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Abstract. We consider weighted averages of the form Bn(W, f ) = ∑n
r=0 wn,r f (r/n) , where W is

a summability matrix and f is convex. Conditions are given for Bn(W, f ) to increase or decrease
with n . It decreases whenever W is a Hausdorff mean. The sequence of Bernstein polynomials
for a convex function is a special case.

1. Introduction

The following result was proved in [6]:

THEOREM BJ. For a function f on [0,1] , define

An( f ) =
1

n−1

n−1

∑
r=1

f
( r

n

)
(n � 2),

Bn( f ) =
1

n+1

n

∑
r=0

f
( r

n

)
(n � 1).

If f is convex, then An( f ) increases with n and Bn( f ) decreases.

Here we present a generalisation of these results to weighted averages, proved by
a refinement of the same method. A sequence of weighted averages of the type above
is given by

Bn(W, f ) =
n

∑
r=0

wn,r f
( r

n

)
, (1)

for n � 1, where W = (wn,r) is a summability matrix, that is:

wn,r � 0 for all n � 0, r � 0,

wn,r = 0 for r > n (so W is lower triangular),

∑n
r=0 wn,r = 1 for all n.
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Actually, we will need to accommodate the possibility that wn,r is only defined for
n � n0 (for some n0 ), while satisfying the stated conditions. We will call such W an
“incomplete” summability matrix. It could be extended to a full summability matrix by
defining wn,0 to be 1 for n < n0 , but nothing is gained by doing so.

The Bn( f ) in Theorem BJ is given by the Cesàro matrix wn,r = 1/(n+1) , while
An( f ) is obtained by taking wn,r , for n � 2, to be 0 for r = 0 and r = n , and 1/(n−1)
for 1 � r � n−1.

We will identify quite simple conditions on wn,r that ensure that Bn(W, f ) either
increases or decreases with n for convex f . We show that the condition for Bn(W, f )
to decrease is satisfied by a wide class of summability matrices, the so-called Hausdorff
mean matrices. A special case equates to the statement that the sequence of Bernstein
polynomials for a convex function decreases with n .

We then record some further examples of our theorems, and establish necessary
and sufficient conditions, albeit at the cost of greater complication.

We mention that the article [1] describes some generalisations of Theorem BJ of a
different sort.

2. Sufficient conditions

We present the decreasing case first.

THEOREM 1. Let W = (wn,r) be a summability matrix, and define Bn(W, f ) by
(1). Suppose that f is convex on [0,1] . For n � 2 and 0 � r � n−1 , put

un,r =
n− r

n
wn,r +

r+1
n

wn,r+1. (2)

If
un,r = wn−1,r for n,r as stated, (3)

then Bn(W, f ) decreases with n for n � 1 .

Proof. Let n � 2. The point r/n lies between (r− 1)/(n− 1) and r/(n− 1) .
More exactly, for 1 � r � n ,

r
n

=
r
n

r−1
n−1

+
n− r

n
r

n−1
.

Write f (r/(n−1)) = fr . By convexity of f ,

f
( r

n

)
� r

n
fr−1 +

n− r
n

fr.

Also, f (0/n) = f0 and f (n/n) = fn−1 . So

Bn(W, f ) � wn,0 f0 +
n−1

∑
r=1

wn,r

(
r
n

fr−1 +
n− r

n
fr

)
+wn,n fn−1.
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Reassembling this to combine the two terms with fr , we see that the right-hand side
equates to ∑n−1

r=0 un,r fr . Given (3), it follows that Bn(W, f ) � Bn−1(W, f ) . �
Some immediate observations on Theorem 1 will be useful.
The proof actually shows that if (3) holds for a particular n , then Bn(W, f ) �

Bn−1(W, f ) .
Of course, if f is concave, then Bn(W, f ) increases with n , and if f is linear, then

Bn(W, f ) is constant. Applied to f (x) = x , this says that 1
n ∑n

r=0 rwn,r = w1,1 for all n .
We return to this point later.

