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Abstract. In this paper we consider some generalizations of the Ando inequality

||| f (A)− f (B)||| � ||| f (|A−B|)|||
with the “weight” (A−B)p . More precisely, for p � 1 such that (−1)p = −1 and for a non-
negative function f on [0,∞) such that f (0) = 0 , we study the following inequality:

Tr((A−B)p( f (A)− f (B))) � Tr(|A−B|p f (|A−B|)),
whenever A and B are positive semidefinite matrices. We show that the inequality is true for
any operator convex function f and it is reversed whenever f is operator monotone.

1. Introduction

In [1] Ando proved that for p � 1 and for any unitarily invariant norm ||| · ||| ,

|||Ap−Bp||| � ||||A−B|p|||.

For the trace norm ||A||1 = Tr(|A|), the last inequality reduces to the following

Tr(|Ap−Bp|) � Tr(|A−B|p), p � 1. (1.1)

This is a matrix version of the following scalar inequality:

|ap−bp| � |a−b|p, and p � 1. (1.2)

Interestingly, for p � 3 and a � b we have the following chain:

(a−b)p � · · ·� (a−b)k(ap−k−bp−k)� · · ·� (a−b)2(ap−2−bp−2)� (a−b)(ap−1−bp−1),

where p− k ∈ [1,2]. Indeed, it is enough to show that

(a−b)p � (a−b)k(ap−k−bp−k)
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and

(a−b)k+1(ap−k−1−bp−k−1) � (a−b)k(ap−k −bp−k).

The first inequality follows from (1.2) since p− k � 2, the second inequality is equiv-
alent to abp−k +bap−k � 0 which is obvious.

And for p ∈ [2,3] , we have reverse inequalities as follows:

(a−b)2(ap−2−bp−2) � (a−b)(ap−1−bp−1) � (a−b)p.

Naturally, one would ask if there were matrix versions of the above inequalities.
Seemingly supporting motivation is given by the following fact (Theorem 3.1): For any
positive semidefinite matrices A and B and p � 3,

Tr((A−B)2(Ap−2−Bp−2)) � Tr((A−B)(Ap−1−Bp−1)). (1.3)

It turns out that (Proposition 3.1) for positive semidefinite matrices A and B , p �
1, and q � 0 is such that p � q and 0 � p−q � 1,

Tr((A−B)q(Ap−q−Bp−q)) � Tr(|A−B|p). (1.4)

For the special case q = 2, the function t p−2 is operator monotone for p ∈ [2,3] .
Therefore, it is natural to ask whether inequality (1.4) is true for operator monotone
functions.

Let p � 1 such that (−1)p = −1 ( p is not necessarily an integer). In this paper,
for a non-negative operator convex function f (t) on [0,∞) such that f (0) = 0 we show
that

Tr(|A−B|p f (|A−B|)) � Tr((A−B)p( f (A)− f (B))) (1.5)

whenever positive semidefinite matrices A and B . It is worth noting that the condition
(−1)p = −1 is essential. If inequality (1.5) held for any positive number p , we could
use a limit process to get that

Tr( f (A)− f (B)) � Tr( f (|A−B|))

which is not true in general. Mention that Ando [1, Theorem 2] proved a similar in-
equality for continuous increasing functions whose inverse are operator monotone with
some certain conditions.

In addition, a reverse inequality is also studied for operator monotone functions.
For p = 1, inequality (1.5) was recently studied in [8]. For the power functions ts

(s ∈ [2,3]), inequality (1.5) was obtained by E. Ricard [10] for non-commutative Ls -
spaces.

The paper is organized as follows. In the next section, we prove two trace in-
equalities for operator monotone and operator convex functions. In the last section we
establish some inequalities for power functions. We also discuss another extensions of
(1.2) and establish some trace inequalities for them.
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2. Main inequalities

It is well-known that for s > 0 the function fs(t) =
st

t + s
is operator monotone on

[0,∞) . From the proof of [1, Theorem 1] one can see that for any positive semidefinite
matrices B and C and for any s > 0,

||| fs(B+C)− fs(B)||| � ||| fs(C)|||.
This inequality is not applicable for inequality (1.5) because we have the weight (A−
B)p in both sides. However, we have the following lemma which is essential for the
rest of this section.

LEMMA 2.1. Let p � 1 and s > 0 . Then for any positive semidefinite matrices B
and C,

Tr(Cp( fs(B+C)− fs(B))) � Tr(Cp fs(C)).

