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INCLUSION BETWEEN GENERALIZED STUMMEL

CLASSES AND OTHER FUNCTION SPACES

NICKY K. TUMALUN, DENNY I. HAKIM ∗ AND HENDRA GUNAWAN

(Communicated by L. Pick)

Abstract. We refine the definition of generalized Stummel classes and study inclusion properties
of these classes. We also study the inclusion relation between Stummel classes and other function
spaces such as generalized Morrey spaces, weak Morrey spaces, and Lorentz spaces. In addition,
we show that these inclusions are proper. Our results extend some previous results in [2, 13].

1. Introduction and preliminaries

The definition of Stummel class was introduced in [4, 13]. For 0 < α < n , the
Stummel class Sα = Sα(Rn) is defined by

Sα :=
{

f ∈ L1
loc(R

n) : ηα f (r) ↘ 0 for r ↘ 0
}

,

where

ηα f (r) := sup
x∈Rn

∫
|x−y|<r

| f (y)|
|x− y|n−α dy, r > 0.

For α = 2, S2 is known as the Stummel-Kato class. Knowledge of Stummel classes is
important when one is studying the regularity properties of the solutions of some partial
differential equations (see [1, 2, 3, 5, 10]).

In the mean time, the study of Morrey spaces, which were introduced by C. B. Mor-
rey in [11], has attracted many researchers, especially in the last two decades. For
1 � p < ∞ and 0 � λ � n , the Morrey space Lp,λ = Lp,λ (Rn) is defined to be the
collection of all functions f ∈ Lp

loc(R
n) for which

‖ f‖Lp,λ := sup
x∈Rn,r>0

r−
λ
p ‖ f‖Lp(B(x,r)) < ∞,

where B(x,r) := {y ∈ R
n : |x− y|< r} and

‖ f‖Lp(B(x,r)) :=
(∫

|x−y|<r
| f (y)|p dy

) 1
p

.
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Note that Lp,0 = Lp . As shown in [13], one may observe that L1,λ ⊆ Sα provided that
n−λ < α < n . (For the case α = 2, this fact was proved in [5].) Conversely, if V ∈ Sα
for 0 < α < n and ηα f (r) ∼ rσ for some σ > 0, then V ∈ L1,n−α+σ .

Eridani and Gunawan [6] developed the concept of generalized Stummel classes
and studied the inclusion relation between these classes and generalized Morrey spaces.
For 1 � p < ∞ and a measurable function Ψ : (0,∞) → (0,∞) , the generalized Morrey
space Lp,Ψ = Lp,Ψ(Rn) is the collection of all functions f ∈ Lp

loc(R
n) for which

‖ f‖Lp,Ψ := sup
x∈Rn,r>0

|B(x,r)|− 1
p

Ψ(r)
‖ f‖Lp(B(x,r)) < ∞,

where |B(x,r)| denotes the Lebesgue measure of B(x,r) . Observe that, for Ψ(t) :=

t
λ−n

p (0 � λ � n ), we have Lp,Ψ = Lp,λ . Further works on the inclusion relation bet-
ween generalized Stummel classes and Morrey spaces can be found in [8, 14].

The purpose of this paper is to refine the definition of generalized Stummel classes
and study the inclusion relation between these classes. We also study the inclusion rela-
tion between Stummel classes and Morrey spaces using assumptions that are different
from the assumptions used in [6, 8, 14]. We give an example of a function which
belongs to the generalized Stummel class but not to the generalized Morrey space. Fur-
thermore, we prove that the Stummel class contains weak Morrey spaces under certain
conditions. For 1 � p < ∞ and 0 � λ � n , the weak Morrey space wLp,λ = wLp,λ (Rn)
is the collection of all Lebesgue measurable functions f on R

n which satisfy

‖ f‖wLp,λ := sup
x∈Rn,r>0

r−
λ
p ‖ f‖wLp(B(x,r)) < ∞,

where
‖ f‖wLp(B(x,r)) := sup

t>0
t |{y ∈ B(x,r) : | f (y)| > t}| 1

p .

Observe that, by taking λ = 0, we can recover the weak Lebesgue space wLp . In this
paper, we also study the relation between Stummel classes and Lorentz spaces.

