREM 1. Let Py(t) = Zg‘;l bit" with b; # 0. Assume that Q satisfies (2) and
one of the following conditions holds:
(@) h(t) =1, Qe Fg(S" ) for some B>1, Y =1and § =p;
(b) he Ay(Ry ) for some y € (1,00] and Qe W Fg(S"" 1) for some B >max{2,7},
__ B
0= w7y
Then
(i) Let s € (%,w) and p € [2, %) Then for any nonnegative measurable
function u on R",

| Th.pyfllr @) < Chgpy psnllflle ey - “4)

(i) Let y€ (2,0, 6 € (ﬁ,w), pe(8'Y.2l and s € (27‘?,,00). Then for any non-
negative measurable function u on R",

| Thopyfllrw) < Chgpy psnllflleecey - (5)

Here Yy su = MYu +M§I\7Isﬁu +Hysu, Ly gu= 2;1:0 Mf“_iMfsMsu, Hyu= Zl’-lzl
MZMEMA Ty MO = (ME(u*))Vs, MEu = (M*u)VS for any k € N, Hj u =
(H;Lus)l/s, M/‘{’ is defined by Mff(x) = M/‘{f(x) and M)‘L’f(x) = supycz ||opal * f(x)],
where Oy ; and |0y | are respectively defined by

[rwdos= [ e "B g
R 2k=1 < |x| <2k |x|

)
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_ NI
()= [,y /(P () R R

and Py(t) =0, Py (t) = X~ bit' forall A € {1,2,...,N}. The above constants
Chap.y.psN are independent of {b, }a’:l. The same conclusions hold for My, ¢ p, -

THEOREM 2. Let Py(t) = Z?’zl bit" with b; # 0. Assume that Q satisfies (2) and
one of the following conditions holds:

() h(t) =1, Qe Fg(S" ") for some B > 3, Y=1and §=0;

(b) h € Ay(Ry) for some y € (1,0] and Q € W Fg(S"~ ) for some > 3 max{2,7},

__ B
O = m(z7y-
Then for any nonnegative measurable function u on R",

(i) for 8 € (3,%0), s € ((§33)%, %) and

3(28-1)(1-1/V5)(Y=1/s)
P €12 Gr=sr o=t A0 AR T5=T)

1 Thqpy e () < Crap.y psilFllr oy Myurv2u)) (6)

(ii) for y€ (2,2, 8 € (327,%), s € ((§533)% ) and

5-3/2 267 (251
pEe (max{25’(571§2)2, 25_1+8:3§)/_2))(\/§)/}72],

1 Tyqpy e < Crapy ps I loery Mg m2a)) - (M

Here O zsu = MNu + Ly su+ Iy su+Jnsu, LNS and Yy is given as in Theorem 1,
where 1) ju = 21 1 M M"M’l fu, Jyu= Z M2M9 SM%”‘u forall 1 <A <N.
The above constants Chﬁg’ﬁ’r)/’p’s.’]v are independent of {bl}/lzl‘

REMARK 1. In [26], Zhang established the weighted estimates for To and T3 .
Theorems 1 and 2 represent an generalization of [26, Theorems 1-2].

As applications of Theorems 1 and 2, we can get the following mixed radial-
angular integrability of T, o p, . T . Py and M q p, -

COROLLARY 1. Let Py(t) be a real polynomial on R of degree N and satisfy
Py (0) = 0. Assume that Q satisfies (2) and one of the following conditions holds:

(@ h(t)=1, Qe Fg(S" ") for some B> 1, Y =1and § =p;

(b) h € Ay(R ) for some y € (1,0] and Q e W Fp ("1 for some B >max{2,y},

_ B
0 = Sizyy-
Then,

”Th,Q,PNf”L";‘LZ(R") < LR ®)

1/q
H(é‘Th’Q’PNqu) 1 L4 (R") S Chap.y panN H( |f1|q>
J

€))

Lh L (R")
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(5, ) < s 511

provided that one of the following conditions holds:
() 8 € (1,2), s € (527,), g€ [2, 25099, pelg, 57);
(i) 8 € (1,%2), s € (557,), g € (ki 2. p e (2.4l
(i) Y€ (2,0], 8 € (527,), g€ (8'7.2], p € [g, L)
2

. 6/

(iv) Y€ (2,9, 6 € (2 7 =), q €2, 5/7/)11) IS (q+257//7/»CI]
The above constants Cyq gy pqnN > 0 are independent of the coefficients of Py. The
same conclusions hold for My, ¢ p, if one of the conditions (i) and (iii) holds.

l/qH ’ (10)
LP(RN)

REMARK 2. It should be pointed out that the range of g will be enlarged and the
range of p will be shrink as s enlarges in the condition (i) of Corollary 1. Specially,
the range of ¢ is just empty set when s = ¢’, and the range of p is just empty set when

§=oo.
In particular, we can get the following conclusions.

COROLLARY 2. Let Py(t) be a real polynomial on R of degree N and satisfy
Py(0) = 0. Assume that Q satisfies (2) and Q € Fg(S""") for some B > 1. Then,

”TQ.,PNfHLﬁ‘LZ(Rn) < \X\LZ(R"); (11)

H(}éTQ,PijV)l/q L\,;\LZ(RH)S Q/}quH( \f;|q> L\,;\LZ(R"); (12)
W%;mﬁﬁﬁuLwﬂ<%ﬁMﬂKlfm) e

provided that one of the following conditions holds:

(i) s€(B.), 4€2,%), pela.as);

(if) 5 € (B',), qe<2ﬁ’3s,72],pe<qﬂfﬂ7q];

(iif) B € (2,%2), g € (B',2], p € (g, 55%);

(iv) B € (2.), g€ [2,B). p € (555.4l-
The above constants Cq g, 4 v > 0 are independent of the coefficients of Py. The same
conclusions hold for Mg p,, if one of the conditions (i) and (iii) holds.

