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FRACTIONAL DIFFERENTIAL OPERATORS IN

VECTOR–VALUED SPACES AND APPLICATIONS

VELI SHAKHMUROV

(Communicated by M. Bohner)

Abstract. Fractional differential operator equations with parameter are studied. Uniform Lp -
separability properties and sharp resolvent estimates are obtained for elliptic equations in terms
of fractional derivatives. Moreover, maximal regularity properties of the fractıonal abstract
parabolic equation are established. Particularly, it is proven that the operators generated by
these equations are positive and also are generators of analytic semigroups. As an application,
the anisotropic parameter dependent fractional differential equations and the system of fractional
differential equations are studied.

1. Introduction, notations and background

In the last years, the maximal regularity properties of boundary value problems
(BVPs) for differential-operator equations (DOEs) have found many applications in
PDE and pseudo DE with applications in physics (see [1, 5, 8-15] and the references
therein). Pseudo-differential equations (PsDE) were treated e.g. in [17-18] . DOEs have
found many applications in fractıonal differential equations (FDEs), pseudo-differential
equations (PsDE) and PDEs (see e.g. [1−3], [5] , [11] , [12] , [16−19], [24]). The regu-
larity properties of PsDE have been studied extensively by many researchers (see e.g.
[6, 10] , [21-22] and the references therein). The boundedness of PsDEs in Sobolev
spaces have been treated e.g. in [10] , [14] , [22] . Moreover, the smoothness of PsDE
with bounded operator coefficients have been explored e.g. in [8] , [15] . In contrast
to [8] , [15] the FDE considered here, contain unbounded operators and parameters. In
particular, the main objective of the present paper is to discuss the uniform Lp (Rn;E)-
maximal regularity of the elliptic fractional differential operator equation (FDOE) with
parameters

Pε (D)u+Au+ ∑
|α |<m

ε (α)Aα (x)Dαu+ λu = f (x) , x ∈ R
n, (1.1)

where Pε (D) is a fractıonal differential operator, A , Aα (x) are linear operators in a
Banach space E for αi ∈ [0,∞) and α = (α1,α2, ...,αn) . Here, Dα = Dα1

1 Dα2
2 , .,Dαn

n
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are the Liouville derivatives, m is a positive number, εk are positive, λ is a complex

parameter, ε = (ε1,ε2, ...,εn) and ε (α) =
n

∏
k=1

ε
αk
m

k .

Here, Lp (Ω;E) denotes the space of strongly measurable E -valued functions that
are defined on the measurable subset Ω ⊂ Rn with the norm given by

‖ f‖Lp(Ω;E) =

⎛
⎝∫

Ω

‖ f (x)‖p
E dx

⎞
⎠

1
p

, 1 � p < ∞ ,

‖ f‖L∞ = esssup
x∈Ω

‖ f (x)‖E .

We prove that problem (1.1) has a maximal regular unique solution and the following
uniform coercive estimate holds

∑
|α |�m

ε (α) |λ |1− |α|
m ‖Dαu‖Lp(Rn;E) +‖Au‖Lp(Rn;E) � C‖ f‖Lp(Rn;E) (1.2)

for f ∈ Lp (Rn;E) , λ ∈ Sϕ , where Sϕ is a set of complex numbers that is related with
the spectrum of the operator A. The estimate (1.2) implies that the operator Oε gener-
ated by (1.1) has a bounded inverse from Lp (Rn;E) into the space Hm

p (Rn;E (A) ,E) ,
which will be defined subsequently. Particularly, from the estimate (1.2) , we obtain
that the operator Oε is uniformly positive in Lp (Rn;E) . By using this property we
prove the uniform well posedness of the Cauchy problem for the parabolic FDOE with
parameter

∂u
∂ t

+Pε (D)u+Au = f (t,x) , u(0,x) = 0, (1.3)

in E -valued mixed spaces Lp for p =(p, p1) . In other words, we show that problem
(1.3) has a unique solution u ∈W 1,m

p
(
R

n+1
+ ;E (A) ,E

)
for f ∈ Lp

(
R

n+1
+ ;E

)
satisfying

the following uniform coercive estimate∥∥∥∥∂u
∂ t

∥∥∥∥
Lp(R

n+1
+ ;E)

+‖Pε (D)u‖Lp(R
n+1
+ ;E) +‖Au‖Lp(R

n+1
+ ;E)

� M ‖ f‖Lp(R
n+1
+ ;E) . (1.4)

Note that, the constants C , M in (1.2) and (1.4) are independent of parameters. As
an application, in this paper the following are established: (a) maximal regularity prop-
erties of the anisotropic elliptic FDOE in mixed Lp , p =(p1, p) spaces; (b) coercive
properties of the system of FDOEs of infinite many order in Lp spaces.

The Banach space E is called an UMD-space if the Hilbert operator

(H f )(x) = lim
ε→0

∫
|x−y|>ε

f (y)
x− y

dy
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is bounded in Lp (R;E) , p ∈ (1,∞) (see. e.g [4]). UMD spaces include e.g. Lp , lp
and Lorentz spaces Lpq for p , q ∈ (1,∞) .

Let C denote the set of complex numbers and

Sϕ = {λ ; λ ∈ C, |argλ | � ϕ}∪{0} , 0 � ϕ < π .

A linear operator A is said to be ϕ -positive (or positive) in a Banach space E if
D(A) is dense on E and ∥∥∥(A+ λ I)−1

∥∥∥
B(E)

� M (1+ |λ |)−1

for any λ ∈ Sϕ , where ϕ ∈ [0 , π) , I is the identity operator in E, B(E) is the space
of bounded linear operators in E. Sometimes A + λ I will be written A + λ and will
be denoted by Aλ . It is known [20, §1.15.1] that the powers Aθ , θ ∈ (−∞,∞) for
a positive operator A exist .The operator A(h) , h ∈ Q ⊂ C is said to be ϕ -positive
(or positive) in E uniformly with respect to h ∈ Q if D(A(h)) is independent of h ,

D(A(h)) is dense in E and
∥∥∥(A(h)+ λ )−1

∥∥∥� M (1+ |λ |)−1 for all λ ∈ Sϕ , 0 � ϕ <

π , where M does not depend on h and λ . Let E
(
Aθ) denote the space D

(
Aθ) with

the norm

‖u‖E(Aθ) =
(
‖u‖p +

∥∥∥Aθ u
∥∥∥p) 1

p
, 1 � p < ∞, 0 < θ < ∞.

