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(Communicated by I. Perić)

Abstract. In this paper we discuss the Hermite-Hadamard and Fejer inequalities vis-a-vis the
convexity concept. In particular, we derive some new theorems and examples where Hermite-
Hadamard and Fejer type inequalities are satisfied without the assumptions of convexity or con-
cavity on the actual interval [a,b] .

1. Introduction

The Hermite-Hadamard inequality says that for any convex function f : I → R, I
an interval, and for a,b ∈ I

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (t)dt � f (a)+ f (b)

2
(1.1)

holds, and the Fejer inequality reads

f

(
a+b

2

)∫ b

a
p(x)dx �

∫ b

a
f (t) p(t)dt � f (a)+ f (b)

2

∫ b

a
p(x)dx, (1.2)

when f is convex and p : [a,b] → R is non-negative, integrable and symmetric around
the midpoint x = a+b

2 . If instead f is concave, then (1.1) and (1.2) hold in the reversed
direction.

There have been a lot of developments and applications of these inequalities. One
such development is to replace the notion of classical convexity by other variants and
generalizations of convexity. An early well cited such paper is that by S. S. Dragomir
et. al. [8], see also [3], [4], [7], [10] and [13]. We also mention the paper [11] and espe-
cially the book [12] by C. Niculescu and L.E. Persson, where several generalizations,
variants and applications are described and put them into a more general convexity
context.
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Nowadays it is well known (see [12] pages 60 and 68) that if f : [a,b] → R is
continuous on [a,b] , whose restriction to each compact subinterval on [a,b] satisfies
the right hand-side inequality in (1.1), then f is convex. The same is true if we instead
assume that the left hand-side inequality in (1.1) holds. However, if we for example
assume that (1.1) holds only for [a,b] , this statement is not true. In fact it was recetly
proved that (1.1) and (1.2) can hold even if f is not convex.

We mention in particular the papers [6] and [9] where S. S. Dragomir and A. Farissi
et al. deal with a set of real functions f defined on [a,b] such that its symmetrized
transform f ∗ , defined by

f ∗ (x) :=
f (x)+ f (a+b− x)

2
, a � x � b,

is convex. In this case f is called symmetrized convex function on [a,b] . If f ∗ is
concave, then f is called symmetrized concave function on [a,b] .

When f is convex on [a,b] so is f ∗ but it is easy to see that the convexity of f ∗
does not guarantee the convexity of f as proved in [9] and in [6].

For this type of functions S. S. Dragomir and earlier A. Farissi et al., obtained
Fejer and Hermite-Hadamard type inequalities as follows:

Theorem A ([6, Theorem 1] and [9, Theorem 10]). Assume that f : [a,b] → R

is symmetrized (concave) convex on the interval [a,b] . Then, the (reverse) Hermite-
Hadamard and Fejer inequalities (1.1) and (1.2) hold.

We want to point out that also, by dealing in [5] with Hermite-Hadamard inequality
for convex functions, F. Chen observed that there is no need for f to be convex on [a,b]
but it is sufficient that f satisfies the much weaker condition:

f ′ (x) � f ′ (a+b− x), x ∈
[
a+b

2
,b

]
, (1.3)

in order to get Hermite-Hadamard (1.1) and Fejer inequalities (1.2) (see Remark 2 in
[5]).

These considered cases, besides being of interest by themselves, lead us to the
following (probably difficult but challenging) OPEN QUESTION: Find necessary and
sufficient conditions for the function f so that (1.1) and (1.2) hold.

In this paper we extend the definitions of f ∗ for symmetrically decreasing and
symmetrically increasing functions defined as follows:

DEFINITION 1. A function f is called symmetrically increasing (decreasing)
function on [a,b] if it is symmetric on this interval and is increasing (decreasing) on[

a+b
2 ,b

]
.
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In Section 2 we show some new basic results of the considered type, namely by
finding classes of functions for which the functions and their symmetrized transforms
are not convex and not concave on a given interval but nevertheless satisfy some Fejer
and Hermite-Hadamard type inequalities.

Some examples, further remarks, generalizations and illustrations of the basic re-
sults are given in Section 3, which hopefully will serve as a step towards a further
understanding of the open question above.