It is easily checked that the Cesàro matrix satisfies (3), so Theorem 1 reproduces
the second statement in Theorem BJ. In the next section, we will identify a wide class
of matrices that satisfy (3).

Applied to the function f (x) = xp , Theorem 1 states that 1
np ∑n

r=0 wn,rrp increases
with n if p > 1, and decreases if 0 < p < 1.

The reasoning in Theorem 1, applied to f (x) = 1, shows that ∑n−1
r=0 un,r = 1. A

consequence of this is that the apparently weaker hypothesis un,r � wn−1,r (0 � r �
n−1) is actually equivalent to (3).

Similar reasoning establishes the criterion for Bn(W, f ) to increase. In this case,
for reasons that will become apparent, it is essential to present the result for incomplete
summability matrices.

THEOREM 2. Let W = (wn,r) be an incomplete summability matrix (restricted to
n � n0 ), and define Bn(W, f ) by (1). Suppose that f is convex on [0,1] . For n � n0

and 1 � r � n, put

vn,r =
n− r

n
wn,r +

r−1
n

wn,r−1, (4)

(also vn,0 = wn,0 and vn,n+1 = wn,n ). If

vn,r = wn+1,r for n � n0 and 0 � r � n+1, (5)

then Bn(W, f ) increases with n for n � n0 .

Proof. Let n � 1. This time we write, for 0 � r � n ,

r
n

=
n− r

n
r

n+1
+

r
n

r+1
n+1

.

Write f (r/(n+1)) = fr . By convexity of f ,

Bn(W, f ) �
n

∑
r=0

wn,r

(
n− r

n
fr +

r
n

fr+1

)
,

Reassembling, we see that the right-hand side equates to ∑n+1
r=0 vn,r fr . Given (5), it

follows that Bn(W, f ) � Bn+1(W, f ) . �
It is easily checked that the matrix generating An( f ) satisfies (5) (with n0 = 2).

In a case like this where wn,0 = wn,n = 0, the values f (0) and f (1) do not appear in
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Bn(W, f ) , or in ∑n+1
r=0 vn,r fr , so we only need f to be defined and convex on (0,1) . For

example, Theorem BJ can be applied with f (x) = logx to show that (n!)1/n/(n + 1)
decreases with n .

Despite the apparent similarity, there is an important difference between Theorems
1 and 2: if the values of wn,r are known for a certain n , then (5) determines the values
of wn+1,r , hence all later wk,r , while (3) determines wn−1,r , hence all earlier wk,r .

In particular, (5) dictates that wn,0 takes the same value for all n , and similarly
for wn,n . Consider the case n0 = 1 in Theorem 2. Take starting values w1,0 = α and
w1,1 = 1−α . Then wn,0 = α and wn,n = 1−α for all n � 1, so Bn(W, f ) equals
α f (0)+ (1−α) f (1) for all n , and the theorem says nothing.

Now try n0 = 2, with starting values w2,0 = α , w2,2 = β and w2,1 = γ , where
α +β +γ = 1. Then one can check that (5) implies that for all n � 2, wn,0 = α , wn,2 =
β and wn,r = γ/(n−1) for 1 � r � n−1. Hence Bn(W, f ) = α f (0)+β f (1)+γAn( f ) ,
and the conclusion is still simply that An( f ) increases with n .

So Theorem 2 only begins to say anything beyond Theorem BJ when n0 � 3. A
later example will show that there really are non-trivial cases of this type.

3. Hausdorff means and Bernstein polynomials

Given any probability measure μ on [0,1] , the corresponding Hausdorff mean
matrix Hμ is the summability matrix (hn,r) defined by

hn,r =
(

n
r

)∫ 1

0
θ r(1−θ )n−rdμ(θ ). (6)

This class of matrices is well known in summability theory. An introductory account of
them can be seen in [9, chapter 11] and the theory has been greatly developed in a series
of articles by Bennett, for example [2], [3], [4], [5]. However, none of these results are
needed for present purposes.