A set W ⊂ B(E1,E2) is called R-bounded (see e.g. [23]) if there is a constant
C > 0 such that for all T1,T2, ...,Tm ∈W and u1,u2, ...,um ∈ E1 , m ∈ N,

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)Tju j

∥∥∥∥∥
E2

dy � C

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)u j

∥∥∥∥∥
E1

dy,

where
{
r j
}

is an arbitrary sequence of independent symmetric {−1,1}-valued random
variables on [0,1] . The smallest C for which the above estimate holds is called an R-
bound of the collection W and is denoted by R(W ) . A set of operators Gh ⊂ B(E1,E2)
depending on parameter h ∈ Q ⊂ C is called uniformly R-bounded in h if there is a
constant C independent of h ∈ Q such that

∫
Ω

∥∥∥∥∥
m

∑
j=1

r j (y)Tj (h)u j

∥∥∥∥∥
E2

dy � C
∫
Ω

∥∥∥∥∥
m

∑
j=1

r j (y)u j

∥∥∥∥∥
E1

dy

for all T1 (h) ,T2 (h) , ...,Tm (h) ∈ Gh and u1,u2, ...,um ∈ E1, m ∈ N . It implies that
sup
h∈Q

R(Gh) � C.

The operator A is said to be R-positive in a Banach space E if the set
{

λ (A+ λ )−1 :

λ ∈ Sϕ

}
is R-bounded. A positive operator A(h) is said to be uniformly R-positive in

a Banach space E if there exists ϕ ∈ [0, π) such that the set{
λ (A(h)+ λ )−1 : λ ∈ Sϕ

}
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is uniformly R-bounded. Let S (Rn;E) denote the E -valued Schwartz class, i.e., the
space of all E -valued rapidly decreasing smooth functions on Rn equipped with its
usual topology generated by seminorms. For E = C this space will be denoted by S =
S (Rn) . Here, S′ (E) = S′ (Rn;E) denotes the space of linear continuous mappings from
S into E and is called E -valued Schwartz distributions. For any α = (α1,α2, ...,αn) ,
αi ∈ [0,∞) the function (iξ )α will be defined as:

(iξ )α =
{

(iξ1)
α1 , .,(iξn)

αn , ξ1ξ2, .,ξn �= 0
0, ξ1,ξ2, .,ξn = 0,

where
(iξk)

αk = exp [αk (ln |ξk|+ iπ sgn ξk/2)] , k = 1,2, ...,n.

The Liouville derivatives Dαu of an E -valued function u are defined similarly to the
case of scalar functions [13] .

C (Ω;E) and C(m) (Ω;E) will denote the spaces of E -valued bounded uniformly
strongly continuous and m times continuously differentiable functions on Ω , respec-
tively. Let F and F−1 denote the Fourier and inverse Fourier transforms defined as

Fu = (2π)−
n
2

∫
Rn

[exp(x,ξ )]u(x)dx, F−1u = (2π)−
n
2

∫
Rn

[exp−(x,ξ )]u(ξ )dξ ,

where

x = (x1,x2, ...,xn) , ξ = (ξ1,ξ2, ...,ξn) ∈ R
n, (x,ξ ) =

n

∑
k=1

xkξk.

Through this section, the Fourier transformation of a function u will be denoted by û.
It is known that

F (Dα
x u) = (iξ1)

α1 , .,(iξn)
αn û, Dα

ξ (F (u)) = F
[
(−ixn)α1 , .,(−ixn)αn u

]
for all u ∈ S′ (Rn;E) . Let E1 and E2 be two Banach spaces. B(E1,E2) denotes the
space of bounded linear operators from E1 to E2 . A function Ψ ∈C (Rn;B(E1,E2)) is
called a Fourier multiplier from Lp (Rn;E1) to Lp (Rn;E2) if the map

u → Λu = F−1Ψ(ξ )Fu, u ∈ S (Rn;E1)

is well defined and extends to a bounded linear operator

Λ : Lp (Rn;E1) → Lp (Rn;E2) .

The set of all Fourier multipliers from Lp (Rn;E1) to Lp (Rn;E2) will be denoted by
Mp

p (E1,E2) . For E1 = E2 = E it is denoted by Mp
p (E) . Let Φh =

{
Ψh ∈ Mp

p (E1,E2) ,
h∈Q

}
denote a collection of multipliers depending on the parameter h . We say that Wh

is a uniform collection of multipliers if there exists a positive constant M independent
of h ∈ Q such that

∥∥F−1ΨhFu
∥∥

Lp(Rn;E2)
� M‖u‖Lp(Rn;E1)
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for all h ∈ Q and u ∈ S (Rn;E1) .
Let E0 and E be two Banach spaces and E0 be continuously and densely embed-

ded into E . Let s ∈ R and ξ = (ξ1,ξ2, ...,ξn) ∈ Rn . Consider the following Liouville-
Lions space

Hs
p(R

n;E0,E) = {u u ∈ S′ (Rn;E0) , F−1
(
1+ |ξ |2

) s
2
Fu ∈ Lp (Rn;E) ,

‖u‖Hs
p(Rn;E0,E) = ‖u‖Lp(Rn;E0) +

∥∥∥∥F−1
(
1+ |ξ |2

) s
2
Fu

∥∥∥∥
Lp(Rn;E)

< ∞

}
.

Let ε = (ε1,ε2, ...,εn) and εk be positive parameters. We define the following
parameterized norm in Hs

p(R
n;E0,E) ,

‖u‖Hs
p,ε (Rn;E0,E) = ‖u‖Lp(Rn;E0) +

∥∥∥∥∥∥F−1

⎡
⎣1+

(
n

∑
k=1

ε
2
s

k ξ 2
k

) 1
2
⎤
⎦

s

Fu

∥∥∥∥∥∥
Lp(Rn;E)

< ∞.