Throughout this paper we assume that Ψ : (0,∞) → (0,∞) is a measurable func-
tion. Whenever required, we consider the following conditions on Ψ :

∫ 1

0

Ψ(t)
t

dt < ∞; (1)

1
A1

� Ψ(s)
Ψ(r)

� A1 for 1 � s
r

� 2; (2)

Ψ(r)
rn � A2

Ψ(s)
sn for s � r, (3)

where Ai > 0, i = 1,2, are independent of r,s > 0. The condition (2) is known as the
doubling condition on Ψ . In some cases, we can weaken the doubling condition by the
right doubling condition:

Ψ(s)
Ψ(r)

� A3 for 1 � s
r

� 2, (4)
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where A3 is independent of r,s > 0.
In this paper, the constant c > 0 that appears in the proof of all theorems may

vary from line to line, and the notation c = c(α,β , . . . ,ζ ) indicates that c depends on
α,β , . . . ,ζ .

2. The generalized Stummel classes

We begin this section by defining the generalized Stummel class.

DEFINITION 1. For 1 � p < ∞ , we define the generalized Stummel p -class
Sp,Ψ = Sp,Ψ(Rn) by

Sp,Ψ :=
{

f ∈ Lp
loc(R

n) : ηp,Ψ f (r) ↘ 0 for r ↘ 0
}

,

where

ηp,Ψ f (r) := sup
x∈Rn

(∫
|x−y|<r

| f (y)|pΨ(|x− y|)
|x− y|n dy

) 1
p

, r > 0.

We call ηp,Ψ f the Stummel p-modulus of f . Observe that the Stummel p -
modulus is nondecreasing on (0,∞) . For p = 1, we have S1,Ψ := SΨ — the gener-
alized Stummel class introduced in [6]. For Ψ(t) := tα (0 < α < n) , we write Sp,α
instead of Sp,Ψ and ηp,α instead of ηp,Ψ . Observe that S1,α := Sα — the Stummel
class introduced in [4, 13].

The following two theorems confirm that ηp,Ψ f is continuous (hence measurable)
and satisfies the doubling condition.

THEOREM 1. If f ∈ Sp,Ψ , then ηp,Ψ f is continuous on (0,∞) .

Proof. Let {rk} be a sequence in (0,∞) with rk → r ∈ (0,∞) and x∈R
n . Choose

r∗ > 0 such that r,rk � r∗ for every k ∈ N . Next, for every k ∈ N , define

gk(y) :=
| f (y)|pΨ(|y− x|)

|y− x|n χB(x,rk)(y) and g(y) :=
| f (y)|pΨ(|y− x|)

|y− x|n χB(x,r)(y),

for y∈B(x,r∗) . We see that {gk} is a sequence of nonnegativemeasurable functions on
B(x,r∗) , and gk → g almost everywhere on B(x,r∗) . By the Dominated Convergence
Theorem we obtain ∫

|y−x|<r∗
gk(y)dy →

∫
|y−x|<r∗

g(y)dy.

Therefore

(∫
|y−x|<rk

| f (y)|pΨ(|y− x|)
|y− x|n dy

) 1
p

→
(∫

|y−x|<r

| f (y)|pΨ(|y− x|)
|y− x|n dy

) 1
p

. (5)
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Let ε be any positive real number. By (5), there exists k0 ∈ N such that for all k ∈ N

with k � k0 we have

(∫
|y−x|<r

| f (y)|pΨ(|y− x|)
|y− x|n dy

) 1
p

− ε <

(∫
|y−x|<rk

| f (y)|pΨ(|y− x|)
|y− x|n dy

) 1
p

<

(∫
|y−x|<r

| f (y)|pΨ(|y− x|)
|y− x|n dy

) 1
p

+ ε.

Since x ∈ R
n is arbitrary, we conclude that

ηp,Ψ f (r)− ε � ηp,Ψ f (rk) � ηp,Ψ f (r)+ ε.

Thus, we have proved that ηp,Ψ f (rk)→ ηp,Ψ f (r) for any sequence {rk} in (0,∞) with
rk → r ∈ (0,∞) . This means that ηp,Ψ f is continuous on (0,∞) . �

THEOREM 2. Let Ψ satisfy the condition (3). If f ∈ Sp,Ψ , then ηp,Ψ f satisfies
the doubling condition.

Proof. Let x∈R
n and r > 0. Choose m = m(n)∈N and x1, . . . ,xm ∈B(x,r) such

that

B(x,r) ⊆
m⋃

i=1

B
(
xi,

r
2

)
.