Different choices of the measure μ deliver a rich variety of examples. When μ
is the point mass at a chosen point x in [0,1] , Hμ becomes the Euler matrix E(x) ,
with entries en,r(x) =

(n
r

)
xr(1− x)n−r . By evaluation of beta integrals, one sees that

the choice dμ(θ ) = dθ (i.e. Lebesgue measure) gives the ordinary Cesàro matrix.
The choice mθm−1 dθ gives the “Gamma matrix of order m”, and the dual choice
m(1− θ )m−1 dθ the “Cesàro matrix of order m”; the entries in these matrices can be
written explicitly as quotients of binomial coefficients (e.g. see [5, p. 24]).

THEOREM 3. Let Hμ be a Hausdorff mean matrix. If f is convex on [0,1] , then
Bn(Hμ , f ) decreases with n.

Proof. We verify condition (3). By the elementary identities r+1
n

( n
r+1

)
=

(n−1
r

)
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and n−r
n

(n
r

)
=

(n−1
r

)
, the un,r defined by (2) is given by

un,r =
(

n−1
r

)∫ 1

0

(
θ r(1−θ )n−r + θ r+1(1−θ )n−r−1

)
dμ(θ )

=
(

n−1
r

)∫ 1

0
θ r(1−θ )n−r−1 dμ(θ )

= hn−1,r. �

The n th Bernstein polynomial for a function f on [0,1] is the function Bn( f )
defined by

(Bn f )(x) =
n

∑
r=0

(
n
r

)
f
( r

n

)
xr(1− x)n−r.

It is well known that for any continuous f , the sequence Bn( f ) converges uniformly to
f , thereby giving one proof of Weierstrass’s approximation theorem.

In our notation, (Bn f )(x) is exactly Bn[E(x), f ] , where E(x) is the Euler matrix.
So the following is simply a restatement of Theorem 3 applied to this matrix.

THEOREM 4. If f is convex on [0,1] , then the Bernstein polynomials for f form
a decreasing sequence of functions.

This result is far from new. It was proved by Schoenberg [10]; see also [8, Corol-
lary 4.2] or [7, section 4.4]. However, we have exhibited it as a special case of Theorem
3. We mention that it is quite easy to show directly that Bn( f ) � f for convex functions
f , using positivity of the operator Bn .

4. A pair of examples

We cannot point to a class of matrices comparable to Hausdorff means that sat-
isfy (5). However, the following companion pair of examples demonstrates that some
matrices satisfying (3) are accompanied by analagous ones satisfying (5).

EXAMPLE 1. Let

wn,r =
2(r+1)

(n+1)(n+2)
for n � 0 and 0 � r � n . This is, in fact, the Hausdorff mean given by dμ(θ ) = 2θ dθ
(in other words, the Gamma matrix of order 2). However, it is just as easy, and more
useful for our purposes, simply to verify condition (3) directly:

un,r =
2(r+1)

n(n+1)(n+2)

(
(n− r)+ (r+2)

)
=

2(r+1)
n(n+1)

= wn−1,r.

So, for example, if p > 1 and Sn(p) = ∑n
r=0(r+1)rp , then

Sn(p)
(n+1)(n+2)np

decreases with n .
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EXAMPLE 2. For n � 3, let wn,0 = wn,n = 0 and

wn,r =
2(r−1)

(n−1)(n−2)

for 1 � r � n− 1. We verify that (5) holds, so that Bn(W, f ) increases with n for
convex f :

vn,r =
2(r−1)

n(n−1)(n−2)

(
(n− r)+ (r−2)

)
=

2(r−1)
n(n−1)

= wn+1,r.

We remark that this matrix is generated by the starting values (0,0,1,0) of w3,r .

5. Necessary and sufficient conditions

First, we mention an obvious necessary condition which is enough to detect nu-
merous matrices that do not satisfy the conclusion of Theorem 1 or 2. If Bn(W, f )
either decreases or increases with n (for n � n0 ) for convex f , then it is constant for
the linear function f (x) = x . In other words, Tn(W ) is constant for n � n0 , where

Tn(W ) =
1
n

n

∑
r=0

rwn,r, (7)

In particular, if this occurs with n0 = 1, then Tn(W ) = T1(W ) = w1,1 for all n � 1.