Sometimes we use one and the same symbol C without distinction in order to
denote positive constants which may differ from each other even in a single context.
When we want to specify the dependence of such a constant on a parameter, say α , we
write Cα .

By using the techniques of [9, Theorem 3.7] and reasoning as in [19, Theorem A0] ,
we obtain the following proposition .

PROPOSITION A0 . Let E1 and E2 be two UMD spaces and

Ψh ∈Cn (Rn\{0} ;B(E1,E2)) .

Suppose there is a positive constant K such that

sup
h∈Q

R
({

|ξ ||β |Dβ Ψh (ξ ) : ξ ∈ R
n\{0} , βi ∈ {0,1}

})
� K,

for

β = (β1,β2, ...,βn) , |β | =
n

∑
k=1

βk.

Then Ψh is a uniform collection of multipliers from Lp (Rn;E1) to Lp (Rn;E2) for
p ∈ (1,∞) .

Proof. Some steps (Lemma 3.1, Proposition 3.2) of proof [9, Theorem 3.7] triv-
ially work for the parameter dependent case. Other steps (Theorem 3.3, Lemma 3.5)
can be easily shown by replacing{

|ξ ||β |Dβ Ψ(ξ ) : ξ ∈ R
n\{0}

}
with

Σh =
{
|ξ ||β |Dβ Ψh (ξ ) : ξ ∈ R

n\{0}
}
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and by using the uniform R-boundedness of the set Σh . However, the parameter
dependent analog of Proposition 3.4 in [9] is not straightforward. Let Mh , Mh,N ∈
Lloc

1 (Rn,B(E1,E2)) be Fourier multipliers from Lp (Rn;E1) to Lp (Rn;E2) . Let Mh,N

converge to Mh in Lloc
1 (Rn,B(E1,E2)) and Th,N = F−1Mh,NF be uniformly bounded.

Then the operator Th = F−1MhF is uniformly bounded, so we obtain the assertion of
Proposition A0.

The embedding theorems in vector valued spaces play a key role in the theory of
DOEs. For estimating lower order derivatives in terms of interpolation spaces we use
following embedding theorems from [17] .

THEOREM A1 . Suppose E is an UMD space, 0 < εk � ε0 < ∞ , 1 < p � q < ∞
and A is an R-positive operator in E . Then for s ∈ (0,∞) with κ = |α|+n

(
1
p − 1

q

)
�

s, 0 � μ � 1−κ the embedding

DαHs
p (Rn;E (A) ,E) ⊂ Lq

(
R

n;E
(
A1−κ−μ))

is continuous and there exists a constant Cμ > 0 , depending only on μ such that

ε (α)‖Dαu‖Lq(Rn;E(A1−κ−μ)) � Cμ

[
hμ ‖u‖Hs

p,ε (Rn;E(A),E) +h−(1−μ) ‖u‖Lp(Rn;E)

]
for all u ∈ Hs

p (Rn;E (A) ,E) and 0 < h � h0 < ∞.

2. FDOE with parameters in Banach spaces

Consider the principal part of the problem (1.1) ,

(Lε + λ )u = Pε (D)u+Au+ λu = f (x) , x ∈ R
n, (2.1)

where Pε (D) is the fractional differential operator defined by

Pε (D)u = F−1Pε (ξ ) û(ξ ) = (2π)−
n
2

∫
Rn

ei(x,ξ )Pε (ξ ) û(ξ )dξ . (2.2)

CONDITION 2.1.Assume Pε (ξ ) ∈ Sm for some positive number m, i.e.,

∣∣∣Dα
ξ Pε (ξ )

∣∣∣� Cα

⎡
⎣1+

(
n

∑
k=1

ε
2

m−|α|
k ξ 2

k

) 1
2
⎤
⎦

m−|α |

for all ξ ∈ Rn, αk > 0, α = (α1,α2, ...,αn) with |α| � m and εk ∈ ( 0, ε0] . Sup-
pose Pε (ξ ) ∈ Sϕ1 for all ξ ∈ R

n, 0 � ϕ1 < π and there is a constant γ > 0 such that

|Pε (ξ )| � γ
n

∑
k=1

εk |ξk|m .

Let
X = Lp (Rn;E) , Y = Hm

p (Rn;E (A) ,E) .

In this section we prove the following:
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THEOREM 2.1. Assume the Condition 2.1 holds. Suppose E is an UMD space,
p ∈ (1,∞) and A is an R-positive operator in E with respect to ϕ ∈ (0 , π ] . Then for
f ∈ X , λ ∈ Sϕ2 , 0 � ϕ1 < π −ϕ2 and ϕ1 +ϕ2 � ϕ there is a unique solution u of the
equation (2.1) belonging to Y and the following coercive uniform estimate holds

∑
|α |�m

ε (α) |λ |1− |α|
m ‖Dαu‖X +‖Au‖X � C‖ f‖X . (2.3)

Proof. By applying the Fourier transform to equation (2.1) we obtain

[Pε (ξ )+A+ λ ]û(ξ ) = f̂ (ξ ) . (2.4)

By construction λ + Pε (ξ ) ∈ Sϕ , for all tk ∈ (0 , t0] , ξ ∈ Rn and the operator
A+λ +Pε (ξ ) is invertible in E . So, from (2.4) we obtain that the solution of equation
(2.1) can be represented in the form

u(x) = F−1 [A+ λ +Pε (ξ )]−1 f̂ . (2.5)

By definition of the positive operator A , the inverse of A−1 is bounded in E . Then the
operator A is a closed linear operator (as an inverse of bounded linear operator A−1 ).
By the differential properties of the Fourier transform and by using (2.5) we have

