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INEQUALITIES FOR ANGLES BETWEEN SUBSPACES

WITH APPLICATIONS TO CAUCHY–SCHWARZ

INEQUALITY IN INNER PRODUCT SPACES

ZDZISŁAW OTACHEL

(Communicated by M. S. Moslehian)

Abstract. We show several inequalities for angles between vectors and subspaces in inner prod-
uct spaces, where concave functions are involved. In specific situations, some of them can be
interpreted as triangle inequalities for natural metrics on complex projective spaces. In a con-
sequence, we obtain a few operator generalizations of the famous Cauchy-Schwarz inequality,
where powers grater than two occur.

1. Introduction and motivation

Let (V,〈·, ·〉) be an inner product space over the real or complex number field F

(F = R or C). The inequality

| 〈x,y〉 | � ‖x‖‖y‖, x,y ∈V, (1)

is known in the literature as Schwarz’s (or Cauchy-Schwarz or Cauchy-Bunyakovsky-
Schwarz) inequality, where ‖v‖2 = 〈v,v〉 , v ∈ V . The equality holds in Schwarz’s
inequality if and only if the vectors x and y are linearly dependent. Since A.L. Cauchy
(1821) published the first version for sums, V.Y. Bunyakovsky (1859) - for integrals
and H.A. Schwarz (1888) derived the first modern proof, it has still attracted mathe-
maticians. Presently, this is one of the fundamental inequalities in all mathematics.
Its counterparts are known in functional analysis, in linear, vector, matrix or operator
algebra, probability theory, theoretical physics and other areas. A large number of re-
finements and generalizations can be found in monographs [4, 5, 6, 13, 14], see also the
review article [1] and references therein but the list is far from being complete.

The Cauchy-Schwarz inequality is the basis for defining of the angle between vec-
tors or, more general, the angle between subspaces of an inner product space. For
example, the angle between the non-zero vectors x,y ∈V can be defined in two ways

Ψx,y = arccos
| 〈x,y〉 |
‖x‖‖y‖ , Φx,y = arccos

Re 〈x,y〉
‖x‖‖y‖ . (2)
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The function Ψ : V ×V �→ [0,π/2] is a natural metric on complex projective space,
since Ψλ x,γy = Ψx,y, x,y ∈V \{0}, λ ,γ ∈ F\{0} and it satisfies the triangle inequality
[12]

Ψx,y � Ψx,z + Ψz,y or, equivalently, |Ψx,z −Ψy,z| � Ψx,y, for any x,y,z ∈V \ {0}. (3)

The triangle inequality, Φx,y � Φx,z +Φz,y, x,y,z ∈V \{0}, for the angle Φ.,. , was
proved by M.G. Krein [11]. Other triangle inequalities also hold [12, Prop. 2]), e.g.(

1− |〈x,y〉 |p
‖x‖p‖y‖p

)1/p

�
(

1− |〈x,z〉 |p
‖x‖p‖z‖p

)1/p

+
(

1− |〈y,z〉 |p
‖y‖p‖z‖p

)1/p

, p � 2. (4)

In case p = 2 this is the triangle inequality for the sine function of the angle Ψ.,. and
was proved earlier in [16].

Friedrichs [9] introduced the angle αK,L ∈ [0,π/2] between closed subspaces
K,L ⊂V as follows

cosαK,L = sup{|〈x,y〉 | : x ∈ K ∩ (K∩L)⊥, y ∈ L∩ (K∩L)⊥, ‖x‖,‖y‖ � 1}.
Dixmier [3] defined the minimal angle between subspaces ΨK,L ∈ [0,π/2] by

cosΨK,L = sup{|〈x,y〉 | : x ∈ K, y ∈ L, ‖x‖,‖y‖ � 1}. (5)

These definitions are different unless K∩L = {0}. Contrary to the geometric intuition,
the first of them treats the angle between equal subspaces as π/2. The definition of
Ψx,y, x,y ∈ V is compatible with ΨK,L for K = span{x} and L = span{y}. Further
basic results which hold for these angles and a few of the many applications are to be
found in [2].

In section 2 angles between vectors and subspaces will be considered. We will
introduce a specific definition for this case in the spirit of Dixmier’s one and prove
some inequalities for such angles. Between others, counterparts of inequalities (3) and
(4) will be obtained, as well as more general inequalities, where concave functions are
involved.