EXAMPLE 3. Slightly modifying Example 1, let wn,r = 2r/[n(n+ 1)] for n � 1
and 0 � r � n . Then

Tn(W ) =
2

n2(n+1)

n

∑
r=1

r2 =
1
3

(
2+

1
n

)
.

This is not constant, so Bn(w, f ) is not monotonic for every convex f .

Conditions (3) and (5) have served very well for the applications described, but
they are certainly not necessary. A rather trivial example is enough to illustrate this
fact.

EXAMPLE 4. Let W be the Cesàro matrix, and let W ′ be obtained from W by
changing row 2, setting w′

2,0 = w′
2,2 = 1

2 and w′
2,1 = 0. Then B2(W ′, f ) = 1

2 f (0) +
1
2 f (1) = B1(W, f ) , while Bn(W ′, f ) = Bn(W, f ) for other n . So Bn(W ′, f ) decreases
with n for convex f . However, (3) is not satisfied, since u3,r = 1

3 for r = 0,1,2.

We finish by establishing necessary and sufficient conditions. The following Lemma
is easily proved by two steps of Abel summation [4, Lemma 1].
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LEMMA. Let ar (0 � r � n) be real numbers. Put A j = ∑ j
r=0 ar and A∗

k =
∑k

j=0 Aj = ∑k
r=0(k−r+1)ar . Suppose that An = A∗

n = 0 and A∗
k � 0 for 0 � k � n−1 .

Then ∑n
r=0 arxr � 0 for all convex sequences (xr) .

THEOREM 5. Let W be a summability matrix (possibly incomplete). Define Tn(W )
by (7). Then Bn(W, f ) �Bn−1(W, f ) for all convex functions f if and only if Tn−1(W ) =
Tn(W ) and

k

∑
r=0

(
k− r+

r
n

)
wn,r �

k−1

∑
r=0

(k− r)wn−1,r (8)

for 1 � k � n−1 . Also, Bn(W, f ) � Bn+1(W, f ) for all convex functions f if and only
if Tn+1(W ) = Tn(W ) and

k−1

∑
r=0

(
k− r− r

n

)
wn,r �

k−1

∑
r=0

(k− r)wn+1,r (9)

for 1 � k � n.

Proof. We prove the first statement; the second one is similar. Necessity is easily
proved directly. We have already noted necessity of Tn−1(W ) = Tn(W ) . Fix k � n−1
and let f (x) = max(k/(n−1)− x,0) . Then

Bn−1(W, f ) =
k−1

∑
r=0

k− r
n−1

wn−1,r, Bn(W, f ) =
k

∑
r=0

(
k

n−1
− r

n

)
wn,r.

Necessity of (8) follows.
For sufficiency, as seen in Theorem 1, we have to show that ∑n−1

r=0 ar fr � 0, where
ar = wn−1,r −un,r . We verify the conditions of the Lemma. First, note that An−1 = 0.
We show that A∗

k−1 � 0 for k � n−1. Note that A∗
k−1 = ∑k−1

r=0(k− r)ar . Now

k−1

∑
r=0

(k− r)un,r =
1
n

k−1

∑
r=0

(k− r)
(

(n− r)wn,r +(r+1)wn,r+1

)

=
1
n

k

∑
r=0

(
(k− r)(n− r)+ (k− r+1)r

)
wn,r

=
k

∑
r=0

(
k− r+

r
n

)
wn,r, (10)

so (8) implies that A∗
k−1 � 0. We also require A∗

n−1 = 0. Applying (10) with k = n , and
using ∑n−1

r=0 un,r = ∑n−1
r=0 wn−1,r = 1, we find that A∗

n−1 = (n−1)[Tn(W )−Tn−1(W )] . �
While it is satisfying to have identified necessary and sufficient conditions, it is

clear that the simpler conditions (3) and (5) are more useful for applications.
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