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Abstract. Denote by Vn(λ) the set of all weighted polynomials of the form f (x) = e−λx p(x)
(λ > 0) , where p is an algebraic polynomial of degree n which has n simple real zeros. Given
f ∈ Vn(λ) , let x1 < · · · < xn and t1 < · · · < tn be the zeros of f and f ′ , correspondingly. Set
hk := xk+1 − xk , k = 1, . . . ,n−1 . We prove sharp estimates of the forms

xk + ckhk � tk � xk+1 −dkhk, k = 1, . . . ,n−1,

and
xn + cnhn−1 � tn � xn +dnhn−1,

with explicit expressions for the coefficients, depending on λ . Known estimates of the same
type for algebraic polynomials can be obtained by letting λ → 0 .

1. Introduction and statement of the results

Denote by πn the set of all real algebraic polynomials of degree at most n . Let
Pn be the subset of πn which consists of the oscillating polynomials, i.e. polynomials
from πn having n simple real zeros. Various extremal problems, concerning estimation
of a derivative of a function from a given class of oscillating functions were studied in
the papers [1, 5, 7, 3, 4, 8, 10].

In 1918, Sz. Nagy established the following remarkable refinement of Rolle’s
theorem for the class Pn (see [11, Corollary 6.5.6]).

Theorem A. Let f ∈ Pn has zeros x1 < · · · < xn and let t1 < · · · < tn−1 be the zeros
of f ′ . Then we have

xk +
xk+1− xk

n− k+1
� tk � xk+1− xk+1− xk

k+1
, k = 1, . . . ,n−1. (1)

Another important property of the class Pn is given by the well known Lemma
of V. Markov ([12, Lemma 2.7.1]):
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Theorem B. Suppose that the polynomials p and q from Pn have zeros x1 < · · · < xn

and y1 < · · · < yn , respectively, which satisfy the interlacing conditions

x1 � y1 � · · · � xn � yn.

Then the zeros t1 < · · ·< tn−1 of p′(x) and the zeros τ1 < · · · < τn−1 of q′(x) interlace
too, that is

t1 � τ1 � · · · � tn−1 � τn−1. (2)

Moreover, the inequalities (2) are strict, unless xi = yi, i = 1, . . . ,n.

In [9] we extended Theorem B for some Chebyshev systems on infinite intervals,
including exponential polynomials, Müntz polynomials and polynomials with Laguerre
weight.

A natural problem is to prove results of the type of Theorem A for other systems
of functions. Note that the proof of Theorem A relies on some specific properties of
algebraic polynomials and cannot be modified for systems different from Pn .

On the other hand, Markov’s interlacing property is equivalent to the fact that each
zero of the derivative of a p ∈ Pn is a strictly increasing function of each zero of p ,
see [2]. The last observation can be used to give another proof of Theorem A.

In the present paper we shall apply this approach to prove explicit estimates for
the critical points of oscillating polynomials with Laguerre weight. Let us denote

Vn(λ ) :=
{

e−λ xp(x) : p ∈ Pn

}
, λ �= 0.

Our main result is the following generalization of Theorem A.

THEOREM 1. Let f ∈ Vn(λ ) , λ > 0 has zeros x1 < · · · < xn and let t1 < · · · < tn
be the zeros of f ′ . Then the following estimates hold true:

xk + ckhk � tk � xk+1 −dkhk, k = 1, . . . ,n−1, (3)

where

hk = xk+1− xk,

ck =
2

n− k+1+ λhk+
√

h2
kλ 2 +2λ (n− k−1)hk+(n− k+1)2

,

dk =
2√

(k+1−λhk)2 +4λhk + k+1−λhk
,

and

xn + cnhn−1 � tn � xn +dnhn−1, (4)
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where

cn =
2√

h2
n−1λ 2 +4+ λhn−1−2

,

dn =
2√

(n−λhn−1)2 +4λhn−1 + λhn−1−n
.

In addition, the inequalities (3) and (4) are sharp.

REMARK 1. The estimates (1) follow from (3) by letting λ → 0.

It is of interest to have simpler, rational estimates for the critical points of a poly-
nomial from Vn(λ ) . We give such estimates in the following

COROLLARY 1. Let f ∈ Vn(λ ) , λ > 0 . In the notations of Theorem 1 we have:

xk + c′khk � tk � xk+1 −d′
khk, k = 1, . . . ,n−1, (5)

where

c′k =
1

λhk +n− k+1
, d′

k =
λhk + k+1

λhk +(k+1)2 ,

and

xn +
1
λ

� tn � xn +
n
λ

. (6)

COROLLARY 2. Let Dλ [p] = p′ −λ p, λ > 0 . If p ∈ πn has zeros x1 < · · · < xn ,
then the zeros t1 < · · · < tn of Dλ [p] satisfy the estimates (3) and (4) from Theorem 1.