2. Some new basic results

In this section we generalize Theorem A. Our first main result reads:

THEOREM 1. Let f be a real differentiable function on R that satisfies

f (x) = − f (2c− x) (2.1)

and let f (x) be convex for x � c.
Define

f ∗ (x) :=
f (x)+ f (a+b− x)

2
, −∞ < a � x � b < ∞. (2.2)

Then, for c � a+b
2 , f ∗ (x) is symmetrically decreasing on [a,b] , and although f and

f ∗ are not necessarily concave we get that the reversed Fejer inequalities

f (a)+ f (b)
2

∫ b

a
p(x)dx �

∫ b

a
f (x) p(x)dx (2.3)

=
∫ b

a
f ∗ (x) p(x)dx � f

(
a+b

2

)∫ b

a
p(x)dx,

hold, where p : [a,b] → R is non-negative, integrable and symmetric around the mid-
point x = a+b

2 . If p(x) = 1 on [a,b] , then we get the reversed Hermite-Hadamard
inequality for the function f .

Moreover, if in addition f ′ is concave and differentiable when x � c, then f ∗ is

convex on [c,b] when b � c � a+b
2 and (2.3) holds .

Proof. Case 1. Let c > b . This means that f is concave on [a,b] and therefore
for each x ∈ [a,b] , a + b− x < c (which is the same as c− b > a− x and this holds
because c−b > 0 and a− x < 0).

Therefore, since f is concave so is f (a+b− x), and the symmetric function f ∗
is concave too on [a,b] and hence symmetrically decreasing on [a,b] which means that
f ∗ is decreasing on [ a+b

2 ,b].
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Case 2. Let a+b
2 < c < b. Then, on the interval [a+b− c,c] f is concave and

therefore f ∗ as defined in (2.2) is symmetrically decreasing and hence f ∗ is decreasing
on

[
a+b
2 ,c

]
.

We check now the sign of f ∗′ on [c,b] :
We note that, according to (2.1), f (a+b− x) = − f (2c−a−b+ x). Therefore,

on this interval (2.2) becomes

f ∗ (x) =
f (x)− f (2c−a−b+ x)

2
(2.4)

and

f ∗′ (x) =
f ′ (x)− f ′

(
2
(
c− a+b

2

)
+ x

)
2

. (2.5)

Since c− a+b
2 > 0, we have x < 2

(
c− a+b

2

)
+ x and as x > c also 2

(
c− a+b

2

)
+

x > c. Moreover, by (2.1) and by convexity of f for x � c we find that f ′ (x) is
increasing. Hence f ′ (x) � f ′

(
2
(
c− a+b

2

)
+ x

)
, which by (2.5) means that f ∗′ (x) < 0.

From this fact together with the continuity of f and the symmetrically concavity on
the interval [a+b− c,c] of f ∗ (x) we conclude that f ∗ (x) on the interval [a,b] is
symmetrically decreasing, which implies that

f (a)+ f (b)
2

= f ∗ (a) � f ∗ (x) � f ∗
(

a+b
2

)
= f

(
a+b

2

)
.

Multiplying these inequalities by the non-negative and symmetric function p(x) on
[a,b] and integrating we get that

∫ b
a f (x) p(x)dx =

∫ b
a f ∗ (x) p(x)dx and hence

f (a)+ f (b)
2

∫ b

a
p(x)dx = f ∗ (a)

∫ b

a
p(x)dx �

∫ b

a
f (x) p(x)dx (2.6)

=
∫ b

a
f ∗ (x) p(x)dx � f ∗

(
a+b

2

)∫ b

a
p(x)dx = f

(
a+b

2

)∫ b

a
p(x)dx

hold and therefore (2.3) holds. For p(x) = 1, x ∈ [a,b] , this is Hermite-Hadamard
inequality.

If in addition f ′ is concave on x � c , then f ′′ is decreasing and from (2.5) we can
conclude that

f ∗′′ (x) =
f ′′ (x)− f ′′

(
2
(
c− a+b

2

)
+ x

)
2

� 0

and we get a symmetrically decreasing f ∗ and therefore (2.6) holds although f ∗ is
convex on [c,b] when a+b

2 < c < b . The proof is complete.

We illustrate Theorem 1 with the following example:

EXAMPLE 1. Choose f (x) = x
5
3 and let a = −3, b = 1 and c = 0. Then on

the interval [−3,1] with the mid-point at −3+1
2 = −1 we get that the symmetrized

transform f ∗ (x) of f (x) on this interval is

f ∗ (x) =
f (x)+ f (−3+1− x)

2
, −3 � x � 1,
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that is in our case

f ∗ (x) =
x

5
3 +(−2− x)

5
3

2
=

x
5
3 − (2+ x)

5
3

2

and

f ∗′′ (x) =
10
9

(
x−

1
3 − (2+ x)−

1
3

)
, x �= 0.