COROLLARY 3. Let Py(t) be a real polynomial on R of degree N and satisfy
Py(0) =0. Assume that € satisfies (2) and Q € g~ Fp (S"~1). Then the inequalities
(11)-(13) hold provided that one of the following conditions holds:

() 1<p.g<2;

(i) 2< p, g < o.

The same results hold for Mo p, if 1 <qg<p<2o0or2<qg<p<oo.
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COROLLARY 4. Let Py(t) be a real polynomial on R of degree N and satisfy
Py (0) = 0. Assume that Q satisfies (2) and one of the following conditions holds:

@ h(t)=1, Qe F(S" ") forsome >3, ¥ =1and 5 =B;

(b) h e Ay(Ry ) for some y € (1,00] and Qe W Fg(S"~ ) for some > 3 max{2,7},

_ B
0 = Sizyy-
Then,

||Th*,(2,PNf||L"’X‘LZ(R") < Chap.y.paN \f||L‘PX‘Lg (Rn)} (14)

1/q /4
T o p fil <C H |9 ;o (15)
H(,€%| h,Q,PNfJ‘ ) L“;‘L‘Z,(R") hQ.B.Y.p.a.N <J§%f./ ) L";‘L‘Z,(R")
1/q 1/q
T* g H < H .19 , 1
H(/g; ina,py il ) Lo (R Chap.y paN <j§2|fj| ) P (R (16)

provided that one of the following conditions holds:

. 3 0-1/2\2 8(26-1)(1-1/V5)(Y =1/s)
() 8 € (5,), s€ ((m) ), q €2, (5)/—5+1)(5—1/2)(1—1/\/§)+(1—1/s)5—1)’

pela55):
. 5-1/2
(i)) Y€ (2,0, 8 € (557,90, s € (335)%),
5-3/2 28’y (281 248’
g € (max{28' (5352, -2 BB U1.0], p € g, L.
The above constants Cp gy p.qN > 0 are independent of the coefficients of Fy.

The rest of this paper is organized as follows. In Section 2, we shall prove Theo-
rems Theorems 1 and 2. The proofs of Corollaries 1-4 will be given in Section 3. We
would like to remark that our arguments are greatly motivated by [21], but our methods
and techniques are more delicate and complex than those in [21]. The main ingredients
are to establish two criterions of weighted boundedness for the operators of convolution
type and the corresponding maximal operators (see Lemmas 1 and 2). The proofs of
Corollaries 1-4 are based on Theorems 1 and 2 and the criterion established in Section
3 (see Proposition 1).

Throughout this paper, for any p € (1,e0), we let p’ denote the dual exponent to
p defined as 1/p+1/p’ = 1. In what follows, for any function f, we define f by
f(x) = f(—x). Let N={1,2,...}. We denote by M* the Hardy-Littlewood maximal
operator M iterated k times for all k € N. Specially, M¥ =M when k= 1. For s > 1
and k € N, we denote Myu = (Mu®)'/s and M¥u = (M*u*)'/s. For f € LP(u), we set

1
1 12r ey = (S 1f () [Pu(x)dx) /P,
2. Proofs of Theorems 1 and 2

This section is devoted to proving Theorems 1 and 2. Before presenting our proofs,
let us establish two general criterions on the weighted boundedness of the convolution
operators, which are the heart of our proofs.

LEMMA 1. Let y€ [l,0), B € (1,0), Ac N\ {0} and {0}, :0<A <Aandk e
Z} be a family of uniformly bounded Borel measures on R". Let {a; : 1 <A < A} be
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a family of nonzero numbers. Suppose that there exist constants C > 0 such that the
following conditions hold for any 1 <A <A, k€Z and & e R":

@ oro0(8) =0 and |op 5[ < C;
(b) max{|Gi7(8)], |[oeAl (E)]} <
© max{|Gi2(8)], [0l (£)]} < Cllog PP az &) P if [2a2&| > 13

() max {|5e7 (&) = a1 (&), [[0Lal(E) — loen 11(E)]} < Cl2¥ay&l;

(&) M f(x) <Clf(x)| and ||MZ fl|Lan) < Cql|f|La(mn) for all q € (y,), where

M3 f(x) = sup|[op 2 | * f(x)]-
keZ

Then for any nonnegative measurable function u on R",

. 2B(y—1/s)
(1) for s € (ﬁ/’oo) and pe [27 1+g(y71))’

N oiaxf

keZ

[y < WMt

where Ly su=Y2 Mé\“_iMfSMsu, Mgsu = (Mfus)l/s, and MY f(x) :=M$ f(x);

!
)

(i) for y€[1,2), B € (35,), p€ (B'1,2] and s € (£, ). Then

N oiaxf

keZ

vy <M Nercry

where Y u = MMu +M?1\//Isru + Hpu, Hyu = 2?21M2MFM’1+1”‘M and Hj u =
EXH;Lu“')l/ ¥. Here, the constants C > 0 are independent of {ak}ﬁz |» but depend on