‖Au‖X =
∥∥∥F−1A [A+ λ +Pε (ξ )]−1 f̂

∥∥∥
X

,

‖Dαu‖X =
∥∥∥F−1ξ α [A+ λ +Pε (ξ )]−1 f̂

∥∥∥
X

,

where X = Lp (Rn;E) . Hence, it suffices to show that operator-functions

σ (ε,λ ,ξ ) = A [A+ λ +Pε (ξ )]−1 ,

σα (ε,λ ,ξ ) = ε (α) |λ |1− |α|
m ξ α [A+ λ +Pε (ξ )]−1

are collections of multipliers in X uniformly with respect to εk ∈ (0, ε0] and λ ∈ Sϕ2 .
By virtue of [5, Lemma 2.3] , for λ ∈ Sϕ1 and ν ∈ Sϕ2 with ϕ1 + ϕ2 < π there is a
positive constant C such that

|λ + ν| � C (|λ |+ |ν|) . (2.6)

By using the positivity properties of operator A , we get that

B(λ ,ε) = [A+ λ +Pε (ξ )]−1

is bounded for all ξ ∈ Rn , λ ∈ Sϕ1 , εk ∈ (0 , ε0] and

‖B(λ ,ε)‖ � C (1+ |λ +Pε (ξ )|)−1 .

By using Condition 2.1 and estimate (2.6) , we obtain that

‖B(λ ,ε)‖ � C (1+ |λ |+ |Pε (ξ )|)−1 � C2

[
1+ |λ |+

n

∑
k=1

εk |ξk|m
]−1

. (2.7)
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Then by resolvent properties of positive operators and uniform estimate (2.7) we obtain

‖σ (ε,λ ,ξ )‖ �
∥∥∥I +(λ +Pε (ξ )) [A+ λ +Pε (ξ )]−1

∥∥∥
� 1+(|λ |+ |Pε (ξ )|)(1+ |λ |+ |Pε (ξ )|)−1 � C3,

where I is an identity operator in E . Moreover, by using the well known inequality

yβ1
1 yβ2

2 , .,yβn
n � C

(
1+

n

∑
k=1

ym
k

)

for |β | � m , yk > 0 and β = (β1,β2, ...,βn) for all u ∈ E , we have

‖σα (ε,λ ,ξ )u‖E � ε (α) |λ |1− |α|
m |ξ α |‖B(λ ,t)u‖E

� |λ |
n

∏
k=1

(
ε

1
m
k |λ | 1

m |ξk|
)αk

‖B(λ ,ε)u‖E

� Cα

(
|λ |+

n

∑
k=1

εk |ξk|m
)
‖B(λ ,ε)u‖E .

In view of estimate (2.7) and by Condition 2.1 we get from the above inequality

‖σα (ε,λ ,ξ )u‖E � Cα ‖u‖E .

So, we obtain that the operator functions σ (ε,λ ,ξ ) and σα (ε,λ ,ξ ) are uniformly
bounded, i.e.,

‖σ (ε,λ ,ξ )‖B(E) � C,‖σα (ε,λ ,ξ )‖B(E) � Cα . (2.8)

Due to R-positivity of A , by (2.8) and by Kahane’s contraction principle [6, Lemma 3.5] ,
we obtain that the set {σ (ε,λ ,ξ ) ; ξ ∈ R

n\{0}} is uniformly R-bounded, i.e.,

sup
ε,λ

R{σ (ε,λ ,ξ ) ; ξ ∈ R
n\{0}} � M0.

In a similar way for β = (β1,β2, ...,βn) , βi ∈ {0,1} , we obtain

R
({

|ξ ||β |Dβ
ξ σ (ε,λ ,ξ ) : ξ ∈ R

n\{0}
})

� M. (2.9)

Consider the following sets

σβ (ε,λ ,ξ ) =
{
|ξ ||β |Dβ

ξ σ (ε,λ ,ξ ) : ξ ∈ R
n\{0}

}
,

σβ
α (ε,λ ,ξ ) =

{
|ξ ||β |Dβ

ξ σα (ε,λ ,ξ ) : ξ ∈ R
n\{0}

}
,

β = (β1,β2, ...,βn) , βi ∈ {0,1} .

In view of the R-positivity properties of operator A , due to Kahane’s contraction, addi-
tion and product properties of the collection of R-bounded operators (see e.g. [7, 23] ),



FRACTIONAL DIFFERENTIAL OPERATORS 529

by (2.9) for all
{

ξ ( j)
}
∈ Rn ,

{
σβ

α

(
ε,λ ,ξ ( j)

)}
, j = 1,2, ...,μ and u1,u2, ...,uμ ∈ E

and independent symmetric {−1,1}-valued random variables r j (y) , μ ∈ N we obtain
the following uniform estimate

∫
Ω

∥∥∥∥∥
μ

∑
j=1

r j (y)σβ
α

(
ε,λ ,ξ ( j)

)
u j

∥∥∥∥∥
E

dy

� C
∫
Ω

∥∥∥∥∥
μ

∑
j=1

σβ
(

ε,λ ,ξ ( j)
)

r j (y)u j

∥∥∥∥∥
E

dy � C
∫
Ω

∥∥∥∥∥
μ

∑
j=1

r j (y)u j

∥∥∥∥∥
E

dy,

i.e.,
R
({

ξ β Dβ
ξ σα (ε,λ ,ξ ) : ξ ∈ R

n\{0}
})

� Mβ .

Hence, we infer that the operator-valued functions σ (ε,λ ,ξ ) and σα (ε,λ ,ξ ) are uni-
form R-bounded multipliers and it’s R-bounds are independent of ε and λ . By virtue
of Preposition A0 , the operator-valued functions σ (ε,λ ,ξ ) and σα (ε,λ ,ξ ) are uni-
form collections of Fourier multipliers in X . So, we obtain that for all f ∈ X there is
a unique solution of equation (2.1) and estimate (2.3) holds .

Let Oε denote the operator in X generated by problem (2.1) for λ = 0, i.e.,

D(Oε) ⊂ Hm
p (Rn;E (A) ,E) , Oεu = Pε (D)u+Au.