2. Proofs of the results

Let us set X = {(x1, . . . ,xn) : x1 < · · · < xn} . The following lemma is a particular
case of [9, Lemma 2]. For reader’s convenience we shall give here a direct proof.

LEMMA 1. Let f ∈ Vn(λ ) , λ > 0 has zeros x = (x1, . . . ,xn) ∈ X . Denote by
ti(x) ∈ (xi,xi+1) , i = 1, . . . ,n (xn+1 := +∞) the zeros of f ′ . Then for all i ∈ {1, . . . ,n} ,
ti(x) is a continuously differentiable function on X , which is strictly increasing with
respect to x j , j = 1, . . . ,n.

Proof. First we shall show that the functions ti(x) , i = 1, . . . ,n are differentiable
for x ∈ X . Let us fix the index i . We consider the function

F(x;t) := f ′(t) = e−λ t [ω ′(x;t)−λ ω(x; t)],

where ω(x; t) := (t − x0) · · · (t− xn) .
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We fix a point x0 = (x0
1, . . . ,x

0
n) ∈ X and let t0 := ti(x0) . Clearly, F is a continu-

ously differentiable function in a neighborhood of (x0; t0) . Also,

∂F
∂ t

(x0;t0) = f ′′(t0) = −λe−λ t0 p(t0)+ e−λ t0 p′(t0),

where p(t) := ω ′(x; t)−λ ω(x;t) ∈ Pn has zeros t1(x) < · · · < tn(x) . Since p(t0) = 0
and p′(t0) �= 0 we obtain ∂F

∂ t (x0;t0) �= 0.
By the implicit function theorem, there exists a neighborhood U of x0 such that

the function ti(x) is continuously differentiable in U .

Next we shall compute ∂ ti(x)
∂x j

for x ∈ X . If f (t) = ce−λ tω(x; t) ∈ Vn(λ ) , we have

f ′(t)
f (t)

= −λ +
ω ′(x;t)
ω(x;t)

.

Using f ′(ti(x)) = 0 we get

−λ +
n

∑
k=1

1
ti(x)− xk

= 0.

Differentiating the last identity with respect to x j we obtain

∂ ti(x)
∂x j

n

∑
k=1

1
(ti(x)− xk)2 =

1
(ti(x)− x j)2 ,

which implies ∂ ti(x)
∂x j

> 0. Lemma 1 is proved. �

Our next goal is to extend Lemma 1 to the case of multiple zeros. To this end,
we need the continuity of the zeros of the derivative with respect to the zeros of the
weighted polynomial, having only real zeros. We set X = {(x1, . . . ,xn) : x1 � · · ·� xn} .

LEMMA 2. Given x ∈ X and λ > 0 , let f (x;t) = e−λ t(t − x1) · · · (t − xn) and
t1(x) � · · · � tn(x) be the zeros of f ′(x; ·) . Then for every i = 1, . . . ,n, ti(x) is a con-
tinuous function in X .

Proof. It follows from f ′(x;t) = e−λ t[ω ′(x;t)−λ ω(x; t)] (see the proof of Lemma
1) that ti(x) , i = 1, . . . ,n are the zeros of p(x;t) := ω ′(x; t)− λ ω(x; t) ∈ πn . By the
formulas of Viet, the coefficients of p are continuous functions of x . In addition, the
leading coefficient of p is equal to −λ and does not depend on x . Now the assertion
follows from a well known result for algebraic polynomials, see e.g. [6, Theorem (1,4)].
Lemma 2 is proved. �

LEMMA 3. Let f and g be two polynomials from Vn(λ ) , λ > 0 , with zeros x and
y, respectively, which satisfy the conditions: x1 � · · · � xn , y1 � · · · � yn , and xi � yi ,
for i = 1, . . . ,n. Let t1(x) � · · · � tn(x) and t1(y) � · · · � tn(y) be the zeros of f ′ and
g′ . Then we have ti(x) � ti(y) , for i = 1, . . . ,n.
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Proof. We define the vectors xε := (x1−nε, . . . ,xn−ε) and yε := (y1 +ε, . . . ,yn +
nε) , where ε is a positive number. Then xε

1 < · · ·< xε
n , yε

1 < · · · < yε
n , and xε

i < yε
i , for

i = 1, . . . ,n .
Let zε(s) := (1− s)xε + syε , s ∈ [0,1] . By Lemma 1, ti(zε(s)) , i = 1, . . . ,n are

strictly increasing functions of s . This implies

ti(xε) < ti(yε), for i = 1, . . . ,n. (7)