The notion of the orthogonal projection is closely connected with the Cauchy-
Schwarz inequality. Recall that the orthogonal projection onto a closed subspace L of V
(projection with the range L , in short) is the mapping PL :V �→ L which associates with
each x ∈V its unique nearest point in L , i.e., ‖x−PLx‖ = dist(x,L) := infy∈L ‖x− y‖.
In other words, a bounded linear operator P on V is an orthogonal projection if and
only if P is idempotent and self-adjoint (i.e. P2 = P = P∗ ). Then P = PL , where
L = P(V ) is the range of P . For example, if v∈V is a non-zero vector, then Pvx = 〈x,v〉

‖v‖2 v

defines the projection onto 1-dimensional subspace span{v} . For an unit vector e ∈V ,
Pex = 〈x,e〉e.

Now, for the completeness of this article, we recall some relevant results on the
Cauchy-Schwarz inequality. The following discrete version of (1) holds [15]

n

∑
i=1

x2
i

n

∑
i=1

y2
i −
(

n

∑
i=1

xiyi

)2

�
∣∣∣∣ndet

[ |x| Sx

|y| Sy

]∣∣∣∣
2

, xi,yi ∈ R, i = 1,2, . . .n, (6)
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where for any n -tuple of real numbers a = (a1,a2, . . . ,an) , a = 1
n (a1 +a2 + . . .+an) ,

a2 = 1
n(a2

1 +a2
2 + . . .+a2

n) and Sa =
√

a2−a2.

This inequality has been extended twice so far. The first time as follows [8, Th. 2]

‖x‖2‖y‖2−|〈x,y〉 |2 �
∣∣∣∣det

[ | 〈x,e〉 | (‖x‖2−|〈x,e〉 |2)1/2

| 〈y,e〉 | (‖y‖2−|〈y,e〉 |2)1/2

]∣∣∣∣
2

, (7)

where x,y,e ∈ V and ‖e‖ = 1. Note, setting V = R
n with the standard inner product

and substituting e = 1√
n (1,1, . . . ,1) in (7) we obtain (6) (see [8, sec. 3] for details).

The next extension of (6) (see [7, Th. 1]) is a such generalization of (7), where the
norm of projection 〈Pex,x〉 = | 〈x,e〉 | is replaced by 〈Ax,x〉 , A is a selfadjoint operator
such that 0 � 〈Ax,x〉 � 〈x,x〉 ,x ∈V .

Taking z as a unit vector e , a simple reformulation of (4) leads to the following
generalization of C-S inequality [8, Th. 1]

‖x‖p‖y‖p−|〈x,y〉 |p �
∣∣∣∣det

[‖x‖ (‖x‖p−|〈x,e〉 |p)1/p

‖y‖ (‖y‖p−|〈y,e〉 |p)1/p

]∣∣∣∣
p

, p � 2, (8)

where x,y,e ∈V with ‖e‖ = 1.
The section 3 is devoted to applications of inequalities for angles to improving of

Cauchy-Schwarz inequality. We obtain a few generalizations of this inequality, where
orthogonal projections occur. In this spirit we generalize inequality (8) and derive cer-
tain results related to inequalities (6) and (7). In the last section, some specifications
for finite dimensional subspaces are studied.

2. Inequalities for angles between vectors and subspaces

Let a closed subspace L ⊂V be the range of a projection P and a nonzero vector
v ∈ V be fixed. For any scalar λ with |λ | � 1/‖v‖ and any vector y ∈ L with ‖y‖ �
1, by Cauchy-Schwarz inequality, we have the estimate | 〈λv,y〉 | = |λ || 〈v,Py〉 | =
|λ || 〈Pv,y〉 | � |λ |‖Pv‖‖y‖ � ‖Pv‖

‖v‖ with the equality if Pv = 0 or, otherwise, if λ =

1/‖v‖ and y = Pv/‖Pv‖. Hence sup{|〈λv,y〉 | : |λv| � 1, y ∈ L, ‖y‖ � 1} = ‖Pv‖
‖v‖ . In

this way, according to Dixmier’s definition (5) of the minimal angle between the pair
of subspaces K := span{v} and L we determine the angle Ψv,L ∈ [0,π/2] between a
non-zero vector v ∈V and the subspace L as follows

cosΨv,L =
‖Pv‖
‖v‖ , equivalently, sinΨv,L =

√
1− ‖Pv‖2

‖v‖2 . (9)