Proof. Let u be a nonnegative measurable function defined on R”. In what fol-
lows, we will prove (i) and (ii), respectively.
The proof of (i): For 1 <A < A, we define the Borel measures {1 j }rez on R”
by
12 (&) = Ga (E)Pa 11 (8) — Gea1(E)@a(8),

where @, is defined by @, (&) = H?:)L #(|2Ma;E|) and ¢ is a nonnegative Schwartz
function supported in {|¢| < 1} satisfying ¢(z) =1 when |¢| < 1/2. Itis easy to check
that

A
oA =, Mas (17)
A=1

MY f(x) <MAAME | () + MAAIME | FI () (18)
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—

|#k,)L
|2 (¥)] < Cllog |2 azx|) P, if 2% apx] > 1. (20)
Then, by (17), we can write
Y Oea* f(x) ZZumf ZZumf ZTM 1)
keZ keZ =1 =1keZ

and note that u < Myu, Mgu € A (see [8]), it follows from (18) that

(x)] < Cmin{1, |2 a;x|}; (19)

A . A ~ -
2 M\MESM\M < 2 (M?+17AM7(L;..VMSu +M?+271M571,SM-\'L{) < ZLAaSu'
A=1 ' 2=1 ’

Therefore, it suffices to show that

”Tlf”Ll’(u) < C”fHLP(MsM}‘LSu) (22)

forall ISA <A, pe [2,%), se (Bye0) and u € A;.

We now prove (22). Fix u € Aj. For 1 <A <A, let W, (r) € €°((1/4,1))
such that 0 < W, < 1 and Y4z (W5 (2%ay&))? = 1. Define the Fourier multiplier
operators {Si.; bxez by S f(x) = O 1+ £(x), where Oy 1 () = Wy (2 [az £]) . Then
it follows from [19] that for 1 < p <eo and w € A,

|(1sear) ] iy < Coma Il (23)
kEZ (w)
and "
Skl v Sl : (24)
sl <G (Z15) ",
And we can write
Tof(x) = 3 D Stua(tia *£)(x) = X DSt (e £)(x) = Y, T jif (%)
keZ jeZ JELZkeEZ JEZ
So,
1T f oy < 2N T i o (u)- (25)
j€z

Now we estimate ||T; ;f||zr(.)- By (19)-(20) and Plancherel’s theorem,

152 % Sk afll 2ny < CA+ D) PN 2y
On the other hand, for s > 1, we have
1/2

1t #Sjkaf N2y < (1eallll©; (&)

5 1/2
< (el 10 % f P (0 (1))

< CHf”LZ MM”M“)
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Thus, an interpolation of L?-spaces with change of measure ([2, Theorem 5.4.1]) im-

plies that
||lJ'kl *S/JrklfHLz (l + |.]|) 1 I/S)HfHLZ(MAMf u)'

This combing with (23) yields that

I72if 2w = | 357
1/2
<G ( >l *S,+Mf||Lz )

keZ
B 1/2
<+ 1P (X 1s5aar?)

keZ

C(l + |]|)7ﬁ(171/8)||fHL2(MAM§ -u)7

12 (MxMil‘su)

since MgM}} u€A,.
Next we will prove

2r-1/s),

HTLjf”U’(u) < C”fHLP(MSMg‘Su)’ pE (2’ y—1

(26)

27)

(28)

Fix p € (2, 2();:11/ )Y, and choose a function v € L(?/2) (1) with unit norm such that

[ 3 It i) vixu(e)d,
keZ

(X I aul?)

keZ

Ll’_

which together with the fact that || 5 || < C leads to

keZ

And for r:= &, the Holder inequality tells us that

|1 % vee) | < (g %)Y (g 5 (" P12V T

Hence, by Holder’s inequality with exponents £ and (£)" again, we get

| (kez s i) m”iw

<C /R X g P ) (v (PRI ()i
keZ

<e|(z )

) Mﬂ r/p/2 1/
S ) g IE L

Lp/2) /7 (R

Also, it follows from our assumptions (e) and (18) that

1M fllze @y < Cllfllxems ¥t € (7, %),

[(S hmana) [, <€ L S lacoPliaeal+ ol
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which leads to
| PPV <Clu/ e <G

(p/2) /¥ R” (p/2) /r’(Rn) =~

since (p/2)' > r'y. Consequently, for p € (2, W) and s € (1,00),

v <l )

H<kez‘#k7/1 *ng)l/ keZ

Noticing that Mf__yu < M_YMf_Su, and invoking (23)-(24), we deduce that

P (M;ixu)

1T il = | T Shaamten £,
keZ

< CH (ke% |ty 2 *S§+k,lf|2> v

LP(u)
1/2
(L)
(ke%‘ jriad| ) L (M} u)
< CH‘fHLp(MAMQ u)
forall p € (2, 2(7;__11/S)). This proves (28).
Since B/s' > 1, for p € |2, ?ﬁg&i/f))), there exist p; € [2,%) and 0 €

(s'/B,1] such that 1/p=6/2+ (1 —0)/p;. Then interpolating between (27) and (28)
yields that
6B(1-1
1Tl p(y < C(L[j]) 0P A1 o, M
This together with (25) yields (22) and completes the proof of (i).