On the interval [0,1] both x � 0 and (2+ x) > 0. Therefore we get that the second
derivative of f ∗ is greater than zero on x > 0.

On the interval [−3,−2] both x < 0 and (2+ x) < 0, and putting −x = y we get
that

f ∗′′ (x) =
10
9

(
−

(
y−

1
3

)
+(y−2)−

1
3

)
> 0

because 2 � y � 3 and 0 < y−2 � 1 and also y−2 < y .
Similarly, we see that f ∗′′ (x) � 0 on the interval [−2,0] .
We conclude that f ∗ is symmetrically decreasing on [−3,1] although f and f ∗

are not concave on [−3,1] and f (x) = x
5
3 satisfies the reversed Fejer inequality (2.6)

on the interval [−3,1] .
Moreover, our f (x) = x

5
3 satisfies all the conditions of Theorem 1 including the

fact that f ′′′ (x) < 0 when x > 0 that is f ′ is concave on x > 0. This guaranties that f ∗
is not convex or concave on the whole interval [−3,1] but nevertheless is symmetrically
decreasing and satisfies (2.3).

Theorem 1 can be complemented, for the same function f , in the following way:

THEOREM 2. Let f be a real differentiable function on R that satisfies

f (x) = − f (2c− x)

and let f (x) be convex for x � c.
Define

f ∗ (x) :=
f (x)+ f (a+b− x)

2
, x ∈ [a,b], −∞ < a < b < ∞.

Then, for c � a+b
2 , f ∗ (x) is symmetrically increasing on [a,b] , and although f and

f ∗ are not necessarily convex we get that the Fejer inequalities

f (a)+ f (b)
2

∫ b

a
p(x)dx �

∫ b

a
f (x) p(x)dx (2.7)

=
∫ b

a
f ∗ (x) p(x)dx � f

(
a+b

2

)∫ b

a
p(x)dx,

hold, where p : [a,b] → R is non-negative, integrable and symmetric around the mid-
point x = a+b

2 . If p(x) = 1 on [a,b] , then we get the Hermite-Hadamard inequality for
the function f .
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Moreover, if f ′ is also concave when x � c, then f ∗ is concave on [a,c] when

a < c < a+b
2 and (2.7) holds.

In the case that c = a+b
2 , f ∗ (x) = 0 on [a,b] .

Proof. The proof is similar to that of Theorem 1, so we omit the details.

The following result deals with functions that are neither symmetric nor antisym-
metric on any interval but nevertheless satisfies (1.1) and (1.2), in particular, it general-
izes Theorem A. It reads:

THEOREM 3. Let m = 1,2, ... . Let f (x) be defined by

f (x) =
{

(4m+1)(x−1)2m+1 , x � 1,

(2m+1)(x−1)4m+1 , x � 1.

Then,

f ∗ (x) =
f (x)+ f (−x)

2
, −3 � x � 3

is symmetrically decreasing on [−3,3] and Fejer and Hermite-Hadamard inequalities
for concave functions hold for f , although neither f nor f ∗ are concave on [−3,3] .

Proof. The symmetrized function f ∗ for x � 1 is

f ∗ (x) =
(2m+1)(x−1)4m+1 +(4m+1)(−x−1)2m+1

2

=
(2m+1)(x−1)4m+1− (4m+1)(x+1)2m+1

2
, x � 1

and its derivative is

f ∗′(x) =
(2m+1)(4m+1)(x−1)4m− (4m+1)(2m+1)(x+1)2m

2
, x � 1.

We check when f ∗′ (x) � 0 and when f ∗′ (x) � 0. Obviously,

f ∗′(x) = 0 ⇒ (x−1)4m = (x+1)2m ⇒
(
(x−1)2

)2m
= (x+1)2m ,

which leads to
(x+1) = ±(x−1)2

x+1 = (x−1)2 ⇒ x = 0, x = 3,

and the case
x+1 = −(x−1)2 ,
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never holds for any real x .
As we deal now with x � 1, this means that

f ∗′(x) =
{

< 0, 1 < x < 3
> 0 x > 3

.

Now we check the interval −1 � x � 1 and find that

f ∗ (x) =
(4m+1)(x−1)2m+1 +(4m+1)(−x−1)2m+1

2
.