Note, Ψv,L = Ψv,Pv if Pv = 0 and Ψx,y = Ψx,Pyx = Ψy,Pxy, if x,y = 0.
Below, we will establish a few inequalities, where mentioned angles or their func-

tions occur. The first of them extends the triangle inequality (3). Although such theorem
is substantially known, we include its simple proof for the readers convenience.
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THEOREM 1. For a closed subspace L ⊂V and for non-zero vectors x,y ∈V the
following inequality holds

|Ψx,L −Ψy,L| � Ψx,y. (10)

Proof. Let P be the orthogonal projection onto L . Applying Schwarz’s inequality
for the vectors x−Px and y−Py and taking into account that 〈x−Px,y−Py〉= 〈x,y〉−
〈Px,Py〉 and ‖x−Px‖2 = ‖x‖2 −‖Px‖2 and ‖y−Py‖2 = ‖y‖2 −‖Py‖2 we have the
inequality

|〈x,y〉− 〈Px,Py〉| �
√
‖x‖2−‖Px‖2

√
‖y‖2−‖Py‖2. (11)

Further, division both of sides by ‖x‖‖y‖ = 0 and using the continuity condition for the
modulus and Schwarz’s inequality for Px and Py , consecutively, leads to

| 〈x,y〉 |
‖x‖‖y‖ � ‖Px‖

‖x‖
‖Py‖
‖y‖ +

√
1− ‖Px‖2

‖x‖2

√
1− ‖Py‖2

‖y‖2 ,

or, cosΨx,y � cosΨx,L cosΨy,L + sinΨx,L sinΨy,L = cos |Ψx,L −Ψy,L|, utilizing the no-
tion of the angle Ψ.,. . Finally, since the function arccos is decreasing we get inequality
(10). �

COROLLARY 1. If L ⊂V is a closed subspace, then for non-zero vectors x,y ∈V
the following inequality holds

|sinΨx,L cosΨy,L − cosΨx,L sinΨy,L| � sinΨx,y. (12)

Proof. By Theorem 1, inequality (10) holds. Thus, since the function sin(t), t ∈
[0,π/2], is increasing, we have

|sinΨx,L cosΨy,L−cosΨx,L sinΨy,L|= |sin(Ψx,L−Ψy,L)|= sin |Ψx,L−Ψy,L|� sinΨx,y.

�
The next results require the following known lemma about concave (convex) func-

tions.

LEMMA 1. If f : [0,d] �→ [0,∞),(d > 0) is a non-decreasing concave (convex)
function with f (0) = 0 and 0 � a,b � d, then | f (a)− f (b)| � (�) f (|a−b|). �

Consequently, by Lemma 1, Theorem 1 and Corollary 1, we easy obtain the fol-
lowing two inequalities.

THEOREM 2. Let L be a closed subspace of V and f : [0,a] �→ [0,∞) be a con-
cave non-decreasing function with f (0) = 0 . Then for non-zero vectors x,y ∈ V the
following inequalities hold

| f (Ψx,L)− f (Ψy,L)| � f (Ψx,y), (13)

| f (sinΨx,L cosΨy,L)− f (cosΨx,L sinΨy,L)| � f (sinΨx,y), (14)

where a � π/2 in case of (13) or a � 1 in case of (14).
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Applying general inequalities (13) and (14) to specific functions one can obtain
next more particular inequalities. Such examples we introduce below.

COROLLARY 2. Let L ⊂V be the range of a projection P : V �→V . For non-zero
vectors x,y ∈V the following inequalities hold∣∣∣(1− cosp Ψx,L)1/p− (1− cosp Ψy,L)1/p

∣∣∣� (1− cosp Ψx,y)1/p , p � 2, (15)

∣∣∣sin1/p Ψx,L − sin1/p Ψy,L

∣∣∣� ∣∣∣sin1/p Ψx,L cos1/p Ψy,L − cos1/p Ψx,L sin1/p Ψy,L

∣∣∣
� sin1/p Ψx,y, p � 1.

(16)

Proof. All functions mentioned in the proof are increasing concave with zero value
at zero. It can be showed using elementary analysis. We omit these details.

