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ON MULTIVARIATE OSTROWSKI TYPE

INEQUALITIES AND THEIR APPLICATIONS

VLADYSLAV BABENKO, YULIYA BABENKO ∗ AND OLEG KOVALENKO

(Communicated by C. P. Niculescu)

Abstract. We prove sharp Ostorowski type inequality for multivariate Sobolev classes and apply
it to the problem of optimal recovery of integrals.

1. Introduction

In 1938 Ostrowski [8] proved the following theorem.

THEOREM. Let f : [−1,1] → R be a differentiable function and let for all t ∈
(−1,1) | f ′(t)| � 1 . Then for all x ∈ [−1,1] the following inequality holds∣∣∣∣∣∣

1
2

1∫
−1

f (t)dt − f (x)

∣∣∣∣∣∣�
1+ x2

2
.

The inequality is sharp in the sense that for each fixed x∈ [−1,1] the upper bound 1+x2

2
cannot be reduced.

This result gave rise to a special branch in the Theory of Inequalities, namely in-
equalities that estimate the deviation of the value of a function from its mean value
with the help of some characteristics of the function. Such inequalities are now called
Ostrowski type inequalities. They have numerous applications in Analysis, Approxima-
tion Theory, Numerical Methods and other areas, in particular, applications in analysis
of numerical integration errors.

There exist a lot of results in the area of Ostrowski type inequalities. We refer the
reader to monographs [7, 3, 9] and references therein.

The main goal of this article is to obtain a new sharp Ostrowski type inequality
on Sobolev classes of multivariate functions and to apply the obtained inequality to the
problem of optimal recovery of integrals.

The article is organized as follows. Section 2 contains necessary definitions and
several auxiliary results needed throughout the paper. Ostrowski type inequality for
Sobolev classes is presented in Section 3. Section 4 is devoted to optimal integration
formulae: in subsection 4.2 we present sharp estimates for errors of integral optimal
recovery formulae on rather simple domains; subsection 4.3 contains asymptotically
sharp estimates of the errors in the case when the domain is an arbitrary convex set.
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2. Notations and some auxiliary results

Let Q ⊂ R
d , d ∈ N , be a nonempty, bounded, open set. By W 1,p(Q) , p ∈ [1,∞] ,

we denote the Sobolev space of functions f : Q → R , such that f and all their (dis-
tributional) first order partial derivatives belong to Lp(Q) . For x = (x1, . . . ,xd) ∈ R

d

and q ∈ [1,∞) , we set |x|q :=
(

d
∑

k=1
|xk|q

) 1
q

, |x|∞ := max
k=1,...,d

|xk| . It is clear that for

all f ∈ W 1,p(Q) we have ‖|∇ f |1 ‖Lp(Q) < ∞ . For p ∈ [1,∞] set W ∇
p (Q) := { f ∈

W 1,p(Q) : ‖|∇ f |1 ‖p � 1}.
Everywhere below we assume d � 2 and p ∈ (d,∞] .

DEFINITION 1. We call a nonempty bounded open set Q ⊂ R
d admissible, if

there exists an embedding of the class W 1,p(Q) into the space of bounded continuous
on Q functions.

The family of admissible sets Q is rather large. For example, all sets Q , that
satisfy the so-called cone condition (see Chapter 4 and Theorem 4.12 of [1]) are admis-
sible (for all p > d ). If Q is admissible, then the values f (x) , x ∈ Q , of the functions
f ∈W 1,p(Q) are well defined.

For x,y ∈ R
d by (x,y) we denote the dot product of elements x and y . We need

the following theorem, which follows from the results proved in Chapter 6.9 of [6].

THEOREM 1. Suppose Q ⊂ R
d is admissible. Let f ∈W 1,p(Q) and x,y ∈ Q be

such that the line segment connecting points x and y also belongs to Q. Then

f (y)− f (x) =
1∫

0

(y− x,∇ f [(1− t)x+ ty])dt.

Everywhere below, for h > 0 we set �d
h := {x ∈ R

d : |x|∞ < h} ; p′ is such, that
1
p + 1

p′ = 1. It is easy to see that the set �d
h is admissible.