Since f (x) is concave on −1 � x � 1, so is f ∗ (x) , and as f ∗ (x) is symmetrically
concave it is symmetrically decreasing on [−1,1] and f ∗ (x) is also decreasing on [1,3]
and is continuous. We conclude that f ∗ (x) is symmetrically decreasing on [−3,3] .
Now we show that on the interval [2,3] f ∗(x) changes from concave to convex: indeed,
because

f ∗′′ (x) =
(2m+1)(4m+1)2m

(
2(x−1)4m−1− (x+1)2m−1

)
2

,

we have that f ∗′′ (2) < 0, f ∗′′ (3) > 0, which show that even if f (x) and f ∗ (x) are
not concave on the interval [−3,3] the Fejer and the Hermite-Hadamard inequalities as
for concave functions hold. The proof is complete.

Our next result reads:

THEOREM 4. Let f be differentiable on [−a,a] , decreasing on [−a,−c] , 0 �
c < a, increasing on [c,a] and let f be convex on [−c,c] . Then the Fejer and Hermite-
Hadamard inequalities for convex functions hold for f on the interval [−a,a] although
f and f ∗ are not necessarily convex on [−a,a] .

Proof. The proof follows from the fact that f as well as f ∗ (x) = f (x)+ f (−x)
2 , −c �

x � c , are convex and because of f ∗ symmetry on [−c,c] it is symmetrically increasing
on [−c,c] and therefore increasing on [0,c] . Moreover, on the interval [c,a] f ∗′ (x) =
f ′(x)− f ′(−x)

2 � 0 because f ′(x) � 0 � f ′(−x) on [c,a] . Therefore, Fejer and Hermite-
Hadamard inequalities as for convex functions hold for f .

The proof is complete.
We conclude this section by emphasizing that there are cases which apriori we can

verify that f ∗ is not symmetrically increasing or symmetrically decreasing:

REMARK 1. Let f be continuous decreasing on [−a,−c] , 0 < c < a , increasing

on [c,a] and let f be concave on [−c,c] . Then, f ∗ (x) = f (x)+ f (−x)
2 , is not symmetri-

cally increasing and not symmetrically decreasing on [−a,a] . Indeed, on the interval
[−c,c] f ∗ is evidently symmetrically decreasing because f is concave on [−c,c] . On
[c,a] it yields that f ′(x) � 0 � f ′(−x) and therefore f ∗′ (x) � 0. Therefore, in this case
f ∗ is not symmetrically increasing or symmetrically decreasing on the whole interval
[−a,a] .
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3. Further examples, remarks and generalizations

In this section we present some generalizations and examples of the results dis-
cussed in Section 2.

First we discuss the possibility that a given continuous real function f defined on
[a,b] , −∞ < a < b < ∞ , and its symmetrized transform

f ∗ (x) =
f (x)+ f (a+b− x)

2
, a � x � b, (3.1)

are not symmetrical increasing and not symmetrical decreasing but f ∗∗ defined as

f ∗∗(x) =

{
f ∗(x)+ f ∗( a+3b

2 −x)
2 , a+b

2 � x � b
f ∗∗(a+b− x), a � x � a+b

2 ,
(3.2)

is symmetrically increasing or symmetrically decreasing on
[

a+b
2 ,b

]
and on

[
a, a+b

2

]
.

THEOREM 5. Let f : [a,b] be a continuous function. If f ∗∗ is symmetrically in-
creasing on

[
a+b
2 ,b

]
, then, the Hermite-Hadamard type inequality

f
(

a+3b
4

)
+ f

( 3a+b
4

)
2

(3.3)

� 1
b−a

∫ b

a
f (x)dx � 1

2

(
f (a)+ f (b)

2
+ f

(
a+b

2

))
,

holds.