Specifying inequality (13) for functions f (t) = (1−cosp t)1/p, t ∈ [0,π/2], p � 2,
we obtain (15). Inequality (13) applied for functions f (t) = (sin t)1/p, t ∈ [0,π/2], p �
1 establishes also the inequality between the first and the third expression in (16). The
second inequality in (16) is a consequence of inequality (14) used for the functions
f (t) = t1/p, t ∈ [0,1], p � 1. To prove the first inequality in (16) utilize the same
functions and set α1 = sinΨx,L cosΨy,L , β1 = sinΨx,L and α2 = sinΨy,L cosΨx,L , β2 =
sinΨy,L . The inequality is evident, if Ψx,L = Ψy,L. Now, let Ψx,L = Ψy,L. Then αi �
βi, α1 = α2, β1 = β2, αi,βi ∈ [0,d], i = 1,2. Since f is increasing convex,

| f (α2)− f (α1)|
| f (β2)− f (β1)| � |α2 −α1|

|β2−β1| ,

(see e.g. [13, Chap. I, sec. 3]). Moreover,

|α2 −α1| = |sinΨy,L cosΨx,L − sinΨx,L cosΨy,L| = |sin(Ψy,L −Ψx,L)| =
sin |Ψy,L −Ψx,L| � |sinΨy,L − sinΨx,L| = |β2−β1|,

by Lemma 1 applied to the sine function. Thus | f (α2)− f (α1)| � | f (β2)− f (β1)|.
This is exactly what should be proven. �

REMARK 1. For a non-zero vector z ∈V , if P = Pz , i.e. P is the orthogonal pro-
jection onto 1-dimensional subspace span{z} , then inequalities (10) and (15) weaken
to (3) and (4), respectively.

3. Generalizations of the Cauchy-Schwarz inequality

The following generalizations of the Cauchy-Schwarz inequality can be estab-
lished.

THEOREM 3. Fix p � 2. For any vectors x,y ∈V and any projection P on V ,

‖x‖p‖y‖p−|〈x,y〉 |p �
∣∣∣∣det

[‖x‖ (‖x‖p−‖Px‖p)1/p

‖y‖ (‖y‖p−‖Py‖p)1/p

]∣∣∣∣
p

. (17)
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Proof. Starting from the definition (9) of the angle Ψ.,. , we can express inequality
(15) as follows∣∣∣∣∣

(
1− ‖Px‖p

‖x‖p

)1/p

−
(

1− ‖Py‖p

‖y‖p

)1/p
∣∣∣∣∣�
(

1− |〈x,y〉 |p
‖x‖p‖y‖p

)1/p

, p � 2.

Now, if we take the power p and multiply with ‖x‖p‖y‖p , then we obtain inequality
(17). �

REMARK 2. Inequality (17) was obtained by Dragomir [8, Th. 1] for projections
P = Pe onto 1-dimensional subspaces, cf. (8).

Similarly, inequality (16) translates to the next generalization of C-S inequality.

COROLLARY 3. Let 1 � p � q. For any vectors x,y ∈V and any projection P on
V ,

‖x‖2‖y‖2−|〈x,y〉 |2 �

∣∣∣∣∣∣∣det

⎡
⎢⎣ ‖Px‖1/p

(√
‖x‖2−‖Px‖2

)1/p

‖Py‖1/p
(√‖y‖2−‖Py‖2

)1/p

⎤
⎥⎦
∣∣∣∣∣∣∣
2p

�

∣∣∣∣∣∣∣det

⎡
⎢⎣ ‖x‖1/p

(√
‖x‖2−‖Px‖2

)1/p

‖y‖1/p
(√‖y‖2−‖Py‖2

)1/p

⎤
⎥⎦
∣∣∣∣∣∣∣
2p

.

(18)
In addition,

Dp(x,y) � Dq(x,y), (19)

where Dp(x,y) =

∣∣∣∣∣∣∣det

⎡
⎢⎣ ‖Px‖1/p

(√
‖x‖2−‖Px‖2

)1/p

‖Py‖1/p
(√‖y‖2−‖Py‖2

)1/p

⎤
⎥⎦
∣∣∣∣∣∣∣
2p

.

Proof. Substituting (9) to (16), taking 2p -power and multiplying with ‖x‖2‖y‖2

we obtain (18).
To prove (19) let

a =
(
‖Px‖

√
‖y‖2−‖Py‖2

)1/q

,b =
(
‖Py‖

√
‖x‖2−‖Px‖2

)1/q

.

