A WEIGHTED ESTIMATE FOR GENERALIZED HARMONIC EXTENSIONS

Roberta Musina* and Alexander I. Nazarov

(Communicated by J. Pečarić)

Abstract. We prove some weighted L_{p} estimates for generalized harmonic extensions in the half-space.

Let $u=u(x)$ be a "good" function in \mathbb{R}^{n}. Denote by $\mathbb{P} u=(\mathbb{P} u)(x, y)$ its harmonic extension to the half-space $\mathbb{R}_{+}^{n+1} \equiv \mathbb{R}^{n} \times(0, \infty)$,

$$
(\mathbb{P} u)(x, y)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \int_{\mathbb{R}^{n}} u(\xi) \cdot \frac{y d \xi}{\left(|x-\xi|^{2}+y^{2}\right)^{\frac{n+1}{2}}}, \quad x \in \mathbb{R}^{n}, y>0
$$

By elementary convolution estimates, the linear mapping $\mathbb{P}: u \mapsto(\mathbb{P} u)(\cdot, y)$ is nonexpanding in $L_{p}\left(\mathbb{R}^{n}\right)$ for any $p \in[1, \infty]$, that is, $\|(\mathbb{P} u)(\cdot, y)\|_{p} \leqslant\|u\|_{p}$ for any $y>0$.

In the breakthrough paper [1], Caffarelli and Silvestre introduced, for any $s \in$ $(0,1)$, the following generalized s-harmonic extension $u \mapsto \mathbb{P}_{s} u$,

$$
\left(\mathbb{P}_{s} u\right)(x, y)=c_{n, s} \int_{\mathbb{R}^{n}} u(\xi) \cdot \frac{y^{2 s} d \xi}{\left(|x-\xi|^{2}+y^{2}\right)^{\frac{n+2 s}{2}}}, \quad c_{n, s}=\frac{\Gamma\left(\frac{n+2 s}{2}\right)}{\pi^{\frac{n}{2}} \Gamma(s)} .
$$

One of the main results in [1] states that the L_{2}-norm of $(-\Delta)^{\frac{s}{2}} u=\mathscr{F}^{-1}\left[|\xi|^{s} \mathscr{F}[u]\right]$ on \mathbb{R}^{n} (here \mathscr{F} is the Fourier transorm in \mathbb{R}^{n}) coincides, up to a constant that depends only on s, with some weighted L_{2}-norm of $\left|\nabla\left(\mathbb{P}_{s} u\right)\right|$ on \mathbb{R}_{+}^{n+1}.

Notice that for arbitrary $y>0$, the kernel

$$
\begin{equation*}
\mathscr{P}_{s}(x, y)=\frac{\Gamma\left(\frac{n+2 s}{2}\right)}{\pi^{\frac{n}{2}} \Gamma(s)} \frac{y^{2 s}}{\left(|x|^{2}+y^{2}\right)^{\frac{n+2 s}{2}}} \tag{1}
\end{equation*}
$$

has unitary L_{1}-norm, thus the linear mapping $u \mapsto\left(\mathbb{P}_{s} u\right)(\cdot, y)$ is non-expanding in $L_{p}\left(\mathbb{R}^{n}\right)$ as well. In particular, we have

$$
\int_{\mathbb{R}^{n}}\left|\left(\mathbb{P}_{s} u\right)(\cdot, y)\right|^{p} d x \leqslant \int_{\mathbb{R}^{n}}|u|^{p} d x \quad \text { for any } s \in(0,1), y>0, \quad p \in[1, \infty) .
$$

[^0]We are interested in similar results for weighted L_{p}-norms. More precisely, we deal with inequalities of the form

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{\left|\left(\mathbb{P}_{s} u\right)(x, y)\right|^{p}}{\left(|x|^{2}+y^{2}\right)^{\alpha}} d x \leqslant C_{p} \int_{\mathbb{R}^{n}} \frac{|u(x)|^{p}}{\left(|x|^{2}+y^{2}\right)^{\alpha}} d x \tag{2}
\end{equation*}
$$

where $C_{p}>0$ does not depend on y, u. These inequalities seems to be new even in the classical case $s=\frac{1}{2}$.