Proof. After some straightforward manipulations on (3.2) we get that

f ∗∗(x) =
f (x)+ f (a+b− x)+ f

(
a+3b

2 − x
)
+ f

(
a−b
2 + x

)
4

, x∈
[
a+3b

4
,b

]
. (3.4)

If f ∗∗(x) is symmetrically increasing on
[

a+b
2 ,b

]
, then, since f ∗∗ is increasing on[

a+3b
4 ,b

]
, we find that

f ∗∗
(

a+3b
4

)
� f ∗∗(x) � f ∗∗(b) (3.5)

holds and therefore

b−a
4

f ∗∗
(

a+3b
4

)
�

∫ b

a+3b
4

f ∗∗(x)dx � b−a
4

f ∗∗(b). (3.6)

By using (3.1) and (3.2) we obtain that

∫ b

a+3b
4

f ∗∗(x)dx =
1
4

∫ b

a
f (x)dx. (3.7)
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Moreover, by using (3.4) we see that

f ∗∗(b) =
1
2

(
f (a)+ f (b)

2
+ f

(
a+b

2

))
(3.8)

and

f ∗∗
(

a+3b
4

)
=

f
(

a+3b
4

)
+ f

(
3a+b

4

)
2

(3.9)

hold and, thus, according to (3.7), (3.8) and (3.9), we conclude that (3.3) holds. The
proof is complete.

EXAMPLE 2. In the special case −a = b > 0 we get that

f ∗∗ (x) =
1
22 [ f (x)+ f (−x)+ f (b− x)+ f (x−b)] ,

and

1
2

(
f

(
b
2

)
+ f

(
−b

2

))
� 1

2b

∫ b

−b
f (x)dx � 1

2

(
f (b)+ f (−b)

2
+ f (0)

)
.

REMARK 2. Similarly we can prove that if f ∗∗ (x) on
[

a+b
2 ,b

]
is symmetrically

decreasing, then we get the reverse inequality of (3.3).

REMARK 3. We emphasize that (3.3) holds in particular if f is convex on [a,b]
and then

f

(
a+b

2

)
�

f
(

a+3b
4

)
+ f

(
3a+b

4

)
2

� 1
b−a

∫ b

a
f (x)dx

� 1
2

(
f (a)+ f (b)

2
+ f

(
a+b

2

))
� f (a)+ f (b)

2
.

Moreover, we know that (3.3) holds if the symmetrized transform of f is convex on[
a+b
2 ,b

]
and on

[
a, a+b

2

]
.

REMARK 4. In [6, Theorem 4] the same inequality (3.3) was proved for a function
f defined on [a,b] , where its symmetrized transform is convex on

[
a+b
2 ,b

]
and on[

a, a+b
2

]
but not necessarily on the whole inteval [a,b] . Our result is more general and

includes this theorem as a special case since it includes not necessarily convex functions
on

[
a+b
2 ,b

]
.
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In order to find further generalizations we define f (n∗) , n = 1,2, ... by:

f (n∗) (x) =
f ((n−1)∗) (x)+ f ((n−1)∗)

(
a+(2n−1)b

2n−1 − x
)

2
,

a+
(
2n−1−1

)
b

2n−1 � x � b,

(3.10)

f (n∗) (x) = f (n∗)
(

x+ k
b−a
2n−1

)
,

a+
(
2n−1−1

)
b

2n−1 − k
b−a
2n−1 � x � b− k

b−a
2n−1 ,

k = 1,2, ...,
(
2n−1−1

)
,

where f (0∗) (x) = f (x) , f (1∗) (x) = f ∗ (x) and f (2∗) = f ∗∗ (x) .
If f (2∗) (x) is not symmetrically increasing or symmetrically decreasing on

[
a+b
2 ,b

]
,

then we can continue the procedure and check if f (3∗) is symmetrically increasing or
symmetrically decreasing on

[
a+3b

4 ,b
]
, where

f (3∗) (x) =
f (2∗) (x)+ f (2∗) ( a+7b

4 − x
)

2
,

a+3b
4

� x � b, (3.11)

f (3∗) (x) = f (3∗)
(

x+ k
b−a

4

)
,

a+3b
4

− k
b−a

4
� x � b− k

b−a
4

,

k = 1,2,3,

and we continue inductively the same procedure and get:

THEOREM 6. Let f : [a,b] → R be a continuous function. For n = 2,3, ..., let
f (n∗) be defined by (3.10) where f (0∗) (x) = f (x) and f ∗ (x) = f (1∗) (x) . If f (n∗) is

symmetrically increasing on

[
a+(2n−1−1)b

2n ,b

]
, then

b−a
2n f (n∗)(

a+(2n−1)b
2n ) �

∫ b

a+(2n−1)b
2n

f (n∗) (x)dx � b−a
2n f (n∗) (b) , (3.12)

i.e.,

f (n∗)(
a+(2n−1)b

2n ) � 1
b−a

∫ b

a
f (x)dx � f (n∗) (b) (3.13)

holds.