The proof is completed by letting ε to 0 in (7) and using Lemma 2. �

Proof of Theorem 1.
If n = 2 the zeros t1 < t2 of f ′ can be computed in explicit form and it can be

checked that (3) and (4) are satisfied as equalities. Thus, we can suppose that n � 3.
We begin with the proof of the upper bound in (3). Let us consider first the general

case k ∈ {2, . . . ,n−3} for n � 5. Without loss of generality we can assume that f (x) =
e−λ x(x− x1) · · · (x− xn) . We define the auxiliary polynomial

gk(y;x) = e−λ x(x− y1) · · · (x− yn),

where y1 < · · · < yn satisfy the conditions:

yi ↗ xk, i = 1, . . . ,k−1, yi ∈ [xi,xk),
yi = xi, i = k,k+1, (8)

yi ↗ xn, i = k+2, . . . ,n−1, yi ∈ [xi,xn),
yn = xn.

(As usual, notation x ↗ c means that x is strictly increasing and tends to c .)
We denote the zeros of g′k(y;x) by τ1,k(y) < · · · < τn,k(y) . According to Lemma 1

τi,k(y) , i = 1, . . . ,n are strictly increasing when y → z := ((xk,k),xk+1,(xn,n− k−1))
as in (8). Let ti,k , i = 1, . . . ,n be the zeros of the derivative of

gk(x) := gk(z;x) = e−λ x(x− xk)k(x− xk+1)(x− xn)n−k−1.

By Lemma 2, τi,k(y) → ti,k , i = 1, . . . ,n . In particular, it follows that

tk = τk,k(x) < tk,k. (9)

Furthermore, we introduce the polynomials

gk(b;x) := e−λ x(x− xk)k(x− xk+1)(x−b)n−k−1, for b � xn.

Clearly, gk(xn;x) = gk(x) . Lemma 3 implies that the zeros t1,k(b) � · · · � tn,k(b) of
g′k(b;x) are increasing as b↗+∞ . By Rolle’s theorem, tk,k(b)∈ (xk,xk+1) hence there
exists lk := limb→+∞ tk,k(b) . Consequently,

tk,k = tk,k(xn) � lk. (10)
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It follows from (9) and (10) that

tk < lk. (11)

Our next goal is to find lk . We have

g′k(b;x) = gk(b;x)hk(b;x),

where

hk(b;x) := −λ +
k

x− xk
+

1
x− xk+1

+
n− k−1

x−b
.

The definition of gk(b;x) and the theorem of Rolle imply that hk(b;x) has exactly
three real zeros: tk,k(b) ∈ (xk,xk+1) , tk+1,k(b) ∈ (xk+1,b) , and tn,k(b) ∈ (b,+∞) .

Letting b → +∞ in the equality

hk(b;tk,k(b)) = 0, (12)

we get

−λ +
k

lk − xk
+

1
lk − xk+1

= 0, (13)

where we have used that lk is different from xk and xk+1 . Indeed, if lk = xk then
k

tk,k(b)−xk
would tend to +∞ , which contradicts (12). The proof of lk �= xk+1 is similar.

In fact, the location of tk,k(b) gives

xk < lk < xk+1. (14)

Now, (13) is equivalent to p(lk) = 0, where

p(x) = −λ (x− xk)(x− xk+1)+ k(x− xk+1)+ x− xk.

Since the leading coefficient of p is negative, p(xk) < 0, and p(xk+1) > 0, we conclude
by (14) that lk is equal to the smaller root of the equation p(x) = 0, i.e.

lk =
k+1+ λ (xk + xk+1)−

√
D

2λ
,

where D = [k+1+ λ (xk + xk+1)]2 −4λ (xk + kxk+1 + λxkxk+1) . It can be verified that
lk = xk+1 −dkhk , which in view of (10) completes the proof of the upper bound in (3)
for k ∈ {2, . . . ,n−3} .

Let us consider the case k = 1. We keep the introduced notations. Then the first
row in (8) is missing. If n � 4 then at least y3 is strictly increasing from x3 to xn ,
which ensures the validity of (9). The remaining part of the proof needs no changes. If
n = 3 conditions (8) reduce to yi = xi for i = 1,2,3, hence t1 = t1,1 . Now (10) holds
as an strict inequality since Lemma 1 can be applied instead of Lemma 3 and the proof
can be completed as in the general case.
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The case k = n−2 is similar to that for k = 1, now we have

yi ↗ xn−2, i = 1, . . . ,n−3, yi ∈ [xi,xn−2),
yi = xi, i = n−2, . . . ,n.