Proof. Since (B +C + s)−1 � (C + s)−1, there exists a contraction V such that
(B+C+ s)−1/2 = V (C + s)−1/2 and hence (B+C + s)−1 = (C+ s)−1/2V (C + s)−1/2.
Put W = s(B+ s)−1 and X = (C + s)−1/2. Then on account of the fact that XC = CX
we have

Tr(Cp( fs(B+C)− fs(B))) = Tr
(
Cps(B+C+ s)−1((B+C)(B+ s)

− (B+C+ s)B
)
(B+ s)−1

)

= s2Tr(Cp(B+ s)−1C(B+C+ s)−1)
= sTr(CpWCXVX)

= sTr((XCp/2WC1/2)(C1/2XVCp/2))

� s||XCp/2WC1/2||2 · ||C1/2XVCp/2||2,
where we use the Cauchy-Schwarz inequality. On the other hand, (XCp/2,C1/2) and
(C1/2X ,Cp/2) are monotone pairs in the sense of [5] as g1(t)=

√
t p/(t + s) and g2(t)=

t p/2 are non-decreasing for any p � 1. Since W is self-adjoint, by [5, Theorem 1] we
have

||XCp/2WC1/2||22 � ||WXC(p+1)/2||22 � Tr(X2Cp+1). (2.1)

Similarly, we also have

||C1/2XVCp/2||22 � Tr(X2Cp+1). (2.2)

Thus, the lemma follows from (2.1) and (2.2).

THEOREM 2.1. Let f (t) be a non-negative operator monotone function on [0,∞)
such that f (0) = 0 . Then for any positive number p � 1 such that (−1)p = −1 and
for any positive semidefinite matrices A and B,

Tr((A−B)p( f (A)− f (B))) � Tr(|A−B|p f (|A−B|)). (2.3)
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Proof. From the assumption and the integral representation of operator monotone
function f [9], we have

f (t) = β t +
∫ ∞

0
fs(t)dμ(s),

where μ is a positive measure on [0,∞) and β � 0. Now, suppose that A � B and put
C = A−B . Therefore, on account of Lemma 2.1 we have

Tr((A−B)p( f (A)− f (B))) = Tr(βCp+1)+
∫ ∞

0
Tr(Cp( fs(A)− fs(B)))dμ(s)

� Tr(Cp f (C)).

In general, denote by C− and C+ the negative and positive parts of C , respectively.
Then we have |A−B| = C− +C+, and A−B = C+ −C− . Put Z = A+C− = B+C+.
On account of the fact that (−1)p = −1, we have

Tr((A−B)p( f (A)− f (B))) = Tr((Cp
+ −Cp

−)( f (A)− f (Z)+ f (Z)− f (B)))
= Tr(Cp

+( f (A)− f (Z)))+Tr(Cp
+( f (Z)− f (B)))

+Tr(Cp
−( f (Z)− f (A)))−Tr(Cp

−( f (Z)− f (B))).

Since the function f is operator monotone, and A,B � Z , one can see the first and the
the forth terms in the last identity are negative. According to the previous case, we have

Tr(Cp
+( f (Z)− f (B)))+Tr(Cp

−( f (Z)− f (A))) � Tr(Cp
+ f (C+))+Tr(Cp

− f (C−))
= Tr(Cp f (|C|)).

For operator convex functions the inequality (2.3) is reversed. To prove that we
need the following lemma.

LEMMA 2.2. Let p � 1 and s > 0 . Then for any positive semidefinite matrices B
and C,

Tr(Cp(hs(B+C)−hs(B))) � Tr(Cphs(C)),

where hs(t) = t fs(t) is operator convex on [0,∞) .

Proof. Note that hs(t) = st− s fs(t) . Therefore, from Lemma 2.1, we have

Tr(Cp(hs(B+C)−hs(B))) = Tr(sCp+1)− sTr(Cp( fs(B+C)− fs(B)))
� Tr(Cp(sC− s fs(C)))
= Tr(Cphs(C)).

THEOREM 2.2. Let f (t) be a non-negative operator convex function on [0,∞)
such that f (0) = 0 . Then for any positive number p � 1 such that (−1)p = −1 and
for any positive semidefinite matrices A and B,

Tr((A−B)p( f (A)− f (B))) � Tr(|A−B|p f (|A−B|)). (2.4)
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Proof. It is well-known that [9] for any operator convex function f on [0,∞) there
exists a positive measure μ on [0,∞) such that

f (t) = α + β t + γt2 +
∫ ∞

0
hs(t)dμ(s),

where α and β are real, γ � 0 and hs(t) is defined in Lemma 2.2. By the assumption
of the theorem, α = 0. Now, suppose that A � B and put C = A−B . Therefore,

Tr((A−B)p( f (A)− f (B))) = Tr(βCp + γCp((B+C)2−B2))+

+
∫ ∞

0
Tr(Cp(hs(B+C)−hs(B)))dμ(s)

= Tr(βCp + γCp(C2 +BC+CB))+

+
∫ ∞

0
Tr(Cp(hs(B+C)−hs(B)))dμ(s)

� Tr(βCp + γCp+1)+
∫ ∞

0
Tr(Cphs(C))dμ(s)

= Tr

(
Cp

(
βC+ γC2 +

∫ ∞

0
hs(C)dμ(s)