Note that

(∫
|y−x|<r

| f (y)|pΨ(|y− x|)
|y− x|n dy

) 1
p

�
m

∑
i=1

(∫
|y−xi|< r

2

| f (y)|pΨ(|y− x|)
|y− x|n dy

) 1
p

=
m

∑
i=1

Ii. (6)

For i = 1, . . . ,m , we have

Ii =
(∫

|y−xi|< r
2

| f (y)|pΨ(|y− x|)
|y− x|n dy

) 1
p

�
(∫

|y−x|>|y−xi |,|y−xi|< r
2

| f (y)|pΨ(|y− x|)
|y− x|n dy

) 1
p

+
(∫

|y−x|�|y−xi |< r
2

| f (y)|pΨ(|y− x|)
|y− x|n dy

) 1
p

= Ai +Bi. (7)
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By the condition (3) on Ψ , we obtain

Ai =
(∫

|y−x|>|y−xi |,|y−xi|< r
2

| f (y)|pΨ(|y− x|)
|y− x|n dy

) 1
p

� c(p)
(∫

|y−x|>|y−xi|,|y−xi|< r
2

| f (y)|pΨ(|y− xi|)
|y− xi|n dy

) 1
p

� c(p)
(∫

|y−xi|< r
2

| f (y)|pΨ(|y− xi|)
|y− xi|n dy

) 1
p

� c(p)ηp,Ψ f
( r

2

)
.

It is clear that

Bi �
(∫

|y−x|< r
2

| f (y)|pΨ(|y− x|)
|y− x|n dy

) 1
p

� ηp,Ψ f
( r

2

)
.

From (6) and (7), we get

(∫
|y−x|<r

| f (y)|pΨ(|y− x|)
|y− x|n dy

) 1
p

� m(n)(c(p)+1)ηp,Ψ f
( r

2

)
= c(n, p)ηp,Ψ f

( r
2

)
. (8)

Since the inequality (8) holds for all x ∈ R
n , we obtain

ηp,Ψ f (r) � c(n, p)ηp,Ψ f
( r

2

)
.

According to the fact that ηp,Ψ f is nondecreasing, we conclude that ηp,Ψ f satisfies
the doubling condition. �

As for the classical Stummel class [13], we also have more information about
functions in Sp,ψ , as presented in the following theorem and its corollary.

THEOREM 3. Let 1 � p < ∞ , Ψ satisfy the condition (3), and Φ : (0,∞)→ (0,∞)
be continuous and nondecreasing. If f ∈ Sp,Ψ and

∫ 1

0

[
ηp,Ψ f (t)

]p [Φ(t)]−1 t−1dt < ∞,

then there exists a positive constant c(n, p) independent of f such that

∫
|x−y|<r

| f (y)|pΨ(|x− y|)
|x− y|nΦ(|x− y|) dy � c(n, p)

∫ r
2

0

[
ηp,Ψ f (t)

]p [Φ(t)]−1 t−1dt.

holds for all x ∈ R
n and r > 0 .
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Proof. Let f ∈ Sp,Ψ . By the hypotheses, we observe that for each x ∈ R
n and

r > 0, we have

∫
|x−y|<r

| f (y)|pΨ(|x− y|)
|x− y|nΦ(|x− y|) dy =

∞

∑
k=0

∫
r

2k+1 �|x−y|< r
2k

| f (y)|pΨ(|x− y|)
|x− y|nΦ(|x− y|) dy

�
∞

∑
k=0

[
Φ
( r

2k+1

)]−1 ∫
|x−y|< r

2k

| f (y)|pΨ(|x− y|)
|x− y|n dy

�
∞

∑
k=0

[
Φ
( r

2k+1

)]−1 [
ηp,Ψ f

( r
2k

)]p
. (9)

Combining the inequality (9) and Theorem 2, we get

∫
|x−y|<r

| f (y)|pΨ(|x− y|)
|x− y|nΦ(|x− y|) dy � c(n, p)

∞

∑
k=0

[
Φ
( r

2k+2

)]−1 [
ηp,Ψ f

( r
2k+2

)]p

� c(n, p)
∞

∑
k=0

∫ r
2k+1

r
2k+2

[
ηp,Ψ f (t)

]p [Φ(t)]−1 t−1dt

= c(n, p)
∫ r

2

0

[
ηp,Ψ f (t)

]p [Φ(t)]−1 t−1dt,

which is the desired inequality. �

REMARK 1. If we put

Θ(r) :=
∫ r

2

0

[
ηp,Ψ f (t)

]p [Φ(t)]−1 t−1dt, r > 0,

then we see that Θ(r) is nondecreasing and that lim
r→0+

Θ(r) = 0.

For f ∈ Sp,Ψ , the function ηp,Ψ f is continuous according to Theorem 1. More-
over, it is nondecreasing and lim

t→0+
ηp,Ψ f (t) = 0. Accordingly, we have the next corol-

lary which generalizes the result in [13, p. 58].