We need the following analogue of the theorem about integration in spherical co-
ordinate system.

THEOREM 2. Let f : �d
h → R be an integrable function. Then

∫
�d

h

f (x)dx =
h∫

0

ρd−1
∫

∂ �d
1

f (ρy)dydρ .

Proof. Set D±
j := {(x1, . . . ,xd) ∈ R

d : ± x j ∈ [0,1], 0 � |xk| � ±x j, k �= j} , j =
1, . . . ,d . It is sufficient to prove that for each j = 1, . . . ,d

∫
D±

j

f (x)dx =
h∫

0

ρd−1
∫

z=(z1,...,zd)∈�d
1 , z j=±1

f (ρz)dzdρ
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and then sum all these equalities. For the set D+
1 the desired equality is proved as

follows:

∫
D+

1

f (x)dx =
h∫

0

∫
[−ρ ,ρ ]d−1

f (ρ ,y)dydρ =
h∫

0

ρd−1
∫

[−1,1]d−1

f (ρ · (1,z))dzdρ .

For all other j the proof is similar. The theorem is proved. �

3. Ostrowski type inequality

We need the following lemma.

LEMMA 1. Let d ∈ N and p ∈ (d,∞] . Then

1
| · |d−1

∞
∈ Lp′(�d

1).

Proof. By assumption on p and definition of p′ , we obtain that α := p′ ·(d−1) <
d . Using Theorem 2 and taking into account that |ρz|∞ = ρ for all z ∈ ∂ �d

1 , we obtain

∫
�d

1

dy
|y|α∞

=
1∫

0

ρd−1
∫

∂ �d
1

dzdρ
|ρz|α∞

= |∂ �d
1 |

1∫
0

ρd−1−αdρ < ∞,

since d−1−α > −1. The lemma is proved. �
The following theorem gives an Ostrowski type inequality for functions from

Sobolev class W 1,p(�d
h) .

THEOREM 3. Let p ∈ (d,∞] and f ∈W 1,p(�d
h) . Then

∣∣∣∣∣∣∣
∫
�d

h

f (y)dy− (2h)d f (0)

∣∣∣∣∣∣∣� c(d, p) ·h1+ d
p′ ‖ |∇ f |1 ‖Lp(�d

h), (1)

where c(d, p) := 1
d

∥∥∥ 1
|·|d−1

∞
−| · |∞

∥∥∥
Lp′ (�d

1)
. The inequality is sharp. Equality occurs for

the function

fe(y) = fe,h(y) =

|y|∞∫
0

∣∣∣∣hd−1

ud−1 −
u
h

∣∣∣∣
p′−1

du. (2)

REMARK 1. The constant c(d, p) in (1) is finite due to Lemma 1.
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Proof. We prove the theorem in three steps.
Step 1. First, we prove that inequality (1) is true for all f ∈W 1,p(�d

h) . Indeed,∣∣∣∣∣∣∣
∫
�d

h

f (y)dy− (2h)d f (0)

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
∫
�d

h

[ f (y)− f (0)]dy

∣∣∣∣∣∣∣

(by Theorem 1) =

∣∣∣∣∣∣∣
∫
�d

h

1∫
0

(y,∇ f (ty))dtdy

∣∣∣∣∣∣∣�
∫
�d

h

1∫
0

|y|∞|∇ f (ty)|1dtdy (3)

(by Theorem 2) =
∫

∂ �d
1

h∫
0

1∫
0

ρd−1|ρz|∞|∇ f (ρtz)|1dtdρdz

(substitution s = ρt; note that |ρz|∞ = ρ for all z ∈ ∂ �d
1)

=
∫

∂ �d
1

h∫
0

ρ∫
0

ρd−1|∇ f (sz)|1dsdρdz

(change the order of integration in two internal integrals)