))

= Tr(Cp f (C)),

where the inequality follows from Lemma 2.2 and that Tr(XY ) is nonnegative for pos-
itive semidefinite matrices X and Y . In general, using the same arguments in the proof
of Theorem 2.1 we have

Tr((A−B)p( f (A)− f (B))) = Tr(Cp
+( f (A)− f (Z)))+Tr(Cp

+( f (Z)− f (B)))
+Tr(Cp

−( f (Z)− f (A)))−Tr(Cp
−( f (Z)− f (B))).

According to the previous case, we have

Tr(Cp
+( f (Z)− f (B)))+Tr(Cp

−( f (Z)− f (A))) � Tr(Cp
+ f (C+))+Tr(Cp

− f (C−))
= Tr(Cp f (|C|)).

To finish the proof, we need to show that the first and the forth terms are positive.
We again use the integral representation of operator convex functions and the fact that
C−C+ = 0. We have

Tr(Cp
+( f (A)− f (Z))) = −Tr(Cp

+( f (A+C−)− f (A)))

= −Tr(βCp
+C− + γCp

+((A+C−)2−A2))+

−
∫ ∞

0
Tr(Cp

+(sC−− s fs(A+C−)+ s fs(A)))dμ(s)

=
∫ ∞

0
sTr(Cp

+( fs(A+C−)− fs(A)))dμ(s)

� 0,

where the inequality follows from the fact that fs(t) is operatormonotone and A+C− �
A . Similarly, we also have that the forth term is positive. Thus, we finish the proof.
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REMARK 2.1. To finish this section we would like to note that the essential dif-
ference between proofs of Theorems 2.1 and 2.2 and ones in [8] is the using of Lemma
2.1. In [8] we use the fact that

(B+ s)−1− (B+C+ s)−1 = (B+ s)−1C(B+C+ s)−1.

Thanks to this, we can rewrite Tr(C(B+ s)−1C(B+C+ s)−1) as

Tr(C(B+s)−1C(B+C+s)−1) = Tr((C(B+s)−1C)1/2(B+C+s)−1(C(B+s)−1C)1/2),

where X = (C(B+ s)−1C)1/2 is a positive semidefinite matrix. And then, we use the
comparisons

C(B+C+ s)−1C � C(C+ s)−1C and (B+ s)−1 � s−1 (2.5)

to get the result. But in the proofs of Theorems 2.1 and 2.2 we have

Tr(Cp(B+C+ s)−1− (B+ s)−1)) = Tr(Cp(B+C+ s)−1C(B+ s)−1).

When p �= 1 there is no way to use the comparisons (2.5), hence, the approach in [8]
could not be used. That is why Lemma 2.1 is crucial and make the proofs interesting
and different.

3. Trace inequality for power functions

In the following proposition we provide another matrix generalizations of (1.2)
for power functions. It is worth mentioning that inequalities in this proposition are not
fully covered in Theorem 2.1.

PROPOSITION 3.1. Assume A,B ∈ Mn(C) are positive semidefinite, p � 1 , and
q � 0 is such that p � q. Then,

Tr((A−B)q(Ap−q−Bp−q))) � Tr(|Ap−Bp|). (3.1)

Moreover, if 0 � p−q � 1 then

Tr((A−B)q(Ap−q−Bp−q)) � Tr(|A−B|p).

Proof. Since the proof of the second inequality is similar to the proof of the first,
we just prove the first. By Hölder’s inequality, we have

Tr((A−B)q(Ap−q−Bp−q)) � ‖(A−B)q‖p/q‖Ap−q−Bp−q‖p/(p−q).

By Ando’s theorem for p � 1,

‖(A−B)q‖p/q = ‖(A−B)p‖q/p
1 � ‖Ap−Bp‖q/p

1 .
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Using Ando’s inequality again for 0 � θ = (p− q)/p � 1 that says ‖Aθ −Bθ‖θ �
‖A−B‖θ

1 , we obtain

‖Ap−q−Bp−q‖p/(p−q) � ‖Ap−Bp‖(p−q)/p
1 .

Thus,

Tr((A−B)q(Ap−q−Bp−q)) � ‖(A−B)q‖p/q‖Ap−q−Bp−q‖p/(p−q)

� ‖Ap−Bp‖q/p
1 ‖Ap−Bp‖(p−q)/p

1

= Tr(|Ap−Bp|).
From [8, Proposition 1] and Proposition 3.1 we have the following chain of inter-

polating inequalities between ‖Ap−Bp‖1 and Tr((A−B)2(Ap−2−Bp−2)) .