Theorem 2.1 and the definition of the space Hm
p (Rn;E (A) ,E) imply the following

result:

RESULT 2.1. Assume all conditions of Theorem 2.1 are satisfied. Then there are
positive constants C1 and C2 so that

C1 ‖Oεu‖X � ‖u‖Hm
p,ε (Rn;E(A),E) � C2 ‖Oεu‖X

for u ∈Y . Indeed, if we put λ = 1 in (2.3) , by Theorem 2.1 we get

∑
|α |�m

ε (α)‖Dαu‖X +‖Au‖X � C‖Oεu‖X (2.10)

for u ∈ Y . Due to the closedness of A and by the differential properties of the Fourier
transform, we have

‖Au‖X =
∥∥F−1Aû

∥∥
X , ‖Dαu‖X =

∥∥F−1ξ α û
∥∥

X .

So, in view of estimate (2.10) and by definition of Y , we obtain

‖u‖Hm
p,ε (Rn;E(A),E) � C2 ‖Oεu‖X .

The first inequality is equivalent to the following estimate∥∥F−1Aû
∥∥

X +
∥∥F−1Pε (ξ ) û

∥∥
X

� C

⎧⎨
⎩
∥∥F−1Aû

∥∥
X +

∥∥∥∥∥∥F−1

⎡
⎣1+

(
n

∑
k=1

ε
2
m
k ξ 2

k

) 1
2
⎤
⎦

m

û

∥∥∥∥∥∥
X

⎫⎬
⎭ .
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So, it suffices to show that the operator functions

A

⎧⎨
⎩A+

⎡
⎣1+

(
n

∑
k=1

ε
2
m
k ξ 2

k

) 1
2
⎤
⎦

m⎫⎬
⎭

−1

, ε (α)ξ α

⎡
⎣1+

(
n

∑
k=1

ε
2
m
k ξ 2

k

) 1
2
⎤
⎦
−m

are uniform Fourier multipliers in X . This fact is proved in a similar way as in the proof
of Theorem 2.1.

From Theorem 2.1, we have:

RESULT 2.2. Assume all conditions of Theorem 2.1 hold. Then, for all λ ∈ Sϕ
the resolvent of operator Oε exists and the following sharp uniform estimate holds

∑
|α |�m

ε (α)
∥∥∥Dα (Oε + λ )−1

∥∥∥
B(X)

+
∥∥∥A(Oε + λ )−1

∥∥∥
B(X)

� C. (2.11)

Indeed, we infer from Theorem 2.1 that the operator Oε +λ has a bounded inverse
from X to Y. So, the solution u of the equation (2.1) can be expressed as u(x) =
(Oε + λ )−1 f for all f ∈ X . Then estimate (2.3) implies the estimate (2.11) .

RESULT 2.3. Theorem 2.1 particularly implies that the operator Oε is positive in
X . Then the operators Oσ

ε are generators of analytic semigroups in X for σ � 1
2 (see

e.g. [20, §1.14.5]) .

Now consider the problem (1.1) . By using Theorem 2.1 and the perturbation the-
ory of linear operators, we have:

THEOREM 2.2. Assume all conditions of Theorem 2.1 are satisfied. Suppose

Aα (x)A
−
(
1− |α|

m −μ
)
∈ L∞ (Rn;B(E)) for μ ∈

(
0,1− |α |

m

)
. Then for f ∈ X , λ ∈ Sϕ2 ,

0 � ϕ2 < π −ϕ1 , ϕ1 + ϕ2 � ϕ and for sufficiently large |λ | there is a unique solution
u of the equation (1.1) belonging to Y and the following coercive uniform estimate
holds

∑
|α |�m

ε (α) |λ |1− |α|
m ‖Dαu‖X +‖Au‖X � C‖ f‖X . (2.12)

Proof. It is clear that Qε = Oε +Lε , where Oε is the operator in X generated by
problem (2.1) for λ = 0 and

Lεu = ∑
|α |<m

ε (α)Aα (x)Dαu for u ∈Y.

In view of the condition on Aα (x) and by Theorem A1 for u ∈ Y we have

Cμ ∑
|α |<m

ε (α)
∥∥∥A1− |α|

m −μDαu
∥∥∥

X
� Cμ

[
hμ ‖u‖Hm

p,ε (Rn;E(A),E) +h−(1−μ)‖u‖X

]
. (2.13)

‖Lεu‖X � ∑
|α |<m

ε (α)‖Aα (x)Dαu‖X .
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Then from estimates (2.12) , (2.13) and for u ∈ Y we obtain

‖Lεu‖X � C
[
hμ ‖Oεu‖X +h−(1−μ) ‖u‖X

]
. (2.14)

Since ‖u‖X = 1
λ ‖(Oε + λ )u+Lεu‖X for λ ∈ Sϕ2 , we get

‖u‖X � 1
|λ | [‖(Oε + λ )u‖X +‖Oεu‖X ]

� 1
|λ | ‖(Oε + λ )u‖X +

1
|λ |

[
∑

|α |<m

ε (α)‖Dαu‖X +‖Au‖X

]
. (2.15)

From estimates (2.13)− (2.15) for u ∈ Y , we obtain

‖Lεu‖X � Chμ ‖(Oε + λ )u‖X +C1 |λ |−1 h−(1−μ) ‖(Oε + λ )u‖X . (2.16)

Then choosing h and λ such that Chμ < 1, C1 |λ |−1 h−(1−μ) < 1 from (2.16) , we
obtain that ∥∥∥Lε (Oε + λ )−1

∥∥∥
B(X)

< 1. (2.17)

From Theorem 2.1 and (2.17) we get that the operator (Qε + λ ) has a bounded inverse
in X . Moreover, it is clear that

(Qε + λ )−1 =
[
I +Lε (Oε + λ )−1

]
(Oε + λ ) , (2.18)

where I is an identity operator in X . Using relation (2.18) , estimates (2.3) , (2.17)
and perturbation theory of linear operators, we obtain that the operator Qε + λ has a
bounded inverse from X into Y and the estimate (2.12) holds.

3. The Cauchy problem for parabolic FDOE with parameter

In this section, we shall consider the following Cauchy problem for the parabolic
FDOE

∂u
∂ t

+Pε (D)u+Au = f (t,x) , u(0,x) = 0, (3.1)

where Pε (D) is the fractional differential operator defined by (2.2) and A is a linear
operator in E , ε = (ε1,ε2, ...,εn) , εk are positive parameters.

