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Abstract. In this paper, we first present simple proofs of Choi’s results [4], then we give a short
alternative proof for Fiedler and Markham’s inequality [6]. We also obtain additional matrix
inequalities related to partial determinants.

1. Introduction

Throughout the paper, we use the following standard notation. The set of n× n
complex matrices is denoted by Mn(C) , and the identity matrix of order k by Ik , or
I for short. In this paper, we are interested in complex block matrices. Let Mn(Mk)
be the set of complex matrices partitioned into n× n blocks with each block being
k× k . The element of Mn(Mk) is usually written as H = [Hi j]ni, j=1 , where Hi j ∈ Mk

for all i, j . It is known that the matrices [det(Hi j)]ni, j=1 and [tr(Hi j)]ni, j=1 are positive
semidefinite whenever [Hi j]ni, j=1 is positive semidefinite, e.g., [15, p. 221 and p. 237].

If H = [Hi j]ni, j=1 ∈ Mn(Mk) is a positive semidefinite matrix, the classical Fis-
cher’s inequality [7, p. 506] says that

k

∏
i=1

detHii � detH. (1)

In 1961, Thompson [12] proved the following elegant determinantal inequality (2),
which is an extention of Fischer’s result (1). The main weapon of Thompson’s proof is
an identity of Grassmann products, see [9] for a short proof.

THEOREM 1. Let H = [Hi j]ni, j=1 ∈ Mn(Mk) be positive semidefinite. Then

det
(
[detHi j]ni, j=1

)
� detH. (2)
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Fiedler and Markham (1994) proved an analogous determinantal inequality for
trace. In fact, Minghua Lin pointed out that in the proof of [6, Corollary 1], Fiedler and
Markham used the superadditivity of determinant functional, which can be improved
by Fan-Ky’s determinantal inequality [5], i.e., the log-concavity of the determinant over
the positive semidefinite matrices. Here we state the stronger version (3), see [10] for
more details.

THEOREM 2. Let H = [Hi j]ni, j=1 ∈ Mn(Mk) be positive semidefinite. Then(
det
(
[trHi j]ni, j=1

)
kn

)k

� detH. (3)

Now we introduce the definition of partial traces, which comes from quantum
information theory. Given H = [Hi j]ni, j=1 with Hi j ∈ Mk , the first partial trace (map)
H �→ tr1H ∈ Mk is defined as the adjoint map of the imbedding map X �→ In ⊗X ∈
Mn ⊗Mk . Here “⊗” stands for the tensor product (or named the Kronecker product).
Correspondingly, the second partial trace (map) [11, p. 12] H �→ tr2H ∈ Mn is defined
as the adjoint map of the imbedding map Y �→ Y ⊗ Ik ∈ Mn ⊗Mk . Therefore, we have

〈In ⊗X ,H〉= 〈X , tr1H〉, ∀X ∈ Mk;

and
〈Y ⊗ Ik,H〉 = 〈Y, tr2H〉, ∀Y ∈ Mn.

The visualized forms of the partial traces are actually given in [3, Proposition 4.3.10]
as

tr1H =
n

∑
i=1

Hii, tr2H = [trHi j]ni, j=1.

It is easy to see that tr1H and tr2H are positive semidefinite whenever H is posi-
tive semidefinite. With what has been just defined, inequality (3) can be written as(

det(tr2H)
kn

)k

� detH. (4)

Recently, Choi introduced the definition of “partial determinant” and derived some
interesting properties in [4]. For a given block matrix H , imitating the appearance of
tr2H , a natural definition of det2 H is given as

det2H = [detHi j]ni, j=1 ∈ Mn.

However, it does not seem easy to give the definition of det1H analogous to tr1H . The
following ingenious mind originated from Choi. For H = [Hi j]ni, j=1 ∈ Mn(Mk) , where

Hi, j =
[
hi, j

l,m

]k
l,m=1

, we define det1H ∈ Mk by

det1H = [detGlm]kl,m=1,
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where Glm =
[
hi, j

l,m

]n
i, j=1

. For convenience, we will denote H̃ to be

H̃ =
[[

hi, j
l,m

]n
i, j=1

]k

l,m=1
∈ Mk(Mn).