COROLLARY 1. Let 1 � p < ∞ . If f ∈ Sp,Ψ and

∫ 1

0

[
ηp,Ψ f (t)

]p−ϑ
t−1dt < ∞,

for some ϑ ∈ (0,1) , then there exists a positive constant c(n, p) independent of f such
that for each x ∈ R

n and r > 0 , we have

∫
|x−y|<r

| f (y)|pΨ(|x− y|)
|x− y|n [ηp,Ψ f (|x− y|)]ϑ dy � c(n, p)Θ(r),

where Θ(r) :=
∫ r

2
0

[
ηp,Ψ f (t)

]p−ϑ
t−1dt .
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3. Inclusion between generalized Stummel classes

In this section, we are going to investigate the inclusion between two Stummel
classes. The first theorem discusses the relationship between Stummel classes with
different parameters Ψ . (Unless otherwise stated, we always assume that 1 � p < ∞ .)

THEOREM 4. Suppose that Ψ2 satisfies the condition (3) and that there exist c >
0 and δ > 0 such that Ψ2(t) � cΨ1(t) for every t ∈ (0,δ ) . Then Sp,Ψ1 ⊆ Sp,Ψ2 .

Proof. Let f ∈ Sp,Ψ1 , x ∈ R
n , and r > 0. For r � δ , we have

(∫
|y−x|<r

| f (y)|pΨ2(|y− x|)
|y− x|n dy

) 1
p

� c
1
p

(∫
|y−x|<r

| f (y)|pΨ1(|y− x|)
|y− x|n dy

) 1
p

,

whence ηp,Ψ2 f (r) � c
1
p ηp,Ψ1 f (r) ↘ 0 for r ↘ 0. Hence f ∈ Sp,Ψ2 . �

As an immediate consequence of Theorem 4, we have the following corollary.

COROLLARY 2. If 0 < α � β < n, then Sp,α ⊆ Sp,β .

REMARK 2. For 0 < α < β < n , the above inclusion is proper. Indeed, for 0 <
β < n , define f : R

n −→ R by the formula

f (y) :=
(

χB(y)
|y|β | ln |y||2

) 1
p

, y ∈ R
n,

where B := B(0,e−
2
β ) . Then f ∈ Sp,β\Sp,α whenever 0 < α < β . The fact that f ∈

Sp,β is proved in general in Example 1. We will show here that f /∈ Sp,α . Let 0 <

r < e
− 2

β . Using polar coordinates and the fact that 1/(tβ | ln(t)|2) is decreasing on

(0,e
− 2

β ) , we have

(
ηp,β f (r)

)p �
∫
|y|<r

1

|y|β | ln |y||2|y|n−α dy

� 1

rβ | ln(r)|2
∫
|y|<r

1
|y|n−α dy

= c(n,α)
1

rβ−α | ln(r)|2 .

Therefore

ηp,β f (r) � c(n,α, p)
(

1

rβ−α | ln(r)|2
) 1

p

→ ∞,

for r ↘ 0. This verifies that f /∈ Sp,α .

The next theorem shows the relationship between two Stummel classes with dif-
ferent parameters p .
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THEOREM 5. If 1 � p2 � p1 < ∞ and Ψ satisfies (1), then Sp1,Ψ ⊆ Sp2,Ψ .

Proof. Let f ∈ Sp1,Ψ , x ∈ R
n , and 0 < r � 1. Then by Hölder’s inequality we

have

∫
|y−x|<r

| f (y)|p2Ψ(|y− x|)
|y− x|n dy �

(∫
|y−x|<r

| f (y)|p1Ψ(|y− x|)
|y− x|n dy

) p2
p1

×
(∫

|y−x|<r

Ψ(|y− x|)
|y− x|n dy

)1− p2
p1

=
(∫

|y−x|<r

| f (y)|p1Ψ(|y− x|)
|y− x|n dy

) p2
p1

×
(

c(n)
∫ r

0

Ψ(t)
t

dt

)1− p2
p1

.

Therefore

ηp2,Ψ f (r) � c(n, p1, p2)ηp1,Ψ f (r)
(∫ r

0

Ψ(t)
t

dt

) 1
p2

− 1
p1 ↘ 0 for r ↘ 0,

which tells us that f ∈ Sp2,Ψ . We conclude that Sp1,Ψ ⊆ Sp2,Ψ . �
As a consequence of Theorem 5, we have the following corollary.

COROLLARY 3. If 1 � p2 � p1 < ∞ , then Sp1,α ⊆ Sp2,α .

REMARK 3. For 1 � p2 < p1 < ∞ , the above inclusion is proper. Indeed, for
α
p1

< γ < min{ α
p2

, n
p1
} , we have f (y) := |y|−γ ∈ Sp2,α\Sp1,α .