By applying Theorem 2.1 we establish the maximal regularity of the problem (3.1)
in E -valued mixed Lp spaces, where p =(p1, p) . Let Oε denote the operator gener-
ated by problem (2.1) . For this aim we need the following result:

THEOREM 3.1. Suppose Condition 2.1 holds, E is an UMD space and operator
A is R-positive in E with 0 � ϕ < π −ϕ1 . Then operator Oε is uniformly R-positive
in Lp (Rn;E) .

Proof. From Result 2.3 we obtain that the operator Oε is positive in X = Lp (Rn;E) .
We have to prove the R-boundedness of the set

σ (ε,λ ,ξ ) =
{

λ (Oε + λ )−1 : λ ∈ Sϕ

}
.
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From the proof of Theorem 2.1, we have

λ (Oε + λ )−1 f = F−1Φ(ε,ξ ,λ ) f̂ , f ∈ X ,

where
Φ(ε,ξ ,λ ) = λ (A+Pε (ξ )+ λ )−1 .

By reasoning as in the proof of Theorem 2.1, we obtain the following uniform estimate

‖Φ(ε,ξ ,λ )‖B(E) � |λ |
∥∥∥(A+Pε (ξ )+ λ )−1

∥∥∥
B(E)

� C.

By definition of R-boundedness, it suffices to show that the operator function Φ(ε,ξ ,λ )
(which depends on variable λ and parameters ξ , ε ) is a multiplier in X uniformly with
respect to ξ and ε. Indeed, by reasoning as in Theorem 2.1 we can easily show that
Φ(ε,ξ ,λ ) is a uniform multiplier in Lp (R;E) . Then, by the definition of a R-bounded
set we have

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y)λ j (Oε + λ j)−1 f j

∥∥∥∥∥
X

dy =
1∫

0

∥∥∥∥∥
m

∑
j=1

r j (y)F−1Φ(ε,ξ ,λ j) f̂ j

∥∥∥∥∥
X

dy

=
1∫

0

∥∥∥∥∥F−1
m

∑
j=1

r j (y)Φ(ε,ξ ,λ j) f̂ j

∥∥∥∥∥
X

dy � C

1∫
0

∥∥∥∥∥
m

∑
j=1

r j (y) f j

∥∥∥∥∥
X

dy

for all ξ ∈ Rn , λ1,λ2, ...,λm ∈ Sϕ , f1, f2, ..., fm ∈ X , m ∈ N , where
{
r j
}

is a sequence
of independent symmetric {−1,1}-valued random variables on [0,1] . Hence, the set
Φ(ε,ξ ,λ ) is uniformly R-bounded.

Let E be a Banach space. For p = (p, p1) , Z = Lp
(
R

n+1
+ ;E

)
will denote the

space of all p-summable E -valued functions with mixed norm, i.e., the space of all
measurable E -valued functions f defined on R

n+1
+ for which

‖ f‖Lp(R
n+1
+ ;E) =

⎛
⎜⎝∫

Rn

⎛
⎝ ∞∫

0

‖ f (t,x)‖p
E dx

⎞
⎠

p1
p

dt

⎞
⎟⎠

1
p1

< ∞.

Let E be a Banach space and A be a positive operator in E . Suppose, l is a pos-
itive integer. Wl

p (0,∞;E (A) ,E) denotes the space of all functions u ∈ Lp (0,∞;E (A))
possessing the generalized derivatives u(l) ∈ Lp (0,∞;E) with the norm

‖u‖Wl
p(0,∞;E(A),E) = ‖Au‖Lp(0,∞;E) +

∥∥∥u(l)
∥∥∥

Lp(0,∞;E)
.

Let m be a positive number. W 1,m
p
(
R

n+1
+ ;E (A) ,E

)
denotes the space of all functions

u ∈ Lp
(
R

n+1
+ ;E (A)

)
possessing the generalized derivative Dtu = ∂u

∂ t ∈ Z with respect
to y and fractional derivatives Dα

x u ∈ Z with respect to x for |α| � m with the norm

‖u‖
W 1,m

p (R
n+1
+ ;E(A),E) = ‖Au‖Z +

∥∥∥∥du
dt

∥∥∥∥
Z
+ ∑

|α |�m

‖Dα
x u‖Z ,
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where u = u(t,x) .
Now, we are ready to state the main result of this section.

THEOREM 3.2. Assume the conditions of Theorem 2.1 hold for ϕ ∈ (π
2 ,π

)
. Then

for f ∈ Z problem (3.1) has a unique solution

u ∈W 1,m
p
(
R

n+1
+ ;E (A) ,E

)
satisfying the following unform coercive estimate∥∥∥∥du

dt

∥∥∥∥
Z
+‖Pε (D)u‖Z +‖Au‖Z � C‖ f‖Z .

Proof. By definition of X = Lp (Rn;E) and mixed space Lp
(
R

n+1
+ ;E

)
, p =(p, p1) ,

we have

‖u‖Lp1 (0,∞;X) =

⎛
⎝ ∞∫

0

‖u(y)‖p1
X dt

⎞
⎠

1
p1

=

⎛
⎝ ∞∫

0

‖u(y)‖p1
Lp(Rn;E) dt

⎞
⎠

1
p1

=

⎛
⎜⎝∫

Rn

⎛
⎝ ∞∫

0

‖u(y,x)‖p
E dt

⎞
⎠

p1
p

dx

⎞
⎟⎠

1
p1

= ‖u‖Z .

Moreover, by definition of the space Wm
p (0,∞;E (A) ,E) and by Result 2.1, we obtain

‖u‖W 1
p1

(0,∞;D(Oε ),X) = ‖Oεu‖Lp(0,∞;X) +
∥∥u′∥∥Lp(0,∞;X)

= ‖Au‖Z +‖Dtu‖Z + ∑
|α |�m

‖Dα
x u‖Z

= ‖u‖
W 1,m

p (R
n+1
+ ;E(A),E). (3.2)

Hence, we deduced from the above equalities that,

Z = Lp
(
R

n+1
+ ;E

)
= Lp1 (0,∞;X) , W 1,m

p
(
R

n+1
+ ;E (A) ,E

)
= W 1

p1
(0,∞;D(Oε) ,X) .