The proof of (ii): Let y € [1,2) and B € (52
proof of (i), we need to show that

g o). Employing the notation in the

T2 fllzr () < ClF e ey gu) (29)
forall 1 <A <A, pe(f’y,2] and s € (28'/p,=). Note that
(MM + M2MAs + Hpu') s < M2y 4 Mfl\fg(u + Hpgu =Y u.
It suffices to prove that

HT)Lf”LI’(ul/A') < C”‘f"LP((MAM-FMZI\?IX;A-&-HAM)I/S) (30)

forall 1< A <A, pe(f’y,2] and s € (28/p,).
We now prove (30). Define the family of Borel measures {@y ; }xcz on R”" by

@12 (&) = [0021(E) = Wier (E)]Gra_11(E), 31)
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where y; 3 is defined by ;1 (&) = ¢(2%*|a; &|). One can easily verify that

@2 (x)| < Cmin{1, 2% a; x|} (32)
|2 (x)] < Cllog |2 azx|) 7P, if |ayx] > 1; (33)
MR f(x) < M7 |f](x) +MM7_ | f|(x); (34)
M3 f(x) <MM7_ | |fl(x)+ GF f(x), (35)

where

1/2
MPF00) = supllax |+ £0] and G1(w) = (3, o+ F0F)
€

Then for s > 1, it follows from (35) that
HMQ(ffHU(ul/S) < ||MM)?—1|f|||Lﬁ(u1/-r) + HGﬁ)fHUz(Ml/s)» I <p<oo. (36)
And the well-known Fefferman-Stein inequality for M (see [17]) tells us that
IMfllr) < Collfllomuy, 1< p<eo, (37)
which deduces that

HMMQ?_l‘f‘HLp(ul/s') < C||M)?_1|f|||Lp(Mul/x) < C||M)?_1|f|||Lp((Mu)l/s)» 1 <p<eo
(38)
For G?f, by Minkowski’s inequality, we have

24 1/2 1/2
G ) = (T |ora+ X Shaf @) < T (S lowa =St 0P)
keZ JEL JEZL k€l
=Y Gy ;f(x).
Jjez
Consequently,

HGV)LVfHLI’ ulls < 2 ”G?L,ijLp ul/s).
(u'/) b= (u'/)

In what follows, we estimate ||G;, ;f]l,, (u/s)- It is not difficult to see that
@z * fll=@ry < Cllfll=wn)s

and

[fow *fHLl(u) < C||fHL1(Mfu+M§’71Mu) < CHf”Ll(MMfquMMfilMu)'

An interpolation gives

”wk.,?L *f”LI’(u) < CHf”U’(MMfu-&-MMfflMu)’ I <p<oo,
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which implies that

[(Z s er) |, <cl (S 1ar) " t<p<
= A * Tk Pu = k LP(MMZut MM Mu)’ p '
(39)
On the other hand, by (34) and our assumption (e), we have
sup |y * H <C‘ su (40)
erlz)\ e * il L) keglfk\ L (RY)

for all p € (7,2]. Interpolating between (39) and (40) gives

[(Z o), <2 7)™

keZ keZ

(MM§u+MM Mu)!/1n)

forall p € (7,2], where t; = 2/p. This leads to

H(Z | @ 5, * fil ) P <CH<k€ka|2>l/2

keZ 12
<c|(Z 1)

LP(MMS 't + MM Mu1)1/) @)

LP (M, M§

At u+M/1M)?71J1M,1M))

Hence,

G if I () —H<Z|wk7t*sf+klf|> H

keZ
<c|(Zisuns?)”
keZ

< C”fHLP(M,le,lM+M11Mf—l.t1

LP(u)

LP(My, M)‘Z’Jl u+M;, Mfful M;, u)
Mllu)7 Y < p g 2a

since My, Mf:’ nz + Mth)‘[’_1 " M;,u € Ay, and the weighted Littlewood-Paley theory and
(41). Substituting '/ for u, we get
HGJL,J'fHLP(ul/fl) < C”f"LP((MM)L&MJrMMS;IMu)l/tl)7 y<p<2. (42)

By (32)-(33) and the arguments similar to those used in deriving (26), we can obtain
that for s > 1,

Sk iz < CA+UD PO f g o

This together with (24) deduces that

1/2
16812 = [ 0x23i0arP)

H <keZ ‘wk’k *S;_k’kf‘z) . L2(u) 43)

(S 1500ar?)"”

keZ
<C(1+ |j|)_l3(1_1/s)||f“L2(M3M)‘Rsu)'

L2 (u)

<C(1+]j) U1

12 (MstSu)
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Take s = #; and substitute «!/"1 for u in (43), we obtain
1G22 army < €O+ 1DV VA o gy (44)
Note that by (34)
MMPu < MMSu+M>MZ u < MMZMu+M?MS_ Mu.
It follows from (44) that

||Gl,jf||L2(u1/f1) < C(l + |j|)7ﬁ(171/”) "f||L2((MMfMu+M2MfilMM)1/tl)' 45

Also, for B € (2,00), p€ (yB’,2] and s € (2713,,00), there exists ¢ € (7,2) such that p €
(gB',2], s=2/q and 6 € (s'/B,1] satisfying 1/p=0/2+(1—0)/q. An interpolation
between (42) and (45) leads to

.\N—08 /s
HG)L.,jf”Uz(ul/-r) < CA(1+1j]) pls ”f"LP((MMfMu+M2MfflMu)l/S)'