=
∫

∂ �d
1

h∫
0

|∇ f (sz)|1
h∫

s

ρd−1dρdsdz =
1
d

∫
∂ �d

1

h∫
0

|∇ f (sz)|1(hd − sd)dsdz

=
h
d

h∫
0

sd−1
∫

∂ �d
1

|∇ f (sz)|1
(

hd−1

|sz|d−1
∞

− |sz|∞
h

)
dzds

(by Theorem 2) =
h
d

∫
�d

h

|∇ f (y)|1
(

hd−1

|y|d−1
∞

− |y|∞
h

)
dy

(by Holder’s inequality) � h
d
‖|∇ f |1 ‖Lp(�d

h)

∥∥∥∥ hd−1

| · |d−1
∞

− | · |∞
h

∥∥∥∥
Lp′ (�d

h)
. (4)

Taking into account that

∥∥∥∥ hd−1

| · |d−1
∞

− | · |∞
h

∥∥∥∥
p′

Lp′ (�d
h)

=
∫

�d
h

[
hd−1

|y|d−1
∞

− |y|∞
h

]p′

dy

= hd
∫

�d
1

[
1

|x|d−1
∞

−|x|∞
]p′

dx =

[
h

d
p′
∥∥∥∥ 1
| · |d−1

∞
−| · |∞

∥∥∥∥
Lp′ (�d

1)

]p′
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we obtain inequality (1).
Step 2. Next, we prove that the function fe , defined by (2), belongs to the class

W 1,p(�d
h) .

First of all, note that since p > d we have (p′ − 1)(d− 1) = d−1
p−1 < 1 and hence

the function g(u) :=
(

hd−1

ud−1 − u
h

)p′−1
is integrable on all intervals [0,t] , 0 < t � h .

The function fe(y) is constant on each of subsets |y|∞ = const . Moreover, if
y = (y1, . . . ,yd) , then for all k = 1, . . . ,d inside the regions

|yk| > max{|y1|, . . . , |yk−1|, |yk+1|, . . . , |yd |}, (5)

we have
∂ fe
∂ys

= 0, s �= k, and
∂ fe
∂yk

= sgnyk ·g(|yk|). (6)

Hence, we obtain that almost everywhere on �d
h

|∇ fe(y)|1 = g(|y|∞). (7)

Since (p′ −1)p = p′ , from Lemma 1 it follows that the integral
∫
�d

h

gp(|y|∞)dy is finite

and, hence, f ∈W 1,p(�d
h) .

Step 3. Finally, we prove that inequality (1) becomes equality for the functions fe
defined by (2). In order to do so, we take a closer look at all the places with inequalities
in the proof of (1) and show that in each place equalities hold for the function fe .

Inside regions (5) we have (6), so we obtain that (y,∇ fe(ty)) = |yk| · g(t|yk|) =
|y|∞ · |∇ fe(ty)|1 � 0 for all t ∈ [0,1] , hence, inequality (3) becomes equality for fe .
Furthermore, (4) also turns into equality, since from (7) we obtain

|∇ fe(y)|p1 = gp(|y|∞) =
(

hd−1

|y|d−1
∞

− |y|∞
h

)(p′−1)p

=
(

hd−1

|y|d−1
∞

− |y|∞
h

)p′

.

The theorem is proved. �

4. On optimal quadrature

4.1. Statement of the problem and extremal functions

In what follows X denotes a class of continuous functions defined on a bounded
measurable subset Q of R

n . By a method of recovery we shall mean any function
Φ : R

n → R . For given points x1, . . . ,xn ∈ Q , the error of recovery of the integral using
information f (x1), ..., f (xn) by the method Φ is defined by the following equality

e(X ,Φ,x1, . . . ,xn) := sup
f∈X

∣∣∣∣∣∣
∫
Q

f (x)dx−Φ( f (x1), . . . , f (xn))

∣∣∣∣∣∣ .
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The problem of the optimal recovery of the integral is to find the best error of the
recovery

En(X) := inf
x1,...,xn∈Q

inf
Φ : Rn→R

e(X ,Φ,x1, . . . ,xn), (8)

the best method of recovery, and the best position of the information points x1, . . . ,xn

(i. e. such method Φ : R
n → R and points x1, . . . ,xn ∈ Q , for which the infima in (8)

are attained).
We consider the case X =W∇

p (Q) , where p > d and the set Q is admissible. Note
that in this case it is sufficient to consider only linear methods of recovery in (8). The
existence of an optimal linear method of recovery is well known in many situations.
See for example [10]. We will not prove it here.