The next statement is crucially used in [2].

THEOREM 1. Let $s \in(0,1), \alpha \geqslant 0$.
i) If $p=1$, The inequality (2) holds if and only if $\alpha \leqslant \frac{n}{2}+s$.
ii) For arbitrary $1<p<\infty$, the inequality (2) holds if and only if $\alpha<\frac{n}{2}+s p$.

Proof. Take a measurable function u, an arbitrary $y>0$, and put $u^{y}(x)=u(y x)$. By dilation, we have $\left(\mathbb{P}_{s} u\right)(x, y)=\left(\mathbb{P}_{s} u^{y}\right)\left(\frac{x}{y}, 1\right)$. Thus it suffices to prove (2) for $y=1$.

In case $p=1$, we rewrite the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{\left|\left(\mathbb{P}_{s} u\right)(x, 1)\right|}{\left(|x|^{2}+1\right)^{\alpha}} d x \leqslant C_{1} \int_{\mathbb{R}^{n}} \frac{|u(x)|}{\left(|x|^{2}+1\right)^{\alpha}} d x \tag{3}
\end{equation*}
$$

in the form

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|\int_{\mathbb{R}^{n}} \frac{u(\xi)}{\left(|\xi|^{2}+1\right)^{\alpha}} \frac{c_{n, s}}{\left(|x-\xi|^{2}+1\right)^{\frac{n+2 s}{2}}} \frac{\left(|\xi|^{2}+1\right)^{\alpha}}{\left(|x|^{2}+1\right)^{\alpha}} d \xi\right| d x \leqslant C_{1} \int_{\mathbb{R}^{n}} \frac{|u(\xi)|}{\left(|\xi|^{2}+1\right)^{\alpha}} d \xi \tag{4}
\end{equation*}
$$

to make evident that we are indeed estimating the norm of the transform

$$
v \mapsto \mathbb{L} v, \quad(\mathbb{L} v)(x)=\int_{\mathbb{R}^{n}} v(\xi) \frac{c_{n, s}}{\left(|x-\xi|^{2}+1\right)^{\frac{n+2 s}{2}}} \frac{\left(|\xi|^{2}+1\right)^{\alpha}}{\left(|x|^{2}+1\right)^{\alpha}} d \xi
$$

as a linear operator $L_{1}\left(\mathbb{R}^{n}\right) \rightarrow L_{1}\left(\mathbb{R}^{n}\right)$. We use the duality $L_{1}\left(\mathbb{R}^{n}\right)^{\prime}=L_{\infty}\left(\mathbb{R}^{n}\right)$, that gives

$$
\begin{equation*}
\|\mathbb{L}\|_{L_{1} \rightarrow L_{1}}=\sup _{\xi \in \mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{c_{n, s}}{\left(|x-\xi|^{2}+1\right)^{\frac{n+2 s}{2}}} \frac{\left(|\xi|^{2}+1\right)^{\alpha}}{\left(|x|^{2}+1\right)^{\alpha}} d x \tag{5}
\end{equation*}
$$

If $\alpha>\frac{n}{2}+s$, then the supremum in (5) is evidently infinite. If $\alpha \leqslant \frac{n}{2}+s$ then easily

$$
\int_{|x| \geqslant|\xi| / 2} \frac{c_{n, s}}{\left(|x-\xi|^{2}+1\right)^{\frac{n+2 s}{2}}} \frac{\left(|\xi|^{2}+1\right)^{\alpha}}{\left(|x|^{2}+1\right)^{\alpha}} d x \leqslant \int_{\mathbb{R}^{n}} 2^{2 \alpha} \mathscr{P}_{s}(x-\xi, 1) d x=2^{2 \alpha} .
$$