From Theorem 4 and Theorem 5, we get the following corollary.

COROLLARY 4. Suppose that 1 � p2 � p1 < ∞ , Ψ2 satisfies the conditions (1)
and (3), and there exist c > 0 and δ > 0 such that Ψ2(t) � cΨ1(t) for every t ∈ (0,δ ) .
Then Sp1,Ψ1 ⊆ Sp2,Ψ2 .

4. Inclusion between Stummel classes and Morrey spaces

Our next theorem gives an inclusion relation between generalized Morrey spaces
and generalized Stummel classes. We also give an example of a function that belongs
to the generalized Stummel class but not to the generalized Morrey space.

THEOREM 6. Let 1 � p2 � p1 < ∞ . Assume that Ψ1 satisfies (2) and that Ψ2

satisfies the right-doubling condition (4). If∫ 1

0

Ψ1(t)p2Ψ2(t)
t

dt < ∞, (10)

then Lp1,Ψ1 ⊆ Sp2,Ψ2 .
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REMARK 4. Let p1 = p2 = 1, Ψ1(t) := tλ−n where 0 � λ � n , and Ψ2(t) := tα

where n−λ < α < n . Then the above theorem reduces to the result in [13, p. 56].

Proof of Theorem 6. Let f ∈ Lp1,Ψ1 , x ∈ R
n , and r > 0. Since Ψ2 satisfies (4),

we have

∫
|x−y|<r

| f (y)|p2Ψ2(|x− y|)
|x− y|n dy =

−1

∑
k=−∞

∫
2kr�|x−y|<2k+1r

| f (y)|p2Ψ2(|x− y|)
|x− y|n dy

� c
−1

∑
k=−∞

Ψ2(2kr)
|B(x,2k+1r)|

∫
B(x,2k+1r)

| f (y)|p2 dy.

Combining the last inequality and Hölder’s inequality, we get

∫
|x−y|<r

| f (y)|p2Ψ2(|x− y|)
|x− y|n dy � c

−1

∑
k=−∞

Ψ2(2kr)
|B(x,2k+1r)|p2/p1

‖ f‖p2
Lp1 (B(x,2k+1r))

� c‖ f‖p2

Lp1,Ψ1

−1

∑
k=−∞

Ψ1(2k+1r)p2Ψ2(2kr). (11)

Using (4) and the monotonicity of Ψ1 , we get

−1

∑
k=−∞

Ψ1(2k+1r)p2Ψ2(2kr) � c
−1

∑
k=−∞

∫ 2kr

2k−1r

Ψ1(t)p2Ψ2(t)
t

dt

= c
∫ r/2

0

Ψ1(t)p2Ψ2(t)
t

dt. (12)

We combine (11) and (12) to obtain

ηp2,Ψ2 f (r) � c

(∫ r/2

0

Ψ1(t)p2Ψ2(t)
t

dt

) 1
p2 ‖ f‖Lp1,Ψ1 . (13)

Since
∫ 1

0

Ψ1(t)p2Ψ2(t)
t

dt < ∞ , we see that lim
r→0+

∫ r/2

0

Ψ1(t)p2Ψ2(t)
t

dt = 0. This fact

and (13) imply lim
r→0+

ηp2,Ψ2 f (r) = 0. Hence, f ∈ Sp2,Ψ2 . This shows that Lp1,Ψ1 ⊆
Sp2,Ψ2 . �

The following example shows that the inclusion in Theorem 6 is proper.

EXAMPLE 1. Let 1 � p2 � p1 < ∞ , Ψ2 satisfy the condition (4), Ψ2(t) | ln(t)|2
be nondecreasing on (0,δ ) for some δ > 0, and Ψ1(r)p2 Ψ2(r) | ln(r)|2 ↘ 0 as r ↘ 0.
Define f : R

n −→ R by the formula

f (y) :=
(

χB(y)
Ψ2(|y|) | ln |y||2

) 1
p2

, y ∈ R
n,

where B := B(0,δ ) . Then f ∈ Sp2,Ψ2\Lp1,Ψ1 .
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First we show that f ∈ Sp2,Ψ2 . Let 0 < r < min{δ ,1} . Since the function f
is radial and nonincreasing, the supremum in the Stummel modulus is attained at the
origin, so that

ηp2,Ψ2 f (r) =
(∫

|y|<r

| f (y)|p2Ψ2(|y|)
|y|n dy

) 1
p2

=
(∫

|y|<r

1
| ln |y||2|y|n dy

) 1
p2

.

Converting to polar coordinates, we get∫
|y|<r

1
| ln |y||2|y|n dy = c

∫ r

0

1
s(lns)2 ds = − c

lnr
.