Let x1, . . . ,xn ∈ Q and h > 0. Recall, that the function fe,h , defined by (2), is
well defined on the boundary ∂�d

h and is constant there; hence we can continuously
extend the function fe,h to all of R

d by setting fe,h(y) equal to the value of fe,h on the
boundary of �d

h for all y /∈ �d
h . For all y ∈ R

d , we set

fh(x1, . . . ,xn;y) := min
k=1,...,n

fe,h(y− xk). (9)

It is easy to see that fh(x1, . . . ,xn;y) ∈W 1,p(Q) for all p ∈ (d,∞] .

4.2. Domain composed of cubes

DEFINITION 2. We say that a domain Q ⊂ R
d is composed of n ∈ N cubes if

there exist h > 0 and points x1, . . . ,xn , such that the cubes

Ck := {x ∈ R
d : |x− xk|∞ < h},

k = 1, . . . ,n , are pairwise disjoint and mes

[
Q\

n⋃
k=1

Ck

]
= 0

LEMMA 2. Let a domain R⊂R
d be composed of n cubes �d

h,k , with the length of
edges equal to h > 0 and centers xk , k = 1, . . . ,n. Let also R ⊂ Q and x1, . . . ,xn ∈ Q.
Then ∫

Q

fh(x1, . . . ,xn;y)dy �
∫
Q

fh(x1, . . . , xn;y)dy � 0 (10)

and for all p ∈ (d,∞]

‖|∇ fh(x1, . . . ,xn)|1 ‖Lp(Q) � ‖|∇ fh(x1, . . . , xn)|1 ‖Lp(Q). (11)

Proof. First, we prove inequality (10). For each λ � 0 and arbitrary x1, . . . ,xn ∈
Q , we consider the set

S(x1, . . . ,xn;λ ) := {y ∈ Q : fh(x1, . . . ,xn;y) � λ}.
From the definition of the function fh(x1, . . . ,xn;y) , it follows that S(x1, . . . ,xn; λ )
is the intersection of Q with the union of n cubes with the centers in the points xk ,
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k = 1, . . . ,n , and equal length of the edges (the length of the edges grows with λ ).
Moreover, if λ0 := inf{λ � 0: mesS(x1, . . . , xn;λ ) = mesR} , then the cubes with the
centers in the points x1, . . . , xn that define the set S(x1, . . . , xn;λ ) are pairwise disjoint
for all λ < λ0 and S(x1, . . . , xn;λ ) = Q for λ � λ0 . This implies that for all λ � 0
mesS(x1, . . . , xn;λ ) � mesS(x1, . . . ,xn;λ ) and, hence,

mes{y ∈ Q : fh(x1, . . . ,xn;y) > λ} = mesQ−mesS(x1, . . . ,xn;λ )
� mesQ−mesS(x1, . . . , xn;λ ) = mes{y ∈ Q : fh(x1, . . . , xn;y) > λ}.

The latter inequality implies the first inequality in (10) (see §1 in Chapter 1 of [11]). The
second inequality in (10) follows from the definition of the functions fh(x1, . . . ,xn) .

Next, we prove inequality (11). For k = 1, . . . ,n , we set

Ak := {x ∈ Q : |x− xk|∞ < |x− xs|∞, ∀s �= k} .

From the definition of the function fh(x1, . . . ,xn) , it follows that

fh(x1, . . . ,xn;x) = fe,h(x− xk)

on Bk := {x ∈ Ak : |x− xk|∞ < h} , k = 1, . . . ,n , and

|∇ fh(x1, . . . ,xn;x)|1 = 0 (12)

almost everywhere on the set Q\
(

n⋃
k=1

Bk

)
. For all k = 1, . . . ,n ,

‖|∇ fh(x1, . . . ,xn; ·)|1 ‖Lp(Bk) = ‖|∇ fe,h(·− xk)|1 ‖Lp(Bk) � ‖|∇ fe,h(·)|1 ‖Lp(�d
h)

= ‖|∇ fe,h(·− xk)|1 ‖Lp

(
�d

h,k

) = ‖|∇ fh(x1, . . . , xn; ·)|1 ‖Lp

(
�d

h,k

).