Finally, let k = n−1. The conditions (8) have to be replaced with

yi ↗ xn−1, i = 1, . . . ,n−2, yi ∈ [xi,xn−1), (15)

yi = xi, i = n−1,n.

Using Lemmas 1 and 2 we get tn−1 < tn−1,n−1 , where tn−1,n−1 is the (n−1)-st zero of
the derivative of

gn−1(x) = e−λ x(x− xn−1)n−1(x− xn). (16)

It is seen that tn−1,n−1 is the smaller root of the quadratic equation

−λ (x− xn−1)(x− xn)+ (n−1)(x− xn)+ x− xn−1 = 0. (17)

Then tn−1,n−1 can be found explicitly, which gives the desired result.

Now we shall prove the lower bound in (3). First we suppose that k∈ {3, . . . ,n−2}
for n � 5. We consider the polynomial gk(y;x) = e−λ x(x−y1) · · · (x−yn), where y∈X
satisfy the conditions:

y1 = x1,

yi ↘ x1, i = 2, . . . ,k−1, yi ∈ (x1,xi],
yi = xi, i = k,k+1, (18)

yi ↘ xk+1, i = k+2, . . . ,n, yi ∈ (xk+1,xi].

It follows from Lemma 1 that the zeros τ1,k(y) < · · · < τn,k(y) of g′k(y;x) are strictly
decreasing when y → z := ((x1,k − 1),xk,(xk+1,n− k)) as in (18). By Lemma 2,
τi,k(y) → ti,k , i = 1, . . . ,n , where {ti,k}n

1 are the zeros of the derivative of

g
k
(x) := gk(z;x) = e−λ x(x− x1)k−1(x− xk)(x− xk+1)n−k.

Since τk,k(y) strictly decreases from tk to tk,k , we conclude that

tk,k < τk,k(x) = tk. (19)

For a � x1 we define the polynomials

g
k
(a;x) := e−λ x(x−a)k−1(x− xk)(x− xk+1)n−k,

and let t1,k(a) � · · · � tn,k(a) be the zeros of g′
k
(a;x) . By Lemma 3 each of {ti,k(a)}n

1
decreases as a ↘ −∞ . The theorem of Rolle implies tk,k(a) ∈ (xk,xk+1) and there
exists lk := lima→−∞ tk,k(a) . Therefore,

lk � tk,k(x1) = tk,k, (20)
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which gives

lk < tk. (21)

We have

g′
k
(a;x) = g

k
(a;x)

[
−λ +

k−1
x−a

+
1

x− xk
+

n− k
x− xk+1

]
=: g

k
(a;x)hk(a;x). (22)

It is seen that hk(a;x) has exactly three real zeros: tk−1,k(a)∈ (a,xk) , tk,k(a)∈ (xk,xk+1) ,
and tn,k(a) ∈ (xk+1,+∞) . As in the proof of the upper bound, we obtain that xk < lk <
xk+1 and lk is a solution of the equation hk(−∞;x) = 0, which is equivalent to

−λ (x− xk)(x− xk+1)+ x− xk+1 +(n− k)(x− xk) = 0.

In fact, lk is the smaller root of the above equation, i.e.

lk =
n+1− k+ λ (xk+ xk+1)−

√
D

2λ
,

where D := [n + 1− k + λ (xk + xk+1)]2 − 4λ [(n− k)xk + xk+1 + λxkxk+1]. It can be
shown, that the last expression is equal to xk + ckhk , which completes the proof of the
lower bound in (3) for 3 � k � n−2.

Next we consider the case k = 1. Then the conditions (18) are replaced with

yi = xi, i = 1,2,

yi ↘ x2, i = 3, . . . ,n, yi ∈ (x2,xi].

Since at least y3 strictly decreases from x3 to x2 , by Lemmas 1 and 2 we get t1,1 < t1 .

Now, t1,1 is the smallest zero of the derivative of g
1
(x)= e−λ x(x−x1)(x−x2)n−1 which

can be computed explicitly and is equal to x1 + c1h1 .
Suppose now that k = 2. The second row in (18) is missing. This leads to t2,2 < t2 ,

provided n � 4. If n = 3 then y1 = x1 , y2 = x2 , and y3 = x3 hence t2,2 = t2 . Then,
studying the limit behavior of g′

2
(a;x) as a →−∞ , gives l2 � t2,2 . Note that if n = 3

the last inequality is strict due to the applicability of Lemma 1. As a consequence,
l2 < t2 and l2 is found as in the general case.