Further, $|x| \leqslant|\xi| / 2$ implies $|x-\xi| \geqslant|\xi| / 2$ and $|x-\xi| \geqslant|x|$. Therefore,

$$
\begin{aligned}
\int_{|x| \leqslant|\xi| / 2} \frac{c_{n, s}}{\left(|x-\xi|^{2}+1\right)^{\frac{n+2 s}{2}}} \frac{\left(|\xi|^{2}+1\right)^{\alpha}}{\left(|x|^{2}+1\right)^{\alpha}} d x & \leqslant \int_{|x| \leqslant|\xi| / 2} \frac{2^{2 \alpha} c_{n, s} d x}{\left(|x-\xi|^{2}+1\right)^{\frac{n+s s}{2}}-\alpha}\left(|x|^{2}+1\right)^{\alpha} \\
& \leqslant \int_{\mathbb{R}^{n}} 2^{2 \alpha} \mathscr{P}_{s}(x, 1) d x=2^{2 \alpha} .
\end{aligned}
$$

We can conclude that $C_{1}=\|\mathbb{L}\|_{L_{1} \rightarrow L_{1}}<\infty$, and i) is proved.
Next, we take $p>1$. To handle the case $\alpha \geqslant \frac{n}{2}+s p$ we notice that the function

$$
\bar{u}(x):=\frac{\left(|x|^{2}+1\right)^{\frac{2 \alpha-n}{2 p}}}{\log \left(|x|^{2}+2\right)}
$$

satisfies

$$
\int_{\mathbb{R}^{n}} \frac{|\bar{u}(x)|^{p}}{\left(|x|^{2}+1\right)^{\alpha}} d x=\int_{\mathbb{R}^{n}} \frac{d x}{\left(|x|^{2}+1\right)^{\frac{n}{2}} \log ^{p}\left(|x|^{2}+2\right)}<\infty .
$$

On the other hand, for any arbitrary $x \in \mathbb{R}^{n}$ we have

$$
\int_{\mathbb{R}^{n}} \mathscr{P}_{s}(x-\xi, 1) \bar{u}(\xi) d \xi>\int_{\mathbb{R}^{n}} \frac{C(x) d \xi}{\left(|\xi|^{2}+1\right)^{\frac{n}{2}} \log \left(|\xi|^{2}+2\right)}
$$

and the last integral diverges. Thus, for $p>1$ and $\alpha \geqslant \frac{n}{2}+s p$ the inequality (2) does not hold with a finite constant C in the right hand side.

If $\alpha<\frac{n}{2}+s p$, we use Hölder's inequality to get

$$
\begin{align*}
&\left|\left(\mathbb{P}_{s} u\right)(x, 1)\right| \leqslant\left(\int_{\mathbb{R}^{n}} \mathscr{P}_{s}(x-\xi, 1) \frac{|u(\xi)|^{p}}{\left(|\xi|^{2}+1\right)^{\beta}} d \xi\right)^{\frac{1}{p}} \\
& \times\left(\int_{\mathbb{R}^{n}} \mathscr{P}_{s}(x-\xi, 1)\left(|\xi|^{2}+1\right)^{\frac{\beta}{p-1}} d \xi\right)^{\frac{p-1}{p}} \tag{6}
\end{align*}
$$

where $\beta:=\max \left\{\alpha-\frac{n}{2}-s, 0\right\}<s(p-1)$.
If $\alpha \leqslant \frac{n}{2}+s$ then $\beta=0$ and the last integral equals 1 . In this case we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{\left|\left(\mathbb{P}_{s} u\right)(x, 1)\right|^{p}}{\left(|x|^{2}+1\right)^{\alpha}} d x \leqslant \int_{\mathbb{R}^{n}} \mathbb{L}\left[\frac{|u(\cdot)|^{p}}{\left(|\cdot|^{2}+1\right)^{\alpha}}\right](x) d x \leqslant\|\mathbb{L}\|_{L_{1} \rightarrow L_{1}} \int_{\mathbb{R}^{n}} \frac{|u(x)|^{p}}{\left(|x|^{2}+1\right)^{\alpha}} d x \tag{7}
\end{equation*}
$$

and (2) follows from the first part of the proof.
If $\frac{n}{2}+s<\alpha<\frac{n}{2}+s p$, we estimate