Now, it suffices to apply Lemma 1 for the increasing convex function u �→ uq/p,u � 0

to get
(|a−b|q/p

)2p �
(|aq/p−bq/p|)2p

, as desired. �

REMARK 3. A. For P = id or P = 0 inequalities (18) become the classic C-S
inequality.
B. For P = Pe, where ‖e‖ = 1 and p = 1 the first part of (18) takes the form of in-
equality (7), recently obtained by Dragomir [8].
C. It also corresponds with more general Dragomir’s result [7, Th. 1].
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The next result specifies situations when we get the equality in inequality (18).

THEOREM 4. Fix p � 1. For any vectors x,y ∈ V and any projection P on V
with the range L,

‖x‖2‖y‖2−|〈x,y〉 |2 =

∣∣∣∣∣∣∣det

⎡
⎢⎣‖Px‖1/p

(√
‖x‖2−‖Px‖2

)1/p

‖Py‖1/p
(√‖y‖2−‖Py‖2

)1/p

⎤
⎥⎦
∣∣∣∣∣∣∣
2p

(20)

if and only if x = λ1u+ γ1v, y = λ2u+ γ2v, where λr,γr ∈ F, r = 1,2, u ∈ L,v ∈ L⊥
and λ1λ2γ1γ2 � 0.

Proof. On account of Corollary 3, if equality (20) holds, then

‖x‖2‖y‖2−|〈x,y〉 |2 =
∣∣∣∣det

[‖Px‖√‖x‖2−‖Px‖2

‖Py‖√‖y‖2−‖Py‖2

]∣∣∣∣
2

. (21)

Any vectors x,y ∈ V admit the representations x = u1 + v1, y = u2 + v2, where ur ∈
L, vr ∈ L⊥ so 〈ur,vr〉 = 0, r = 1,2. It gives

| 〈x,y〉 |2 = | 〈u1,u2〉 |2 +2Re〈u1,u2〉 〈v2,v1〉+ | 〈v1,v2〉 |2,
‖x‖2 = ‖u1‖2 +‖v1‖2 , ‖y‖2 = ‖u2‖2 +‖v2‖2,

‖Px‖ = ‖u1‖ , ‖Py‖ = ‖u2‖.
Based on the above, equality (21) holds if and only if(‖u1‖2‖u2‖2−|〈u1,u2〉 |2

)
+
(‖v1‖2‖v2‖2−|〈v1,v2〉 |2

)
=

2(Re〈u1,u2〉 〈v2,v1〉−‖u1‖‖u2‖‖v1‖‖v2‖) .
Note, the left hand side of the above equality is non-negative as the sum of two

non-negative components, while the other side is non-positive. Therefore, the equality
holds if and only if the both of sides are equal zero. Thus, by C-S inequality (1), we
obtain

| 〈u1,u2〉 |2 = ‖u1‖2‖u2‖2, | 〈v1,v2〉 |2 = ‖v1‖2‖v2‖2,

‖u1‖‖u2‖‖v1‖‖v2‖ = Re〈u1,u2〉 〈v2,v1〉 .
Two first equalities are met if and only if u1,u2 and v1,v2 are pairs of linearly depen-
dent vectors, i.e. there exist unit vectors u ∈ L, v ∈ L⊥ and scalars λr,γr ∈ F such
that ur = λru, vr = γrv, r = 1,2. In this situation, the third equality is equivalent to
λ1λ2γ1γ2 � 0, what is easily seen. The proof is finished. �

4. More generalization of the Cauchy-Schwarz inequality

Given vectors x1,x2, . . . ,xp ∈V , the matrix G(x1,x2, . . . ,xp) :=
[〈

xi,x j
〉]

i, j=1,...,p
is called the Gram matrix while its determinant Γ(x1,x2, . . . ,xp) is called Gram deter-
minant of the vectors x1,x2, . . . ,xp .
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Gram’s inequality reads

0 � Γ(x1,x2, . . . ,xp), x1,x2, . . . ,xp ∈V

with equality if and only if the vectors x1,x2, . . . ,xp are linearly dependent, see [13,
Chap. XX].

On the other hand

Γ(x1,x2, . . . ,xp) � ‖x1‖2 · . . . · ‖xp‖2, x1,x2, . . . ,xp ∈V.