The case k = n−1 is similar to the previous one, the conditions (18) are substituted
with

y1 = x1,

yi ↘ x1, i = 2, . . . ,n−2, yi ∈ (x1,xi], (23)

yi = xi, i = n−1,n.

The proof of (3) is completed.
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Proof of (4). Recall that we can assume n � 3. We consider the polynomial
gn−1(y;x) = e−λ x(x− y1) · · · (x− yn) , where y ∈ X satisfies (15). Then the reasonings
used in the proof of the upper bound in (3) show that τn,n−1(y) ↗ tn,n−1 , which is the
largest zero of the g′n−1 , where gn−1 is given by (16). Consequently tn,n−1 is the largest
root of the equation (17), which leads to the upper estimate in (4).

Next we shall prove the lower estimate in (4). Now we take the polynomials
gn−1(y;x) with y as in (23). Let n � 4. Then τn,n−1(y) ↘ tn,n−1 , which is the largest

zero of the derivative of g
n−1

(x) = e−λ x(x− x1)n−2(x− xn−1)(x− xn) . This implies
tn,n−1 < tn . Next we introduce the polynomials

g
n−1

(a;x) := e−λ x(x−a)n−2(x− xn−1)(x− xn), (24)

for a � x1 and let t1,n−1(a) � · · · � tn,n−1(a) be the zeros of g′
n−1

(a;x) . The largest
zero tn,n−1(a) ∈ (xn,+∞) is decreasing as a ↘−∞ , hence there exists the limit ln :=
lima→−∞ tn,n−1(a) and ln � tn,n−1(x1) = tn,n−1 . Thus ln < tn . The same conclusion
holds true also for n = 3, since by Lemma 1 we have l3 < t3,2 = t3 .

It remains to find ln . As in the proof of the lower bound in (3) for k = n−1 (see
(22)), ln is a solution of the equation

−λ (x− xn−1)(x− xn)+2x− xn−1− xn = 0.

Since ln > xn , it is the largest root of the above equation. It can be verified that ln =
xn + cnhn−1 , which completes the proof of (4).

It remains to explain the sharpness of the estimates (3) and (4). If n = 2 both (3)
and (4) are fulfilled as equalities. Let n � 3. It follows from the the proof of (3) that the
upper bound in (3) is attained asymptotically for the polynomials gk(b;x) = e−λ x(x−
xk)k(x− xk+1)(x− b)n−k−1, as b → +∞ and it is equal to lk = xk+1 − dkhk . Note
also that gk(b; ·) can be approximated arbitrarily closely by polynomials from Vn(λ ) .
Similarly, the polynomials gk(a; ·) (a → −∞) can be used to prove the sharpness of
the lower bound in (3).

Furthermore, the upper bound in (4) is attained for gn−1 given by (16). The poly-
nomials (24) provide an example that the lower bound in (4) cannot be improved.

The proof of Theorem 1 is completed. �

Proof of Corollary 1. In order to prove (5) it is sufficient to show that c′k � ck

and d′
k � dk , for k = 1, . . . ,n−1. Let us set t := λhk . Then the inequality c′k � ck is

equivalent to √
t2 +2(n− k−1)t+(n− k+1)2 � t +n− k+1. (25)

Squaring both sides of (25) we obtain 4t � 0, which is true since t > 0.
Similarly, d′

k � dk is equivalent to

(t + k+1)
√

(k+1− t)2 +4t � t2 +2t +(k+1)2,

which is reduced to the obvious inequality 4k2t2 � 0.
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Next we shall prove (6). By (4), the right inequality in (6) would follow from
dnhn−1 � n

λ , which is equivalent to

2t√
(n− t)2 +4t + t−n

� n,

where t := λhn−1 > 0. The denominator is positive hence the above inequality is equiv-
alent to

2t +n(n− t) � n
√

(n− t)2 +4t. (26)

This is satisfied if 2t + n(n− t) � 0. Otherwise, squaring both sides of (26) we get
4(n−1)t2 � 0, which is true.

For the left inequality in (6) it is sufficient to prove that 1
λ � cnhn−1 . Replacing

the explicit value of cn and noticing that
√

h2
n−1λ 2 +4+λhn−1−2 > 0 for λ > 0, we

get the equivalent inequality 2 + λhn−1 �
√

h2
n−1λ 2 +4, which is fulfilled for every

λ > 0. Corollary 1 is proved. �

Proof of Corollary 2. Let us consider the weighted polynomial f (x) := e−λ xp(x) ,
which belongs to Vn(λ ) . We have Dλ [p](x) = eλ x f ′(x) hence the zeros of Dλ [p] and
f ′ coincide. Now Corollary 2 is obtained by applying Theorem 1 to f . �
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