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \frac{\left|\left(\mathbb{P}_{s} u\right)(x, 1)\right|^{p}}{\left(|x|^{2}+1\right)^{\alpha}} d x & \leqslant\left(\int_{\mathbb{R}^{n} \mathbb{R}^{n}} \mathscr{P}_{s}(x-\xi, 1) \frac{\left(|\xi|^{2}+1\right)^{\frac{n+2 s}{2}}}{\left(|x|^{2}+1\right)^{\frac{n+2 s}{2}}} \frac{|u(\xi)|^{p}}{\left(|\xi|^{2}+1\right)^{\alpha}} d \xi d x\right) \\
& \times\left(\sup _{x \in \mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{c_{n, s}}{\left(|x-\xi|^{2}+1\right)^{\frac{n+2 s}{2}}} \frac{\left(|\xi|^{2}+1\right)^{\frac{\beta}{p-1}}}{\left(|x|^{2}+1\right)^{\frac{\beta}{p-1}}} d \xi\right)^{p-1} .
\end{aligned}
$$

If we prove that the last supremum is finite then (2) again follows from the first statement of the present theorem. We have

$$
\int_{|\xi| \leqslant 2|x|} \frac{c_{n, s}}{\left(|x-\xi|^{2}+1\right)^{\frac{n+2 s}{2}}} \frac{\left(|\xi|^{2}+1\right)^{\frac{\beta}{p-1}}}{\left(|x|^{2}+1\right)^{\frac{\beta}{p-1}}} d \xi \leqslant 2^{\frac{2 \beta}{p-1}} \int_{\mathbb{R}^{n}} \mathscr{P}_{s}(x-\xi, 1) d \xi=2^{\frac{2 \beta}{p-1}}
$$

Further, $|\xi| \geqslant 2|x|$ implies $|x-\xi| \geqslant|\xi| / 2$. Therefore, from $\beta<s(p-1)$ we get

$$
\begin{align*}
& \int_{|\xi| \geqslant 2|x|} \frac{c_{n, s}}{\left(|x-\xi|^{2}+1\right)^{\frac{n+2 s}{2}}} \frac{\left(|\xi|^{2}+1\right)^{\frac{\beta}{p-1}}}{\left(|x|^{2}+1\right)^{\frac{\beta}{p-1}}} d \xi \\
& \leqslant \int_{|\xi| \geqslant 2|x|} \frac{2^{\frac{2 \beta}{p-1}} c_{n, s} d \xi}{\left(|x-\xi|^{2}+1\right)^{\frac{n}{2}+s-\frac{\beta}{p-1}}} \leqslant C(n, s, \beta, p), \tag{8}
\end{align*}
$$

and the proof of (2) is complete.
The following statement partially solves the problem whether the mapping $u \mapsto$ $\left(\mathbb{P}_{s} u\right)(\cdot, y)$ is non-expanding in weighted L_{p} spaces.

THEOREM 2. Let $s \in(0,1)$.
i) If $0 \leqslant \alpha \leqslant \frac{n}{2}-s$ then for arbitrary $1 \leqslant p<\infty$ the best constant in (2) is $C_{p}=1$.
ii) If $\alpha>\frac{n}{2}$ then the best constant C_{p} in (2) is greater than 1 , at least for p close to 1^{+}.

REMARK 1. We conjecture that the statement $i i$) holds for all $1 \leqslant p<\infty$. The value of C_{p} for $\frac{n}{2}-s<\alpha \leqslant \frac{n}{2}$ is a completely open problem.

Proof. We again suppose $y=1$.
Firstly, we prove i) in case $p=1$. It has been proved in [1] that the function

$$
\begin{equation*}
\omega(\xi, y)=\int_{\mathbb{R}^{n}} \mathscr{P}_{s}(\xi-x, y) \frac{d x}{\left(|x|^{2}+1\right)^{\alpha}} \tag{9}
\end{equation*}
$$

solves the following boundary value problem in \mathbb{R}_{+}^{n+1},

$$
\begin{equation*}
-\operatorname{div}\left(y^{1-2 s} \nabla \omega\right)=0 ; \quad \omega(\xi, 0)=\left(|\xi|^{2}+1\right)^{-\alpha} \tag{10}
\end{equation*}
$$