Therefore, the problem (3.1) can be expressed as the following Cauchy problem for
the abstract parabolic equation

du
dt

+Oεu(t) = f (t) , u(0) = 0, t ∈ (0,∞) . (3.3)

By virtue of [1, Theorem 4.5.2] , the condition E ∈ UMD implies X ∈ UMD
for p ∈ (1,∞) . Then due to the R-positivity of Oε and by virtue of [23, Theo-
rem 4.2], we obtain that for f ∈ Lp1 (0,∞;X) equation (3.3) has a unique solution
u ∈W 1

p1
(0,∞;D(Oε) ,X) satisfying the following uniform estimate∥∥∥∥du

dt

∥∥∥∥
Lp1 (0,∞;X)

+‖Oεu‖Lp1 (0,∞;X) � C‖ f‖Lp1 (0,∞;X) .
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From the Theorem 2.1, relation (3.2) and from the above estimate we get the
assertion .

4. BVP for anisotropic FDE

In this section, the maximal regularity properties of the anisotropic FDE is studied.
Let Ω̃ = Ω×Rn , where Ω ⊂ Rμ is an open connected set with compact C2l -

boundary ∂Ω . Consider the BVP for the FDE

Pε (D)u+ ∑
|α |�2l

(
bαDα

y + λ
)
u = f (x,y) , y ∈ Ω, (4.1)

Bju = ∑
|β |�l j

b jβ (y)Dβ
y u(x,y) = 0, x ∈ R

n, (4.2)

y ∈ ∂Ω, j = 1,2, ..., l,

where u = u(x,y) , Pε (D) is the fractional differential operator defined by (2.1) ,

Dj = −i
∂

∂y j
, y =

(
y1, ...,yμ

)
, bα = bα (y) ,

α =
(
α1,α2, . . . ,αμ

)
, β =

(
β1,β2, . . . ,βμ

)
are nonnegative integer numbers, and ε =

(ε1,ε2, . . . ,εn) and εk are positive parameters. For Ω̃ = Rn ×Ω , p =(p1, p) here,
Lp
(
Ω̃
)

will denote the space of all p-summable scalar-valued functions with mixed
norm i.e., the space of all measurable functions f defined on Ω̃ , for which

‖ f‖Lp(Ω̃) =

⎛
⎜⎝∫

Rn

⎛
⎝∫

Ω

| f (x,y)|p1 dx

⎞
⎠

p
p1

dy

⎞
⎟⎠

1
p

< ∞.

Analogously, Wm,2l
p

(
Ω̃
)

denotes the anisotropic fractional Sobolev space with corre-

sponding mixed norm, i.e., Wm,2l
p

(
Ω̃
)

denotes the space of all functions u ∈ Lp
(
Ω̃
)

possessing the fractional derivatives Dα
x u ∈ Lp

(
Ω̃
)

with respect to x for |α| � m and

generalized derivative ∂ 2lu
∂y2l

k
∈ Lp

(
Ω̃
)

with respect to y with the norm

‖u‖
Wm,2l

p (Ω̃) = ∑
|α |�m

‖Dα
x u‖Lp(Ω̃) +

μ

∑
k=1

∥∥∥∥∥∂ 2lu

∂y2l
k

∥∥∥∥∥
Lp(Ω̃)

.

Let Q denote the operator generated by problem (4.1)− (4.2) , i.e.,

D(Q) = Wm,2l
p

(
Ω̃,Bj

)
=
{

u : u ∈Wm,2l
p

(
Ω̃
)
, Bju = 0, j = 1,2, ...l

}
,

Qu = Pε (D)u+ ∑
|α |�2l

bαDα
y u.
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Let ξ ′ =
(
ξ1,ξ2, ...,ξμ−1

) ∈ Rμ−1, α ′ =
(
α1,α2, ...,αμ−1

) ∈ Zμ and

A
(
y0,ξ ′,Dy

)
= ∑

|α ′|+ j�2l

aα ′ (y0)ξ α1
1 ξ α2

2 , .,ξ αμ−1
μ−1 Dj

μ for y0 ∈ G

Bj
(
y0,ξ ′,Dy

)
= ∑

|β ′|+ j�l j

b jβ ′ (y0)ξ β1
1 ξ β2

2 , .,ξ βμ−1
μ−1 Dj

μ for y0 ∈ ∂G.

CONDITION 4.1. Let the following conditions be satisfied:

(1) bα ∈C
(

Ω
)

for each |α|= 2l and bα ∈ L∞ (Ω)+Lrk (Ω) for each |α|= k < 2l

with rk � p1 , p1 ∈ (1,∞) and 2l− k > l
rk

;

(2) b jβ ∈C2l−l j (∂Ω) for each j , β , l j < 2l , p ∈ (1,∞) , λ ∈ Sϕ , ϕ ∈ [0,π);
(3) for y∈Ω , ξ ∈Rμ , σ ∈ Sϕ0 , ϕ0 ∈

(
0, π

2

)
, |ξ |+ |σ | �= 0 let σ + ∑

|α |=2l
bα (y)ξ α �=

0;
(4) for each y0 ∈ ∂Ω local BVP in local coordinates corresponding to y0,

λ +A
(
y0,ξ ′,Dy

)
ϑ (y) = 0,

Bj
(
y0,ξ ′,Dy

)
ϑ (0) = h j, j = 1,2, ..., l

has a unique solution ϑ ∈C0 (0,∞) for all h = (h1,h2, ...,hl) ∈ Cl and for ξ ′ ∈ Rn−1 .