The latter together with (12) implies inequality (11). The lemma is proved. �

LEMMA 3. Let d ∈N , a domain Q⊂R
d be composed of n cubes �k with centers

xk , k = 1, . . . ,n, and p ∈ (d;∞] . Then for all f ∈W 1,p(Q)

∣∣∣∣∣∣
∫
Q

f (x)dx− mesQ
n

n

∑
k=1

f (xk)

∣∣∣∣∣∣�
c(d, p)

n
1
d

[
mesQ

2d

] 1
d + 1

p′ ‖ |∇ f |1‖Lp(Q),

where the constant c(d, p) is defined in Theorem 3. The inequality is sharp. Equality

holds for the functions a · fh(x1, . . . , xn) , where a∈R , h = 1
2

(
mesQ

n

) 1
d

and the function

fh(x1, , . . . , , xn) is defined in (9).
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Proof. Applying Theorem 3 for each of the cubes �k , we obtain

∣∣∣∣∣∣
∫
Q

f (x)dx− mesQ
n

n

∑
k=1

f (xk)

∣∣∣∣∣∣ � c(d, p)
[

1
2

(
mesQ

n

) 1
d
] p′+d

p′ n
∑

k=1
‖|∇ f |1‖Lp(�k)

(by Holder’s inequality) � c(d,p)

n
1
d + 1

p′

[
mesQ
2d

] 1
d + 1

p′
(

n
∑

k=1
‖|∇ f |1‖p

Lp(�k)

) 1
p

·n
1
p′

= c(d,p)

n
1
d

[
mesQ
2d

] 1
d + 1

p′ ‖ |∇ f |1‖Lp(Q).

The inequality is proved. Moreover, from the definitions of the function fh(x1, . . . , xn)
and of the extremal function in Theorem 3, we obtain that this inequality becomes
equality on the function fh(x1, . . . , xn) (and, hence, on all functions a · fh(x1, . . . , xn) ,
a ∈ R). �

The solution of the problem on optimal recovery of the integral on the class W ∇
p (Q) ,

where Q is composed of cubes, is given by the following theorem.

THEOREM 4. Let d ∈ N , a domain Q⊂R
d be composed of n cubes with centers

xk , k = 1, . . . ,n, and p ∈ (d;∞] . Then

En

(
W∇

p (Q)
)

=
c(d, p)

n
1
d

[
mesQ

2d

] 1
d + 1

p′
,

where the constant c(d, p) is defined in Theorem 3. The optimal information set is
{xk}n

k=1 and the best recovery method is

Φ̃( f (x1), . . . , f (xn)) =
mesQ

n

n

∑
k=1

f (xk).

Using Lemma 3, we obtain

inf
x1,...,xn∈Q

inf
Φ : Rn→R

sup
f∈W∇

p (Q)

∣∣∣∣∣∣
∫
Q

f (x)dx−Φ( f (x1), . . . , f (xn))

∣∣∣∣∣∣
� sup

f∈W∇
p (Q)

∣∣∣∣∣∣
∫
Q

f (x)dx− mesQ
n

n

∑
k=1

f (xk)

∣∣∣∣∣∣
� sup

f∈W∇
p (Q)

c(d,p)

n
1
d

[
mesQ
2d

] 1
d + 1

p′ ‖ |∇ f |1‖Lp(Q) = c(d,p)

n
1
d

[
mesQ
2d

] 1
d + 1

p′
.