So,

IGE ANl ogarsy < 2 MG jfll sy < CI o mpmurvzmg wiuyirs)
jez

forall B >2, pe (B’y,2] and s € (2B’/p, ). This together with (36) and (38) implies
that
”M)c{fHLp(ul/S) < C(HM}?_1|f| HLP((M,,)I/S) + "f||U’((MM§MM+M2M;771Mu)1/S)) (46)

forall p € (B'y,2] and s € (28" /p,°).
We now prove that

1M Fll oty < CIA 47

LP(MAu+ M2MAu+ Hy ) V11

forall 1< A <A, pe(B'y,2],s€(2B'/p,) andt; =2/p.
When A = 1, we get from our assumption (e) and (46) that
||MffHLp(u1/s) < C(HM(?|f|||Lp((Mu)l/s) + ”f"LP((MMfMquMzMgMu)l/S))
< C"f||LP((Mu+M2ﬁ1)+MMFMu)1/-?)
< C"f”Lﬁ((MHMZﬁHHlu)I/s)

forany p € (B'y,2], which proves (47) for A = 1. Assume that (47) holds for A =1—1
with 1 € {2,...,A}. Combining this assumption with (46) yields that

M2 £y < COME 1oty + 1 L oanontenm i)
\ (”fH ML lMquMzML 1Mu+H Mu l/a ||fHLI’ MGMquMzM?;lMu)l/x)

< CHfHLp MLM+M2MIM+HIMM)1/A)
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forall p € (B’y,2]. This yields (47) for A = t. Then (47) is proved.
Using (18), (47) and (37), we have
I £l sy < IMAABZ Ll ey IMA218 Ll
< CUMZ | Al an-ragsey + 149 Flllras-21ag17)
<c(rl,

+IA1
C”fHLp MAu+M2MAM+HAM)1/S)

forall 1 <A <A, pe(B'y,2] and s € (2B'/p,). Then (30) follows from (48) and
Lemma in [26, p.1574]. Lemma 1 is proved.

P (M (MA— 1)+ M2MA (MA— 1)+ Hy (MA— 1)) 1/5) (48)

)

Lp( Ml 1 MA A+l )+M2MA*I(MA*A+IM)+H171(MA*A‘FIM))I/S)

LEMMA 2. Let y, B, A, {0k 2 }#» {al}f{:l,Mi’, Lags, Yns and ay,ay be given as
in Lemma 1.

(i) Let B € (1,), s € (B',) and p € |2, ?ﬁg&l_/f))) Then for any nonnegative

measurable function u on R",

IMR fller@wy < Clf e, My

(i) Let ye[1,2), B € (%,,00), pe(B'y,2] and s € ( elil ,o0). Then for any non-
negative measurable function u on R",

MR fll e ) < ClSlleoery Moy

(iii) Let B e (%a“’)r se ((g:éﬁ)za“’) and p € [2, "By /3_,_115(;33 11}(21 11/1\7\)/(]_11/5)1” B— 1)‘
Then for any nonnegative measurable function u on R",
‘ sup 2 Gm*f'” S CU S @, (Mo MZu)
keZ ’

(iv) Let Y€ [1,2), B € (y25,%), s € (5=3/3)%,) and

B—-3/2, 2B"y(2B —1)
B—1/2" 2B =1+ (B'y—2)(v/s)'

Then for any nonnegative measurable function u on R",

Here Oy su = M_f,\u + Lp s+ Ip i+ Jp sut, where

p € (max{2p'(

1,21

sup
keZ

2 OjA *f’ H SOl ey s Mgz -

A A
L=y MMIMI u, Ty u="Y M2MZ | M}, V1< A <A
i=1 i=1
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The constants C > 0 are independent of {a,, }QZ |» but depend on A.
Proof. Let u be a nonnegative measurable function defined on R”. In what fol-
lows, we will prove (i)—(iv), respectively.

The proof of (i): Employing the notation in the proof of Lemma 1, by the argu-
ments similar to those used in deriving (2), we can get

[(Z onswai) ], <l (Z 1)

Applying the weighted Littlewood-Paley theory and the fact that MSM/‘{’Su €Ay, we get

2(y—1
1<S<°°72<p<u.
Lr(Mp, u)’ v—1

12
_ 32
1G.if e ) = H (kéWk,/l *Si 1S ) )

1/2
<c| (2 1s3urP) N 49
keZZI HE 0 R (49)
2(y—1/s)
gC”fHLP(MYM)({;Au), 1 <S<00, 2<p< ’)/_1 .
On the other hand, similarly to the arguments in proving (43), we can deduce that
162 if N2y < COA+ DAl gt (50)

Note that /s’ > 1, for p € [2,%), there exist p; € (2,%) and 0 €

(s'/B,1] such that 1/p =6/2+ (1—0)/p;. An interpolation between (49) and (50)
implies that

1G il < COL+ 1) ~OP U o a2

So,

2B(y—1/s)
o < . < @ ! o0, 2K —_
1G fllLrw) JéIIGMfIIU(M) Clfllpmgmony: B <s<eo, p< 1+B(y—1)
This together with (34) deduces that

2B(r—1/s)
16 Fllry < CUF o wivmg | yp B <5< 2<p< T+B—1)

Therefore, by (35) and (37) we get

M3 fllr @y < [IMMZF_ | Flll ey + 1GL N Lr )

51
<CIMS_\flrog +Clflpee onene g OV

. 2B(y—1/s)
for s € (B,%0) and p € [2, +B(y—1)

our assumption (e) deduces that

”M)cLnyLP(u) < C”f"LI’(MkquIxJquJxJu)’ VISA< A,

). This together with an induction argument and
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which leads to