Suppose ν = (ν1,ν2, ...,νn) are nonnegative real numbers. In this section, we
present the following result:

THEOREM 4.1. Assume Condition 2.1 and Condition 4.1 are satisfied. Then for
f ∈ Lp

(
Ω̃
)
, λ ∈ Sϕ , ϕ ∈ (0, π ] , problem (4.1)− (4.2) has a unique solution u ∈

Wm,2l
p

(
Ω̃
)

and the following coercive uniform estimate holds

∑
|ν|�m

n

∏
k=1

ε
νk
m

k |λ |1− |ν|
m ‖Dν

x u‖Lp(Ω̃) + ∑
|α |�2l

∥∥Dα
y u
∥∥

Lp(Ω̃) � C‖ f‖Lp(Ω̃) .

Proof. Let E = Lp1 (Ω) . It is known [4] that Lp1 (Ω) is an UMD space for
p1 ∈ (1,∞) . Consider the operator A defined by

D(A) = W 2l
p1

(Ω;Bju = 0) , Au = ∑
|α |�2l

bα (x)Dαu(y) .

Therefore, the problem (4.1)− (4.2) can be rewritten in the form of (2.1) , where
u(x) = u(x, .) , f (x) = f (x, .) are functions with values in E = Lp1 (Ω) . From [6,
Theorem 8.2] we get that the following problem

ηu(y)+ ∑
|α |�2l

bα (y)Dαu(y) = f (y) , (4.3)

Bju = ∑
|β |�l j

b jβ (y)Dβ u(y) = 0, j = 1,2, ..., l

has a unique solution for f ∈ Lp1 (Ω) and arg η ∈ S (ϕ1) , |η | → ∞. Moreover, the
operator A generated by (4.3) is R-positive in Lp1 . Then from Theorem 2.1 we obtain
the assertion.
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5. The system of FDE of infinite many order

Consider the following system of FDEs

Pε (D)ui +
N

∑
j=1

(ai j + λ )u j (x) = fi (x) , x ∈ R
n, (5.1)

i = 1,2, ...,N, N ∈ [1,∞] ,

where Pε (D) is the fractional differential operator defined by (2.2) , ε = (ε1,ε2, ...,εn)
and εk are positive parameters. Let ai j be real numbers and

lq(A) =

{
u ∈ lq,‖u‖lq(A) = ‖Au‖lq

=

(
N

∑
i=1

|(Au)i|q
) 1

q

=

(
N

∑
i=1

∣∣∣∣∣
N

∑
j=1

ai ju j

∣∣∣∣∣
q) 1

q

< ∞

}
,

u = {u j}, Au =

{
N

∑
j=1

ai ju j

}
, i, j = 1,2, ...,N.

CONDITION 5.1. Let

ai j = a ji,
N

∑
i, j=1

ai jξiξ j � C0 |ξ |2 for ξ �= 0.

Let
f (x) = { fi (x)}N

1 , u = {ui (x)}N
1 .

THEOREM 5.1.. Assume that the Condition 2.1 and Condition 5.1 are satisfied.
Then, for f (x) ∈ Lp (Rn; lq) , |argλ | � ϕ , ϕ ∈ (0 , π ] and for sufficiently large |λ | ,
problem (5.1) has a unique solution u ∈ Hm

p (Rn, lq (A) , lq) and the following uniform
coercive estimate holds

∑
|α |�m

ε (α) |λ |1− |α|
m

⎡
⎣∫

Rn

(
N

∑
j=1

∣∣Dαu j (x)
∣∣q)

p
q

dx

⎤
⎦

1
p

+

⎡
⎣∫

Rn

(
N

∑
i=1

∣∣∣∣∣
N

∑
j=1

ai ju j

∣∣∣∣∣
q) p

q

dx

⎤
⎦

1
p

� C

⎡
⎣∫

Rn

(
N

∑
i=1

| fi (x)|q
) p

q

dx

⎤
⎦

1
p

.

Proof. Let E = lq and A be a matrix such that A = [ai j] , i , j = 1,2, ...,N. It is
easy to see that

B(λ ) = λ (A+ λ )−1 =
λ

D(λ )
[Aji (λ )] , i, j = 1,2, ...N,
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where D(λ ) = det(A−λ I), Aji (λ ) are entries of the corresponding adjoint matrix of
A−λ I. Since the matrix A is symmetric and positive definite, it generates a positive
operator in lq for q ∈ (1,∞) . For all u1,u2, ...,uμ ∈ lq , λ1,λ2, ...,λμ ∈ C and inde-
pendent symmetric {−1,1}-valued random variables rk (y) , k = 1,2, ...,μ , μ ∈ N we
have

∫
Ω

∥∥∥∥∥
μ

∑
k=1

rk (y)B(λk)uk

∥∥∥∥∥
q

lq

dy

� C

⎧⎨
⎩
∫
Ω

N

∑
j=1

∣∣∣∣∣
μ

∑
k=1

N

∑
j=1

λk

D(λk)
Aji (λk)rk (y)uki

∣∣∣∣∣
q

dy

� sup
k,i

N

∑
j=1

∣∣∣∣ λk

D(λk)
Aji (λk)

∣∣∣∣
q ∫

Ω

∣∣∣∣∣
μ

∑
k=1

rk (y)uk j

∣∣∣∣∣
q

dy. (5.2)

Since A is symmetric and positive definite, we have

sup
k,i

N

∑
j=1

∣∣∣∣ λk

D(λk)
Aji (λk)

∣∣∣∣
q

� C.

From (5.2) and (5.3) we get

∫
Ω

∥∥∥∥∥
μ

∑
k=1

rk (y)B(λk)uk

∥∥∥∥∥
q

lq

dy � C
∫
Ω

∥∥∥∥∥
μ

∑
k=1

rk (y)uk

∥∥∥∥∥
q

lq

dy,

i.e., the operator A is R-positive in lq . From Theorem 2.1, we obtain that problem
(5.1) has a unique solution u∈ Hm

p (Rn; lq (A) , lq) for f ∈ Lp (Rn; lq) and the following
estimate holds

∑
|α |�m

ε (α) |λ |1− |α|
m ‖Dαu‖Lp(Rn;lq) +‖Au‖Lp(Rn;lq) � M ‖ f‖Lp(Rn;lq) .

From the above estimate we obtain the assertion.
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