Motivated by (4), Choi [4, Theorem 6] proved

THEOREM 3. Let H ∈ Mn(Mk) be positive semidefinite. Then(
tr(det1H)

k

)k

� detH. (5)

We will present an alternative proof later.
The paper is organized as follows. In Section 2, we will present two alternative

simple proofs for Fiedler and Markham’s inequality (3) and Choi’s inequality (5), and
then the equivalent relations between partial traces and partial determinants are drawn.
In Section 3, we will give two extensions of partial determinant, and some related in-
equalities are included.

2. Alternative proofs for (3) and (5)

If A = [ai j] is of order m× n and B is s× t , the tensor product of A,B , denoted
by A⊗B , is an ms× nt matrix, partitioned into m× n block matrix with the (i, j)-th
block the s× t matrix ai jB . Let ⊗rA = A⊗ ·· ·⊗A be the r -fold tensor power of A ,
and we denote by ∧rA the r -th Grassmann power ([2, pp. 16-19]) of A , which is the
same as the r -th multiplicative compound matrix of A , and also is a restriction of ⊗rA .
There are some basic properties of the tensor product, we briefly list some items below.

PROPOSITION 1. Let A,B,C be matrices of appropriate sizes. Then
(1) (A⊗B)⊗C = A⊗ (B⊗C) .
(2) (A⊗B)(C⊗D) = (AC)⊗ (BD) .
(3) (A⊗B)T = AT ⊗BT .
(4) (A⊗B)−1 = A−1⊗B−1 if A and B are invertible.
Furthermore, if A,B,C are positive semidefinite matrices, then
(5) A⊗B is positive semidefinite.
(6) If A � B, then A⊗C � B⊗C.
(7) ⊗r(A+B) � ⊗rA+⊗rB for all positive integer r .

LEMMA 1. For H ∈ Mn(Mk) , we have tr1H̃ = tr2H and det1H̃ = det2H .

Proof. It is straightforward.

LEMMA 2. For A ∈ Mn and B ∈ Mk , there exists a permutation matrix P(n,k)
of order nk depending only on n,k such that Ã⊗B = P(n,k)T (A⊗B)P(n,k) .
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Proof. Let A = [ai j]ni, j=1 and B = [bi j]ki, j=1 . Since

A⊗B = [ai jB]ni, j=1 =
[
[ai jblm]kl,m=1

]n
i, j=1

.

Therefore

Ã⊗B =
[
[ai jblm]ni, j=1

]k
l,m=1

= [blmA]kl,m=1 = B⊗A.

Note that B⊗A is permutationnally similar to A⊗B , see [14, p. 40], then there exists
a permutation matrix P(n,k) depending on n,k such that

Ã⊗B = P(n,k)T (A⊗B)P(n,k).

The result follows.

THEOREM 4. For H = [Hi j]ni, j=1 ∈ Mn(Mk) , H̃ is permutationally similar to H .

Proof. Here we present a short proof which is quite different from that in [4]. We
first observe a known fact, for any H ∈ Mn(Mk) , we may write H = ∑m

i=1 Ai ⊗Bi for
some Ai ∈ Mn,Bi ∈ Mk and some positive integer 1 � m � n2 . By Lemma 2, there is
a permutation matrix P(n,k) such that

H̃ =
m

∑
i=1

Ãi⊗Bi =
m

∑
i=1

P(n,k)T (Ai ⊗Bi)P(n,k) = P(n,k)T HP(n,k),

as desired.

REMARK 1. By applying Fischer’s inequality (1) to H̃ , we get

detH = detH̃ �
k

∏
l=1

detGll. (6)

The inequality (6) is proved by using Koteljanskii’s inequality in [4].

We will give new short proofs of (3) and (5) next.

Proof. [Proof of Theorem 2] Since H is positive semidefinite, so is H̃ , then the
diagnal block matrices Gll are also positive semidefinite. By Fan-Ky’s inequality [7, p.
488], we have

det

(
k

∑
l=1

Gll

)
� kn k

√√√√ k

∏
l=1

detGll.