Therefore,

ηp2,Ψ2 f (r) = c

(
− 1

lnr

) 1
p2

.

Since lim
r→0+

1
lnr = 0, we conclude that ηp2,Ψ2 f (r) ↘ 0 for r ↘ 0. This proves that

f ∈ Sp2,Ψ2 .
Now, we will show that f /∈ Lp1,Ψ1 . Let 0 < r < δ . Since Ψ2(t) | ln(t)|2 is non-

decreasing on (0,r) ⊆ (0,δ ) , we have

1
Ψ1(r)p1

1
|B(0,r)|

∫
B(0,r)

| f (y)|p1 dy =
1

Ψ1(r)p1

1
|B(0,r)|

∫
B(0,r)

(
1

Ψ2(|y|) | ln |y||2
) p1

p2
dy

� 1
Ψ1(r)p1 |B(0,r)|

(
1

Ψ2(r) | ln r|2
) p1

p2
∫

B(0,r)
dy

=
(

1
Ψ1(r)p2 Ψ2(r) | ln r|2

) p1
p2

.

Note that Ψ1(r)p2 Ψ2(r) | ln r|2 ↘ 0 as r ↘ 0. Then(
1

Ψ1(r)p2 Ψ2(r) | ln r|2
) p1

p2 → ∞ for r ↘ 0.

We conclude that f /∈ Lp1,Ψ1 .

REMARK 5. Let 1 � p2 � p1 < ∞ , Ψ1(t) := t
λ−n
p1 where 0 � λ � n , and Ψ2(t) :=

tα where (n−λ )p2
p1

< α < n . It can be shown that Ψ1 and Ψ2 satisfy all conditions in
Theorem 6 and Example 1.

As a counterpart of Theorem 6, we have the following result.

THEOREM 7. Let 1 � p2 � p1 < ∞ and assume that Ψ1 satisfies (3). If f ∈ Sp1,Ψ1

and

ηp1,Ψ1 f (r) � cΨ1(r)
1
p1 Ψ2(r) (14)

for some Ψ2 and for every r > 0 , then f ∈ Lp2,Ψ2 .
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Proof. Let a ∈ R
n and r > 0. Then, by Hölder’s inequality, we have

∫
B(a,r)

| f (x)|p2 dx � cr
n
(
1− p2

p1

)(∫
B(a,r)

| f (x)|p1 dx

) p2
p1

=
crn

Ψ1(r)
p2
p1

(∫
B(a,r)

| f (x)|p1Ψ1(r)
rn dx

) p2
p1

.

We combine (3), (14), and Definition 1 to obtain

∫
B(a,r)

| f (x)|p2 dx � crn

Ψ1(r)
p2
p1

(∫
B(a,r)

| f (x)|p1Ψ1(|x−a|)
|x−a|n dx

) p2
p1

� crn

Ψ1(r)
p2
p1

[ηp1,Ψ1 f (r)]p2 � crnΨ2(r)p2 .

Consequently,

1
|B(a,r)|Ψ2(r)

(∫
B(a,r)

| f (x)|p2 dx

) 1
p2 � c.

Since a and r are arbitrary, we conclude that f ∈ Lp2,Ψ2 . �
Taking Ψ1(t) := tα and Ψ2(t) := t

σ
p2

− α
p1 where 0 < α < n , 1 � p2 � p1 < ∞ ,

and 0 < σ < α p2
p1

, we get the following corollary.

COROLLARY 5. Let 1 � p2 � p1 < ∞ and 0 < α < n. If f ∈ Sp1,α and ηp1,α f (r)�
cr

σ
p2 for some 0 < σ < α p2

p1
and for every r > 0 , then f ∈ L

p2,n+σ− α p2
p1 .

Next, we are going to investigate the relation between generalized Stummel classes
and generalized weak Morrey spaces. The generalized weak Morrey spaces are defined
as follows.

DEFINITION 2. Let 1 � p < ∞ and Ψ : (0,∞) → (0,∞) . The generalized weak
Morrey space wLp,Ψ = wLp,Ψ(Rn) is defined to be the set of all measurable functions
f for which

‖ f‖wLp,Ψ := sup
a∈Rn,r>0,t>0

t|{x ∈ B(a,r) : | f (x)| > t}|1/p

Ψ(r)|B(a,r)|1/p
< ∞

The inclusion between generalized Stummel classes and generalized weak Morrey
spaces is given in the following theorems.