Consider the barrier function $\widetilde{\omega}(\xi, y)=\left(|\xi|^{2}+y^{2}+1\right)^{-\alpha}$. A direct computation gives

$$
-\operatorname{div}\left(y^{1-2 s} \nabla \widetilde{\omega}\right)=2 \alpha y^{1-2 s} \widetilde{\omega}^{1+\frac{2}{\alpha}}\left((n-2 s+2)+(n-2 s-2 \alpha)\left(|\xi|^{2}+y^{2}\right)\right) \geqslant 0
$$

because of the assumption on α. Since $\widetilde{\omega}(\xi, 0)=\omega(\xi, 0)$, we have that $\omega \leqslant \widetilde{\omega}$ in \mathbb{R}_{+}^{n+1} by the maximum principle. In particular,

$$
\left(|\xi|^{2}+1\right)^{\alpha} \omega(\xi, 1)<\left(\frac{|\xi|^{2}+1}{|\xi|^{2}+2}\right)^{\alpha}<1
$$

Therefore, the supremum in (5) does not exceed 1 , and thus the best constant in (3) is $C_{1}=\|\mathbb{L}\|_{L_{1} \rightarrow L_{1}} \leqslant 1$.

Since $\|\mathbb{L}\|_{L_{1} \rightarrow L_{1}} \leqslant 1$, the inequalities in (7) readily give $C_{p} \leqslant 1$, for any $p \geqslant 1$.
Finally, to prove that $C_{p}=1$ if $\alpha \leqslant \frac{n}{2}-s$, it suffices to consider the sequence $u(\varepsilon x)$, where $u \in \mathscr{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right), u \geqslant 0$, is a fixed nontrivial function, and then to push ε to 0 . The proof of i) is complete.

To prove i i) consider the function $v(x)=\left(|x|^{2}+1\right)^{-\alpha}$. Clearly $v \in L_{1}\left(\mathbb{R}^{n}\right)$ and

$$
\int_{\mathbb{R}^{n}}(\mathbb{P} v)(x) d x=\int_{\mathbb{R}^{n}} \mathscr{P}_{s}(\xi-x, 1) d x \int_{\mathbb{R}^{n}} v(\xi) d \xi=\int_{\mathbb{R}^{n}} v(\xi) d \xi
$$

Since

$$
(\mathbb{P} v)(0)=\int_{\mathbb{R}^{n}} \mathscr{P}_{s}(\xi, 1) v(\xi) d \xi<\max v(\xi)=v(0)
$$

there exists a point ξ such that $(\mathbb{P} v)(\xi)>v(\xi)$. Therefore, the supremum in (5) is greater then 1 , and the best constant in (3) is $C_{1}=\|\mathbb{L}\|_{L_{1} \rightarrow L_{1}}>1$. By continuity, the best constant in (2) is greater than 1 for p sufficiently close to 1 .

Acknowledgements. The first author is partially supported by Miur-PRIN project 2015KB9WPT_001 and PRID project VAPROGE. The second author is supported by RFBR grant 17-01-00678 and by the co-ordinated grants of DFG (GO420/6-1) and St. Petersburg State University (6.65.37.2017).

We are grateful to N . Filonov for the hint to the proof of the statement ii) of Theorem 2.

REFERENCES

[1] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Part. Diff. Eqs 32 (2007), no. 7-9, 1245-1260.
[2] R. Musina, A. I. NAZAROV, A tool for symmetry breaking and multiplicity in some nonlocal problems, Math. Meth. Appl. Sci. (2020), 1-13, https://doi.org/10.1002/mma. 6220.

Roberta Musina
Dipartimento di Scienze Matematiche Informatiche e Fisiche
Università di Udine via delle Scienze, 206 - 33100 Udine, Italy e-mail: roberta.musina@uniud.it

Alexander I. Nazarov St.Petersburg Dept of Steklov Institute Fontanka 27, St.Petersburg, 191023, Russia St.Petersburg State University Universitetskii pr. 28, St.Petersburg, 198504, Russia e-mail: al.il.nazarov@gmail.com

[^0]: Mathematics subject classification (2010): 35A23, 42B35.
 Keywords and phrases: Harmonic extensions, weighted estimates, integral inequalities.

 * Corresponding author.