COROLLARY 3.1. Let A and B be positive semidefinite matrices and p ∈ [2,3] .
Then,

Tr(|Ap−Bp|) � Tr((A−B)(Ap−1−Bp−1))

� Tr(|A−B|p) � |Tr((A−B)2(Ap−2−Bp−2))|.

REMARK 3.1. For p � 3 the following inequality

Tr((A−B)2(Ap−2−Bp−2)) � Tr(|A−B|p), (3.2)

does not hold. Both sides are not comparable.

Note that for p � 3 and a � b we also have another chain of inequalities as fol-
lows:

ap−bp � (a2 −b2)(ap−2−bp−2) � (a−b)2(ap−2−bp−2) � (a−b)p. (3.3)

PROPOSITION 3.2. For any positive semidefinite matrices A and B,

Tr((A−B)(A3−B3)) � Tr(|A−B|4).

Proof. Expanding the expressions in the traces and cancelling like terms, the de-
sired inequality is equivalent to,

3Tr(A3B+AB3) � 2Tr(ABAB+2A2B2).

Since Tr(ABAB) � Tr(A2B2) , the desired result follows if

Tr(A3B+AB3) � 2Tr(A2B2).

This result was shown in [3] by using the reduction we have used from the trace to
the inequality of scalars by means of the spectral decomposition. However, we give an
alternate proof here using the Geometric-Heinz mean inequality [4],

|||A1/2XB1/2||| � 1
2
|||AνXB1−ν +A1−νXBν |||
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for positive semidefinite A and B , ν ∈ [0,1] , arbitrary matrix X , and unitary invariant
norm ||| · ||| .

Using X = I , ν = 1/4, and replacing A and B with A2 and B2 , we obtain

‖AB‖2
2 � 1

4
‖A1/2B3/2 +A3/2B1/2‖2

2

for the 2-Schatten norm. Expanding the norms in terms of traces, we obtain

‖AB‖2
2 = Tr((AB)(AB)∗) = Tr(A2B2)

and

‖A1/2B3/2 +A3/2B1/2‖2
2 = Tr((A1/2B3/2 +A3/2B1/2)(B1/2A3/2 +B3/2A1/2))

=
1
4
Tr(AB3 +2A2B2 +BA3).

Now the result follows by multiplying the inequality times 4 and subtracting
2Tr(A2B2) on both sides.

To finish this paper, we show a matrix version of inequalities in (3.3).

THEOREM 3.1. Let p � 3. Then for any positive semidefinite matrices A and B,

Tr(|Ap−Bp|) � Tr((A2 −B2)(Ap−2−Bp−2))

� Tr((A−B)(Ap−1−Bp−1))
� Tr(|A−B|p).

Proof. The first inequality actually is true for any p � 1 and follows from [8,
Proposition 1]. The last inequality was proved in Ricard’s paper [10]. The second
inequality is another form of (1.3) and is equivalent to

Tr(A2Bp−2 +B2Ap−2) � Tr(ABp−1 +ABp−1).

If A = ∑
i

aiAi and B = ∑
k

bkBk are spectral decomposition of A and B , respectively,

then the last inequality is nothing but

x2yp−2 + y2xp−2 � xyp−1 + yxp−1

which reduces to
yq−1(x− y) � xq−1(x− y), q � 1.

The last inequality is obvious.

REMARK 3.2. The referee pointed out in his/her report that to prove (1.3) it is
suffices to use the fact that the function t → ||AtZBt ||2 is log-convex (see [6]). Thus,
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the function Tr(AtBp−t) is log-convex. Since (1−α)+α(p−1) with α = 1/(p−2) ,
we have

Tr(A2Bp−2) � (Tr(ABp−1))1−α(Tr(Ap−1B))α � (1−α)Tr(ABp−1)+ αTr(ABp−1).
(3.4)

Interchanging A and B in the last inequality, we have

Tr(B2Ap−2) � (1−α)Tr(BAp−1)+ αTr(BAp−1). (3.5)

Therefore, inequality (1.3) follows from (3.4) and (3.5).

REMARK 3.3. Inspiring from the second inequality in Theorem 3.1 one may ask
if the following inequality holds:

Tr((A−B)3(Ap−3−Bp−3)) � Tr((A−B)2(Ap−2−Bp−2)). (3.6)

Unfortunately, this is not the case. Here we present a counterexample for inequality
(3.6). Indeed, consider

p = 5, A =
(

58 13
13 41

)
, B =

(
74 31
31 85

)
.

For these values,

Tr((A−B)3(Ap−3−Bp−3)) = 1,258,807,200,

Tr((A−B)2(Ap−2−Bp−2)) = −3,067,771,200

which contradicts (3.6).
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