2B(y—1/s)

o D < ! ) < 7
195 Flepy < O Nz s, s gy B <8 <=0 20 < gm0,

since u < Mgu and Mgu < Ay . This proves (i).
The proof of (ii): By (48), we have

1M fllzr () < CIIA (53)

LP(MA u+ M2M2 u+Hy su)

holds forall 1 <A <A, B € (5% 7:°). P € (B’y,2] and s € (2'/p,). (ii) is proved.
The proof of (iii): By (17), we can write

A oo
sup ZGJA*f ) Z ',A*f(x)
keZ
and
sup| 3 ;% /()|
keZ " j=k

k )
=sup |+ TS () Wz e X Mya e S+ (0= via)+ T s+ )

JE—e J=k+1

S s

Jj=—o0

<sup |y g+ Th f(x)
kEZL

(6-wa)x 3 *f(x)\
keZ Jj=k+1
=1 A1 f(x) +As 5 f(x) +As3 2 f(x),
where ;3 is given as in (31), T} is given asin (21) and & is the Dirac-Delta. There-

fore, we need only to estimate [|A;; f|zr@w), i=1,2,3.
For Ay 5 f, noting that Mu < Myu € Ay, by (37) and (22), we obtain

A2 lr ) < IM(T ey < Cpll TSl e oy < Coll T f |l 2o vy
S Clfllzr ey Moy < Cllf e 04 Mpu)

forall p € [2, 2111%/(_717/15))) and s € (B’,0).

For A, ; f, we write

Ay s f(x) = sup ZV/M*IJk jaxflx ‘ ESUPWM*#k k)] =: Zlf
keZ J=0k€EZ
Consequently,

1Az 2 lrey < X i lpy, 1< p <o
=0
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By (37), (18) and (52), we obtain

1S ) < IIMMG £ 1120y < CpllMA |1 L i)
< Cp(HMf|f|||LP(MA%+1u) + HME—71|f|”LI’(MA*l+2u))

(54)
<C|f ”U’(Mé‘”uﬂmM?*“ZuﬂlJM?*“%HAJM?*“%HA,IJM?*“%)

< C"f||U’(M?+2u+IA>_YM%u+JAJM%u) < CHf”LP(@A)SM%u)

forall p € [2, %ﬁ(g(_ylf f)) ) and s € (B’,). Also, by (19) and Plancherel’s theorem, we
have

2

1/2
M oy < || (2 Wi by 1)
keZ
<y B (©)PI7(E) P

kez/ {lmpgl<2*y
<C [ 315 8Py, ey (O
R rez

< Csup Z |a/121(k_j)§|2l{\a g|<szk}||inz Rr
A (R")
EER" keZ
<c2 M sup Y |2klal€|2x{‘al§|g2*kl}||fH]2}(RH)
SeR" kez
<C27M) fl 22 gy

L2(R")

where in the last inequality we have used the properties of lacunary sequence. It follows
that

17 £ |2y < C27M 1 £l 2 -

On the other hand, by (54) with p =2 and replacing u by u*, we get
1320y < ClF 2o, iy 5> B
Thus, an interpolation leads to
11|20y < sz(lfI/S)MHf||L2((9A‘sMgu-r)l/s) < sz(lfUS)MHf||L2(9M2Mé2_2u)7 s>p,
which implies that
13200 < €27 fllzo, wigs V5> B (55)
Interpolating between (55) and (54) yields that

Il < €27Vl oo, M2

forall p € [2, %ﬁ%’&i/f))) and s > (l%)z’ where (p,s) > 0. Then,

1425 f ey < 2 if ey < CULF Lo, mu)
J=0 '
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forall p € [2, 2161([%,17/1‘))) and s € ((B")?,0).

Fore A3, f, we write

Ajz ;. f(x) = sup Z (6 = W) * Mg jp * f(x ))
keZ -
ZSUP|5 Vi) * Mg ja % f(x)] = ijf
j= 1kEZ
It follows that

1432/ lpy < X Wifllpys 1< p <o
=

By the argument similar to those used in deriving (54), we get

1if 2oy < C”fHLP(@A)SM%u) (56)
forall p € [2, fﬁ%{/f;) and s € (B',0).
On the other hand, by (20) and Plancherel’s theorem, we have
/22
Jif P H (65—
93 ey < | (2106 = via) sty = .
< Eea (817 (8)Pag
kezzf{zkmé»} .
<¥>/ i () PIF()Pag
keZz— Wi g<arion T
<C kt+j+i) P f©)Pag
ke%z—z:k {2M<|a15‘<2l(z+1)}
<C + /)7 FE)2d
ke%; i+J) (2260 <\ua§|<2“"”‘“)}|f@)| .
CZH'J ) P12
1 2ﬁHf||L2 Rn
Hence,
1 | 2rny < CCLA+ )P £l 2 -
Also, by (56) with p =2 and replacing u by u*, we get
iAoy < CIA 2o, M2y, 5> B
Then, an interpolation yields that for s > 3/,
H‘]jf||L2(u)<Cj7(ﬁ 1/2)(1-1/s) ||fHL2 (O M2 Y)1/3)<C] (ﬁ”/z)(l’”‘)||fHL2(eM2Mfzu>’
which leads to
Vifllzz gy < Cim BP0 e, vy V5> B (57)
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Note that B € (3,%0) and s € ((§=33)?, we know that (B —1/2)(1—1//5) > 1
Therefore, for

=)

pe [2 BRB-1)(A—1/Vs)(y—1/s) )
"By=B+1)(B-1/2)(A—1/s)+(1-1/s)B— 1/

. 2B(y—1/s) 1
there exist p; € (2, 1+B(y71)) and 6 € (m’

0)/p: . Interpolation between (57) and (56) gives

1] suchthat 1/p=6/2+(1—

1 if Nl < Ci~ PRI £l o, w2

Consequently,
[ZERWAITIMES 2 Iif ey < Il o m20)
B2B-1)(1-1/v5)(y—1/s) 3 B-1/2\2
forall p € 2. gt Vg ) B € (3.2) and s € (5=5)°, ).