By Lemma 1 and Fischer’s inequality, we obtain

(
det(tr2H)

kn

)k

=

(
det(tr1H̃)

kn

)k

�
k

∏
l=1

detGll � detH̃ = detH.
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We get the result.

Proof. [Proof of Theorem 3] As the diagnal block matrices Gll are positive semidef-
inite, by AM-GM inequality, we get

1
k

k

∑
l=1

detGll � k

√√√√ k

∏
l=1

detGll.

Combining Lemma 1 and (6), it yields(
tr(det1H)

k

)k

=

(
tr(det2H̃)

k

)k

�
k

∏
l=1

detGll � detH̃ = detH.

In the above proofs, we actually use the symmetry of definitions of tr1 and tr2 ,
det1 and det2 . As the byproducts of our argument, we have the following propositions
by a trivial analysis. We omit the details here.

PROPOSITION 2. Let H ∈ Mn(Mk) be positive semidefinite. The following two
inequalities are equivalent. (

det(tr1H)
nk

)n

� detH, (7)(
det(tr2H)

kn

)k

� detH. (8)

PROPOSITION 3. Let H ∈ Mn(Mk) be positive semidefinite. The following two
inequalities are equivalent. (

tr(det1H)
k

)k

� detH, (9)(
tr(det2H)

n

)n

� detH. (10)

3. Partial determinant inequalities

If A is positive semidefinite, then we write A � 0, and for two Hermitian matrices
A,B ∈ Mn , the symbol A � B means that A−B � 0. In [9], it is shown that if A,B ∈
Mn(Mk) are positive semidefinite, then

det2(A+B) � det2A+det2B. (11)

Choi [4, Corollary 9] gave the corresponding complement as

det1(A+B) � det1A+det1B. (12)

In what follows, we will extend (11) and (12) to a more generalized setting.
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LEMMA 3. Let A = [Ai j]ni, j=1 ∈ Mn(Mk) . Then [⊗rAi j]ni, j=1 is a principal sub-
matrix of ⊗rA.

Proof. Without loss of generality, we may write A = X∗Y , where X ,Y are nk×
nk . Now we partition X = (X1,X2, . . . ,Xn) and Y = (Y1,Y2, . . . ,Yn) with each Xi,Yi is
an nk× k complex matrix. Under this partition, we see that Ai j = X∗

i Yj . Also we have
Yj = YEj , where Ej is a suitable nk× k matrix such that its j -th block is extractly Ik
and otherwise 0. So we obtain

⊗rAi j = ⊗r(X∗
i Yj) = ⊗r(E∗

i X∗YEj) = (⊗rEi)∗(⊗r(X∗Y ))(⊗rE j).

In other words,

[⊗rAi j]ni. j=1 = E∗(⊗rA)E, E = [⊗rE1,⊗rE2, . . . ,⊗rEn].

It is easy to verify that E is a permutation matrix with 1 only in diagonal entries.

LEMMA 4. ([1, Theorem 2.1]) Let A,B,C be positive semidefinite matrices of
same size. Then for every positive integer r , we have

⊗r (A+B+C)+⊗rA+⊗rB+⊗rC

� ⊗r(A+B)+⊗r(A+C)+⊗r(B+C).
(13)

Proof. For completeness, we include a proof by induction on r . The trivial case
r = 1 holds with equality, and the case r = 2 is easy to verify. Assume therefore (13)
holds for some r = m � 2, that is

⊗m (A+B+C)+⊗mA+⊗mB+⊗mC

� ⊗m(A+B)+⊗m(A+C)+⊗m(B+C).

For r = m+1, we have

⊗m+1 (A+B+C)

=
(⊗m(A+B+C)

)⊗ (A+B+C)

�
(⊗m(A+B)+⊗m(A+C)+⊗m(B+C)−⊗mA−⊗mB−⊗mC

)
⊗ (A+B+C)

= ⊗m+1(A+B)+⊗m+1(A+C)+⊗m+1(B+C)

−⊗m+1A−⊗m+1B−⊗m+1C

+
(⊗m(A+B)

)⊗C+
(⊗m(A+C)

)⊗B+
(⊗m(B+C)

)⊗A

− (⊗mA
)⊗ (B+C)− (⊗mB

)⊗ (A+C)− (⊗mC
)⊗ (A+B).