The equality is met if and only if the vectors x1,x2, . . . ,xp are mutually orthogonal.
This is Hadamard’s inequality, see [13, Chap. XX],[10].

Let v1,v2, . . . ,vn ∈V be a system of linearly independent vectors. The orthogonal
projection P onto the subspace L = span{v1,v2, . . . ,vn} takes the form

Px =
n

∑
r=1

Γr(x,v1,v2, . . . ,vn)
Γ(v1,v2, . . . ,vn)

vr, x ∈V,

where Γr(x,v1,v2, . . . ,vn) is the determinant obtained from Γ(v1,v2, . . . ,vn) replacing
the r -th row by (〈x,v1〉 , 〈x,v2〉 , . . . , 〈x,vn〉) . It is well known that dist(x,L) , the
distance x to the subspace L , can be expressed as follows

dist(x,L) = ‖x−Px‖=
√
‖x‖2−‖Px‖2 =

√
Γ(x,v1,v2, . . . ,vn)/Γ(v1,v2, . . . ,vn).

Hence ‖Px‖ =
√
‖x‖2−Γ(x,v1,v2, . . . ,vn)/Γ(v1,v2, . . . ,vn) . The above yields the fol-

lowing versions of inequalities (17) and (18).

COROLLARY 4. For linearly independent vectors v1,v2, . . . ,vn ∈ V , any vectors
x,y ∈V and p � 2 , the following generalizations of C-S inequality hold

‖x‖p‖y‖p−|〈x,y〉 |p �
∣∣∣∣det

[‖x‖ (‖x‖p− (‖x‖2−Γx/Γ)p/2)1/p

‖y‖ (‖y‖p− (‖y‖2−Γy/Γ)p/2)1/p

]∣∣∣∣
p

,

‖x‖2‖y‖2−|〈x,y〉 |2 �
∣∣∣∣∣det

[(‖x‖2−Γx/Γ
)1/p (Γx/Γ)1/p(‖y‖2−Γy/Γ
)1/p (Γy/Γ)1/p

]∣∣∣∣∣
p

,

where Γ := Γ(v1,v2, . . . ,vn) and Γz := Γ(z,v1,v2, . . . ,vn), z ∈V.

RE F ER EN C ES

[1] J. M. ALDAZ, S. BARZA, M. FUJII, M. S. MOSLEHIAN, Advanced in operator Cauchy-Schwarz
inequalities and their reverses, Ann. Funct. Anal. 6 (2015) (3), 275–295.

[2] F. DEUTSCH, The angle between subspaces of a Hilbert space, Approximation Theory, Wavelets and
Applications, Singh S (ed.). Kluwer: Dordrecht, (1995) 107–130.

[3] J. DIXMIER, Étude sur less variétés et les opératerus de Julia avec quelques applications, Bull. Soc.
Math. France 77 (1949), 11–101.



INEQUALITIES FOR ANGLES AND CAUCHY-SCHWARZ INEQUALITY 495

[4] S. S. DRAGOMIR, A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities, J. Inequal.
Pure Appl. Math. 4 (3) (2003), Article 63.

[5] S. S. DRAGOMIR, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product
Spaces, Nova Science Publishers, New York 2005.

[6] S. S. DRAGOMIR, Advances in Inequalities of the Schwarz, Triangle and Heisenberg Type in Inner
Product Spaces, Nova Science Publishers, New York 2007.

[7] S. S. DRAGOMIR, Operator refinements of Schwarz inequality in inner product spaces, doi:
10.1080/03081087.2018.1472204, Linear Multilinear Algebra (2018).

[8] S. S. DRAGOMIR, Improving Schwarz inequality in inner product spaces, Linear Multilinear Algebra
67 (2) (2019,) 337–347.

[9] K. FRIEDRICHS,On certain inequalities and characteristic value problems for analytic functions and
for functions of two variables, Trans. Amer. Math. Soc. 41 (1937), 321–364.

[10] T. FURUTA, An elementary proof of Hadamard theorem, Math. Vesnik 8 (23) (1971), 267–269.
[11] M. KREIN, Angular localization of the spectrum of a multiplicative integral in a Hilbert space, Funct.

Anal. Appl. 3 (1969), 89–90.
[12] M. LIN, Remarks on Krein’s inequality, Math. Intell. 34 (1) (2012), 3–4.
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