This completes the proof of (iii).

The proof of (iv): Employing the notation in the proof of (iii), we need only to
estimate [|A;  fllzry, i=1,2,3.
For Ay ; f, by (37) and (29), we have

A1 f ey < CIM(T ) oy < Coll Taf llr vy < CIlF e ey vu

forany I<A <A, e (%ﬂw), p€(B'y,2] and s € (2763/,00).
For A, ; f, it follows from (37), (18) and (53) that

1 |y < CIMMS, £l 10y < CpllM5 f Il 20 ()
S CpUIMF 1l o2y + IME L] o (van-242,)
< C||fH

<C
I ||fH P (MAMu +M2MAMu+HA sMu)
< C||fHLP (Y5 sMZu)

for ISA<KA, Be (% ), p€ (B'y,2] and s € (2B'/p,°). Also, similarly to (55),
we can get

P(MAMu+ MMM+ Hy MA-A+utHy  MA-A+2y) (58)

H-Iif”LZ(u) < Czi(lil/ﬁ)w“fHLZ(YA,.rM%”)'

Therefore, interpolation theorem tells us that
11 f ller ) < sza(p’s)jHf“Lﬁ(TAJM%u)

forall 1 <A <A, Be (%ﬂoo), s € (max{%ﬁ,,(%)z}po) and p € (B'y,2], were
6(p,s) > 0. So,

=

1423 flery < 2 M5 lry < CllF lurpry 2w
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forall 1 <A <A, B € (5% 7,00), p € (B'y.2] and 5 € (max{2B'/p,(B')*}, ).
For A3 ; f, by the argument similar to those used to derive (58), we get

i ler @y < ClA o ey Mz (59)

holds forall 1 <A <A, B € (5% 7:°). P € (B'y.2] and s € (27/3,700). And similarly to
the arguments in deriving (57), we have

if lry < Ci~B=VD0VD Fll iy -

Note that 8 € (5%, andse(max{(ﬁ ;@2,25} o), then (B—1/2)(1—1/4/5) >

1. Thus, for p € (%,Z] there exist p; € (B’y,2] and 6 € (
such that % = % + % . Interpolation between (57) and (59) yields that

1 1]
(B=1/2)(1-1/ys)’

i liry < €0 BP0 e e

Consequently,

=

143 3. ey < 2 M5 lry < ClF lirpry 2w

for B € (25,%0), s € (max{(543)%, 2}, =) and p (%,2}. Sum-
ming up the estimates of [|A; 3 f|lzr) (i =1,2,3), we completes the proof of (iv).
Lemma 2 is proved.

We now turn to prove Theorems 1 and 2.

Proof of Theorems 1 and 2. Let Py(t) =0 and {P;}}'_ be given as in Theorem
1. Let oy, [Okals {M/‘{}’)\L’:1 be defined as in Theorem 1 and &, y be given as in
Theorem 1. One can easily check that

Thapf(x) = Y, Okn * f(x)

kEZ
Ty apyf(x) <My f(x) (x)]s
My pyf(x) < Csup|logn|* f(x);
kez
or0(€) =0;
Mg f(x) < C|f(x)];
max{|G 2 ()], |[ox.21(E)]. [ oeall} < €

(&)~ loeal©)]} <2,

max {| 7 (£) — G ()
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By the arguments similar to those used in deriving [13, Lemma 2.2] and [23, Lemma
2.2], we can get

max{|Ge2 (&), [[oea|(§)]} < Cllog[2b &), if 2% b &] > 1.
And, the arguments similar to those used in deriving [23, Lemma 2.5] can deduces that

IMS fllzomny < Coll flliamys g € (Vs0). (60)

Therefore, applying Lemmas 1 and 2 with the estimates above, we can obtain the de-
sired conclusions of Theorems 1 and 2 and complete our proofs.

3. Proofs of Corollaries 1-4

Before proving Corollaries 1-4, let us introduce an useful proposition, which is a
variant of [21, Proposition 2.1].

PROPOSITION 1. Let 1 < g<eo, & € [1,) and so € [1,00). Let T be a sublinear
operator such that

”Tf”L‘i q s so”fHLq (O4(u)) (61)

Sorall s € (sg,) and any nonnegative measurable function u on R", where the oper-
ator Oy satisfies

19s(H)lr mry < Crll fll - memy (62)
for all r € (s8,00) and all radial functions f. Then for any fixed s € [sg,o°) and
p€(q, 5s5 5.-1), the following inequalities hold:

HTfHLfY‘LZ(R") < Cp,q”fHLﬁ‘L‘é(Rn); (63)
H(E'qu)l/ e S ”H<2|f’ ) L\”\Lq(R") (64
H(Z‘Tff ) bz S qu<Z|fj ) Il - (65)

Proof. We only prove (63) since (64) and (65) can be obtained similarly. The
argument is essentially same as in the proof of [21, Proposition 2.1]. Fix s € [sg,0).