It remains to show that(⊗m(A+B)
)⊗C+

(⊗m(A+C)
)⊗B+

(⊗m(B+C)
)⊗A

�
(⊗mA

)⊗ (B+C)+
(⊗mB

)⊗ (A+C)+
(⊗mC

)⊗ (A+B).
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This follows immediately by the superadditivity of tensor power, by Proposition 1,

⊗m(A+B) � ⊗mA+⊗mB,

⊗m(A+C) � ⊗mA+⊗mC,

⊗m(B+C) � ⊗mB+⊗mC.

Thus, the desired inequality (13) holds.
Tie et al. [13, Lemma 2.2] established the following tensor product inequality

(14), we here demonstrate that it might be actually viewed as a corollary of Lemma 4.

COROLLARY 1. Let A,B,C be positive semidefinite matrices of same size. Then
for each positive integer r , we have

⊗r (A+B+C)+⊗rC � ⊗r(A+C)+⊗r(B+C). (14)

Proof. By Lemma 4 and Proposition 1, we obtain

⊗r (A+B+C)+⊗rC− (⊗r(A+C)+⊗r(B+C))
� ⊗r(A+B)−⊗rA−⊗rB � 0.

The desired inequality (14) follows.
The next result Theorem 5 is an extension of (11) and (12).

THEOREM 5. Let A,B,C ∈ Mn(Mk) be positive semidefinite. Then

det1(A+B+C)+det1A+det1B+det1C

� det1(A+B)+det1(A+C)+det1(B+C),
(15)

and
det2(A+B+C)+det2A+det2B+det2C

� det2(A+B)+det2(A+C)+det2(B+C).
(16)

Proof. We only prove (16), and (15) can be proved by exchanging the role of Ã
and A . By Lemma 4, we have

⊗r (A+B+C)+⊗rA+⊗rB+⊗rC

� ⊗r(A+B)+⊗r(A+C)+⊗r(B+C).

By Lemma 3, it yields

[⊗r(Ai j +Bi j +Ci j)]ni, j=1 +[⊗rAi j]ni, j=1 +[⊗rBi j]ni, j=1 +[⊗rCi j]ni, j=1

� [⊗r(Ai j +Bi j)]ni, j=1 +[⊗r(Ai j +Ci j)]ni, j=1 +[⊗r(Bi j +Ci j)]ni, j=1.

By restricting above inequality to the antisymmetric tensors, one obtains

[∧r(Ai j +Bi j +Ci j)]ni, j=1 +[∧rAi j]ni, j=1 +[∧rBi j]ni, j=1 +[∧rCi j]ni, j=1

� [∧r(Ai j +Bi j)]ni, j=1 +[∧r(Ai j +Ci j)]ni, j=1 +[∧r(Bi j +Ci j)]ni, j=1.

The required result (16) follows by noting that detAi j = ∧kAi j .
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COROLLARY 2. Let A,B,C ∈ Mn(Mk) be positive semidefinite. Then

det1(A+B+C)+det1C � det1(A+C)+det1(B+C), (17)

and
det2(A+B+C)+det2C � det2(A+C)+det2(B+C). (18)

Proof. Along the similar lines as in Theorem 5, it is not difficult to give the proof
by applying Corollary 1. We leave the details for the reader.

REMARK 2. It is worth noting that after finishing the first version of this paper,
the referee informed the author that (17) and (18) might be viewed as a corollary of
Theorem 5. Since by Theorem 5 and (12),

det1(A+B+C)+det1C− (det1(A+C)+det1(B+C))
� det1(A+B)−det1A−det1B � 0.

Therefore, (15) implies (17). Similarly, (16) implies (18) by using (11).
In particular, when n = 1, (18) is the well-known determinantal inequality:

det(A+B+C)+detC � det(A+C)+det(B+C).

And (16) in Theorem 5 reduces to the following result:

det(A+B+C)+detA+detB+detC

� det(A+B)+det(A+C)+det(B+C),

which is the main result obtained in [8] by using majorization theory.
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