THEOREM 8. Let 1 � p2 < p1 < ∞ . Assume that Ψ1 satisfies (2) and that Ψ2

satisfies (4). If ∫ 1

0

Ψ1(t)p2Ψ2(t)
t

dt < ∞,

then wLp1,Ψ1 ⊆ Sp2,Ψ2 .
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Proof. Since p2 < p1 , by virtue of [9, Theorem 5.1], we have wLp1,Ψ1 ⊆ Lp2,Ψ1 .
By Theorem 6, we have Lp2,Ψ1 ⊆ Sp2,Ψ2 . It thus follows that wLp1,Ψ1 ⊆ Sp2,Ψ2 . �

THEOREM 9. Let 1 � p1 � p2 < ∞ and assume that Ψ1 satisfies (3). If f ∈ Sp1,Ψ1

and the inequality (14) holds for some Ψ2 and for every r > 0 , then f ∈ wLp2,Ψ2 .

Proof. The assertion follows from Theorem 7 and the inclusion Lp2,Ψ2 ⊆wLp2,Ψ2 .
�

For the classical weak Morrey spaces and Stummel classes, we have the following
result.

THEOREM 10. For 1 � p2 < p1 < ∞ , if 0 � λ < n and (n−λ )p2
p1

< α < n, then

wLp1,λ ⊆ Sp2,α . Conversely, for 1 � p < ∞ , if f ∈ Sp,α for 0 < α < n and ηp,α f (r) �
cr

σ
p for some σ > 0 , then f ∈ wLp,n−α+σ .

Proof. The first assertion follows from Theorem 8 by taking Ψ1(t) := t
λ−n
p1 , and

Ψ2(t) := tα where 0 � λ < n and (n−λ )p2
p1

< α < n . The second part is a consequence

of Corollary 5 when p1 = p2 = p and the inclusion Lp,n−α+σ ⊆ wLp,n−α+σ . �

REMARK 6. The second part of Theorem 10 generalizes the result in [13, p. 57].
For the case p = 1, the first part of Theorem 10 does not generally hold. To see this,
consider the function f (y) := |y|−n, y∈R

n . Then f ∈wL1,λ for 0 � λ < n , but f /∈ Sα
for n−λ < α < n .

5. Further results

In this section, we study the relation between bounded Stummel modulus classes
S̃p,α and Stummel classes. We also study the inclusion between S̃p,α and Lorentz
spaces. For 0 < α < n and 1 � p < ∞ , recall the definition of the Stummel modulus

ηp,α f (r) := sup
x∈Rn

(∫
|x−y|<r

| f (y)|p
|x− y|n−α dy

) 1
p

, r > 0.

DEFINITION 3. For 0 < α < n and 1 � p < ∞ , we define the bounded Stummel
modulus class S̃p,α = S̃p,α(Rn) by

S̃p,α :=
{

f ∈ Lp
loc(R

n) : ηp,α f (r) < ∞ for all r > 0
}

.

Note that the inclusions similar to Corollary 2 and Corollary 3 also hold for S̃p,α .
Moreover, we have Sp,α ⊆ S̃p,α . This inclusion is proper due to the following example
which we adapt from [1, p. 250–251].
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EXAMPLE 2. Let 0 < α < n and 1 � p < ∞ . For every k ∈ N with k � 3, let
xk := (2−k,0, . . . ,0) ∈ R

n and

Vk(y) :=

{
8αk, y ∈ B(xk,8−k),
0, y /∈ B(xk,8−k).

Define V : R
n → R by the formula

V (y) :=

(
∞

∑
k=3

Vk(y)

) 1
p

.

Since ∫
B(x,r)

|V (y)|p dy =
∞

∑
k=3

∫
B(x,r)

|Vk(y)|dy � c(n)
∞

∑
k=3

8(α−n)k < ∞

for every x ∈ R
n and r > 0 where c(n) := |B(0,1)| , we obtain V ∈ Lp

loc(R
n) .

We will show that V ∈ S̃p,α . Let

ρk(x) :=
∫

Rn

|Vk(y)|
|x− y|n−α dy = 8αk

∫
|y−xk |<8−k

1
|x− y|n−α dy, x ∈ R

n.