Let p € (q, 5’155‘1) We write r = ﬁ and fix 7 € (s,5). Itis clear that » > §7. Let

X denote the set of all functions g € .(R) with [;°g"(p)p" 'dp < 1. By changes of
variables, one has

A2 1 (/ON (/Sl \Tf(pe)\qd(f(e))P/an_ldp)fl/p

_ q n—1
swp [, P00 g(p)p" o @)dp (©6)

=sup [ |Tf(x)|?g(|x|)dx
geX JR?
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Fix g€ X. Let I(g) := [ga |T f(x)|Pg(|x])dx and h(x) = g(|x|). By (61)-(62), Holder’s
inequality and changes of variables, we have

18) < Cps [ 11O ()0
<G || [\ 1700 da®IM(e)(P)P"dp

Cusso [ ([, 15tp0)a0@))" "0 ap) ™" ([ @101 010" )
Coall Aty 3 10

C q
P.q f”L‘lj(‘LZ(Rn)?

1/r

INININ

which together with (66) leads to (63).

We now prove Corollaries 1-4.

Proof of Corollary 1. We only prove Corollary 1 for the operator 7}, ¢ p, since the
conclusions for Mj, g p, can be obtained similarly.

(1) By (60), we have

LN ,s Sl gny < CIIfllzr ey

forany s € (6’,o0) and r € (s7/,°0). This together with (4) and Proposition 1, we have

that (8)-(10) hold for s € (§',0), g € [2, %) and p € (¢, 25;).

When the condition (a) holds, we have 6 = 3 and ¥ = 1. By Theorem A, (1)
and the fact that 2 (1 — 1/s) < 23, we have that (8)-(10) hold for s € (B’,), g €
2,2B(Y —1/s)) and p=gq.

When the condition (b) holds, we have 6 = ﬁ By Theorem B we have

that 7j, o p, is bounded on L?(R") for p € ((mi?fﬁifz})gfz, (mi?;);/{'fj/z})gﬂ) This

together with (1) and the fact that 120 10) < —ZRMEVIS_ yields that (8)-(10) hold

for s € (6',%0), g € [27%) and p=gq.

By duality we have that (8)-(10) hold for s € (§',%), q € (%,2} and
qsy

pE (m7q} . This proves (i).
(ii) Let & € (525,0) and g € (8'Y,2]. By (60), we have

HTN7SfHLr(R") < C”fHLr(Rn), 25//p <5< oo, S'J/ <r< oo,

which together with (5) and Proposition 1 implies that (8)-(10) hold for all g € (6'Y/,2],

2q6'
e (g2,

When the condition (a) holds. Then we have 6’y = B’. Hence we have that
(8)-(10) hold for all g € (6'Y,2], and p = g by Theorem A and (1).

When the condition (b) holds and y € (2,e0]. Then 6 = g By Theorem B we
have that Tj, o p, is bounded on L”(R") for p € (%, B). This together with (1) and

the fact that (%)’)/ > % yields that (8)-(10) hold for g € (6’Y,2] and p =gq.
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By duality, we can obtain (8)-(10) hold for 6 € (%,w), q € |2, %), pE

(225733; ,q]. This proves Corollary 1.

Proof of Corollary 2. Taking y = e, Corollary 2 follows easily from Corollary 1.
Proof of Corollary 3. We only consider the operator T, p, since the corresponding
results for Mg p, can be proved similarly.

Let s = % Corollary 2 implies that (11)-(13) hold for g € [2,2\/3) and

€lg,9v/B).

Let 2 < g < p < oo. There exists B € (1,00) such that ¢ € [2,2,/B) and p €
[q,q\/ﬁ). This proves (11)-(13) for the case 2 < g < p < e=. By duality we have that
(11)-(13) hold for the case 1 < p < g < 2.

On the other hand, let g € (1,2] and p € [g, 2], there exists 8 > max{ (ﬁ)/,q’,Z}

q P

such that g € (f’,2] and p € |g, 2%13 4y, This together with Corollary 2 implies that
(11)-(13) for the case 1 < g < p < 2. By duality, we have that (11)-(13) hold for the
case 2 < p < g < oo. This finishes the proof of Corollary 3.

Proof of Corollary 4. (i) By (60), we have

HGN,S(MSJC"_M?JC)HU(R") <Ol fller@n

forany s € ((g;;g)z,w) and r € (sy/,°0). This together with (6) and Proposition 1 im-

5-1/212 §(26-1)(1-1/5)(Y—1/s
plies that (14)- 5/16) hold for s € (5575 3/2) ,), g €2, (57/*5+1()(571;2)(17\1[/\%)+(17)1/s)5—1)
)

and p € (g, .\'yl’fl .
(if) Let 7 € (2,], 8 € (3%7,%9), 5 € ((§7373)%,) and

qc (max{ZS’(?jﬁ)z, 23ji(7:3§72/5:21))(\/§), },2]. It follows from (60) that

N s Mef + M)y < Clf Ny, sY <r<eo,

which together with (7) and Proposition 1 deduces that (14)-(16) hold for s € (( gfég )2,0),

qe (max{ZB’(ijﬁ)z, 75— ?igg,if 21 } 2] and p € [q, 25,7/7/ ). Corollary 4 is proved.
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