Proof. If for a specific n , f (n∗) is symmetrically increasing on

[
a+(2n−1−1)b

2n−1 ,b

]
,

then it is increasing on
[

a+(2n−1)b
2n ,b

]
and therefore

f (n∗)(
a+(2n−1)b

2n ) � f (n∗) (x) � f (n∗) (b) .

Hence

b−a
2n f (n∗)(

a+(2n−1)b
2n ) �

∫ b

a+(2n−1)b
2n

f (n∗) (x)dx � b−a
2n f (n∗) (b) ,
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and since as a result of the periodicity of f (n∗) and its relation to f (x)

2n
∫ b

a+(2n−1)b
2n

f (n∗) (x)dx =
∫ b

a
f (x)dx,

we find that

f (n∗)(
a+(2n−1)b

2n ) � 1
b−a

∫ b

a
f (x)dx � f (n∗) (b) ,

and the proof follows.
We finish the paper by further discussing and illustrating the function f considered

in Theorem 3 for m = 1 which is an example of Theorem 6 for n = 3. In this example
f and f ∗ on [−4,4] and f (2∗) on [0,4] are not symmetrically increasing but f (3∗) is
symmetrically increasing on [2,4]:

EXAMPLE 3. We show the results of calculation that manifest the behavior of the
graphs of f (n∗), n = 0,1,2,3 in Figure 1 (see it in the end of the article) of the functions

f (x) =
{

5(x−1)3 , −4 � x � 1 ,

3(x−1)5 , 1 � x � 4 ,

f ∗ (x) =
f (x)+ f (−x)

2
=

⎧⎪⎪⎨
⎪⎪⎩

5(x−1)3−5(x+1)3

2 , −1 � x � 1,
3(x−1)5−5(x+1)3

2 , 1 � x � 4,
5(x−1)3−3(x+1)5

2 , −4 � x � −1,

and of f (2∗) (x) and f (3∗) (x) as are defined on the inteval [a,b] by using (3.2), and
(3.11) on the interval [−4,4] . We have that

f (2∗) (x) =
f ∗ (x)+ f ∗ (4− x)

2
, 0 � x � 4,

and

f (3∗) (x) =
f (2∗) (x)+ f (2∗) (6− x)

2
, 2 � x � 4.

By using (3.10) we see that on the interval [2,4]

f (3∗) (x) =
1
23 [ f (x)+ f (−x)+ f (4− x)+ f (x−4)

+ f (6− x)+ f (x−6)+ f (x−2)+ f (2− x)] ,

is symmetrically increasing and is increasing on [3,4] . Hence,

f (3∗) (3) � f (3∗) (x) � f (3∗) (4) ,

and, therefore,

f (3∗) (3) �
∫ 4

3
f (3∗) (x)dx � f (3∗) (4)
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so we find that

f (3∗) (3) �
∫ 4

3
f (3∗) (x)dx =

1
8

∫ 4

−4
f (x)dx � f (3∗) (4) .

Concluding Note. We hope that this paper will serve as a step towards finding
necessary and sufficient conditions for (1.1) and (1.2) to be satisfied.
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rived through N-quasiconvexity, Math. Inequal. Appl. 19 (2016), no. 4, 1203–1226.

[2] S. ABRAMOVICH AND L.-E. PERSSON, Some new estimates of the ’Jensen gap’, JIAP, J. Inequal.
Appl. (2016), 2016:39, 9 pp.

[3] S. ABRAMOVICH AND L.-E. PERSSON, Fejer and Hermite-Hadamard type inequalities for N-
quasiconvex functions, Mat. Zametki 102 (2017), no. 5, 644–656.

[4] S. ABRAMOVICH AND L.-E. PERSSON, Extensions and refinements of Fejer and Hermite-Hadamard
type inequalities, Math. Inequal. Appl. 21 (2018), no. 3, 759–772.

[5] F. CHEN, Extensions of the Hermite-Hadamard inequality for convex functions via fractional integrals,
J. Math. Inequal 10 (2016), no 1, 78–81.

[6] S. S. DRAGOMIR, Symmetrized convexity and Hermite-Hadamard type inequalities, J. Math. Inequal.
10 (2016) no. 4, 901–918.

[7] S. S. DRAGOMIR, n-points inequalities of Hermite-Hadamard type for h-convex functions on linear
spaces, Armenian J. Math. 8 (2016), 323–341.
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