There are two cases: (i) |x− xk| � 2−2k+1 , or, (ii) |x− xk| < 2−2k+1 .
Suppose that the case (i) holds, that is, |x− xk| � 2−2k+1 . We have,

ρk(x) � c(n)2(α−n)k. (15)

For the case (ii) |x− xk| < 2−2k+1 , we have

ρk(x) � c(n,α) (16)

where c(n,α) := max{c(n), 3α

α c(n)} .
Given x ∈ R

n , we have x /∈ B(xk,2−2k+1) for all k � 3, or x ∈ B(x j,2−2 j+1) for
some j � 3. Assume that x /∈ B(xk,2−2k+1) for all k � 3. Hence, from (15), we have∫

Rn

|V (y)|p
|x− y|n−α dy �

∞

∑
k=3

ρk(x) � c(n)
∞

∑
k=3

2(α−n)k < ∞. (17)

Now assume that x∈ B(x j,2−2 j+1) for some j � 3. Since
{
B(xk,2−2k+1)

}
k�3 is a dis-

joint collection, we find that there is only one j ∈N , j � 3, such that x∈B(x j,2−2 j+1) .
Using (15) and (16), we get∫

Rn

|V (y)|p
|x− y|n−α dy � c(n,α)+

∞

∑
k=3
k 	= j

ρk(x) (18)

� c(n,α)+ c(n)
∞

∑
k=3
k 	= j

2(α−n)k < ∞.
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According to (17) and (18), for every r > 0, we have

∫
|x−y|<r

|V (y)|p
|x− y|n−α dy �

∫
Rn

|V (y)|p
|x− y|n−α dy < ∞.

Therefore ηp,αV (r) < ∞ , and we conclude that V ∈ S̃p,α .
Now, we will show that V /∈ Sp,α . Let r > 0. By Archimedean property, there is

k � 3 such that 8−k < r . Note that

(ηp,αV (r))p �
∫
|y−xk |<r

|V (y)|p
|y− xk|n−α dy

�
∫
|y−xk |<r

|Vk(y)|
|y− xk|n−α dy

� 8αk
∫
|y−xk |<8−k

1
|y− xk|n−α dy =

c(n)
α

.

This shows that ηp,αV stays away from zero. Thus V /∈ Sp,α .

Given a measurable function f : R
n → R , consider the distribution function Df

of f which is given by

Df (σ) := |{x ∈ R
n : | f (x)| > σ}| , σ > 0.

The decreasing rearrangement of f is the function f ∗ defined on [0,∞) by

f ∗(t) := inf
{

σ : Df (σ) � t
}

, t � 0.

DEFINITION 4. Let 0 < κ , p � ∞ . The Lorentz space Lp
κ = Lp

κ(Rn) is the col-
lection of all measurable functions f : R

n → R satisfying ‖ f‖Lp
κ

< ∞ , where

‖ f‖Lp
κ

:=

⎧⎪⎨
⎪⎩
(∫ ∞

0

(
t

1
κ f ∗(t)

)p
dt
t

) 1
p
, if p < ∞,

sup
t>0

t
1
κ f ∗(t), if p = ∞.

Note that L∞
κ = wLκ for κ � 1. The following lemma is a well-known inclusion

relation between Lorentz spaces (see [7, p. 49] or [12, p. 305] for its proof).

LEMMA 1. If 0 < κ � ∞ and 0 < p2 � p1 � ∞ , then Lp2
κ ⊆ Lp1

κ .

Moreover, we have the following relation between Lorentz spaces and bounded
Stummel modulus classes.

LEMMA 2. [2, Lemma 2.7] Let 0 < α < n. Then L1
n
α
⊆ S̃1,α .

Our theorem below is an extension of Lemma 2.
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THEOREM 11. Let 1 � p < ∞ and 0 < α < n. If np
α � κ < ∞ , then

Lp
κ ⊆ S̃p,α .

Proof. We first prove the case where κ = np
α . Let f ∈ Lp

np
α

. Then | f |p ∈ L1
n
α

.

By virtue of Lemma 2, we have | f |p ∈ S̃1,α . According to Definition 3, we see that
f ∈ S̃p,α . Thus, we obtain Lp

np
α
⊆ S̃p,α .

Let us now consider the case where κ > np
α . Since 0 < α < n , we have κ > p .

Hence by Theorem 10 (for λ = 0), we obtain wLκ ⊆ Sp,α . Now, combining this with
Lemma 1 and the remark after Definition 3, we see that

Lp
κ ⊆ wLκ ⊆ Sp,α ⊆ S̃p,α .

This completes the proof. �

REMARK 7. For n
α < κ < ∞ , we observe that L1

κ 	⊆ L1
n
α

. To see this, one may

check that f (x) := |x|−α χ{x : |x|>1} ∈ L1
κ \L1

n
α

.

REMARK 8. It follows from Theorem 11 that, for 1 � p2 � p1 < ∞ and np1
α �

κ < ∞ , the inclusion Lp1
κ ⊆ S̃p2,α holds.

REMARK 9. By using the same trick as in the proof of the first part of Theorem 11,
one can extend [8, Theorem 3.1] to the corresponding function spaces with parameter
p instead of 1.
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