On the other hand, taking into account Lemma 2 (with R = Q and h = 1
2

(
mesQ

n

) 1
d
), we
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obtain that for all x1, . . . ,xn ∈ Q and all c1, . . . ,cn ∈ R

sup
f∈W∇

p (Q)

∣∣∣∣∣∣
∫
Q

f (x)dx−
n

∑
k=1

ck f (xk)

∣∣∣∣∣∣ � sup
f∈W∇

p (Q),
f (xk)=0,k=1,...,n

∣∣∣∣∣∣
∫
Q

f (x)dx

∣∣∣∣∣∣
� 1

‖ |∇ fh(x1,...,xn)|1 ‖Lp(Q)

∫
Q

fh(x1, . . . ,xn;x)dx

� 1
‖ |∇ fh(x1,...,xn)|1 ‖Lp(Q)

∫
Q

fh(x1, . . . , xn;x)dx

(by Lemma 3) = c(d,p)

n
1
d

[
mesQ
2d

] 1
d + 1

p′
.

Finally, taking into account the existence of the optimal linear method of recovery and
arbitrariness of x1, . . . ,xn ∈Q and c1, . . . ,cn ∈R , we obtain the estimate for En

(
W ∇

p (Q)
)

from below, which completes the proof of the theorem. �

4.3. Case of a convex set Q

Below we consider the case when domain Q is a bounded, open, convex set. Ac-
cording to Theorem 5 in Chapter 1 of [4], every bounded open convex set is Jordan
measurable. Moreover, it is easy to see that convex sets satisfy the cone condition and,
hence, are admissible (see Definition 1).

4.3.1. Asymptotically optimal information sets and weights

We use the construction of the information set similar to the one used in [2].
Everywhere below we use the following notation. For a finite set A , by |A| we

denote the number of its elements.
For h > 0, we consider the lattice Λ in R

d generated by the vectors (2h,0,0, . . . ,0) ,
(0,2h,0,0, . . . ,0), . . . , (0, . . . ,0,2h) ∈ R

d . By Pk(h) we denote the cubes

2hk+[0,2h]d, k ∈ Z
d ;

their volumes are equal to (2h)d . By A(h) , we denote the set of all cubes Pk(h) that are
contained in Q . Let a(h) be the set of the centers of the cubes from A(h) . By B(h) we
denote the set of all cubes Pk(h) that have non-empty set of common with Q interior
points. Let b(h) be the set of the centers of the cubes from B(h) . Since Q is Jordan
measurable, we have lim

h→0
|A(h)| · (2h)d = lim

h→0
|B(h)| · (2h)d = mesQ or, equivalently,

|A(h)| = mesQ
(2h)d +o

(
1
hd

)
and |B(h)| = mesQ

(2h)d +o

(
1
hd

)
as h → 0. (13)

Let n ∈ N be fixed. We set

hn :=
1
2

(
mesQ

n

) 1
d

. (14)
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Then due to (13)

|A(hn)| = n+o(n) and |B(hn)| = n+o(n) as n → ∞. (15)

For each cube P from the set B(3hn) , we choose a point z according to the follow-
ing rule: z is the center of the cube P if it belongs to a(hn) ; otherwise, z is an arbitrary
point from P

⋂
a(hn) if the intersection is not empty, and z is an arbitrary internal point

of Q
⋂

P if the intersection is empty.
By S1(n) we denote the set of such points z . From (13) it follows that the number

|S1(n)| of points in S1(n) satisfies

|S1(n)| = n
3d +o(n), as n → ∞. (16)

Since for all n ∈ N a(3hn) ⊂ a(hn) , we obtain that

|S1(n)\ a(hn)| � |B(3hn)|− |A(3hn)| = o(n), as n → ∞. (17)

Denote by S2(n) arbitrary subset of the set a(hn) \ S1(n) , that contains n− |S1(n)|
points (for large enough n this number is positive; if |a(hn)\S1(n)| � n−|S1(n)| , then
we set S2(n) := a(hn)\ S1(n)). Set S(n) := S1(n)∪S2(n) .

Let S(n) = {x∗1, . . . ,x∗|S(n)|}. For each k = 1, . . . , |S(n)| , we define the set

Vk = Vk(n) := {x ∈ Q∩P(3hn;x∗k) : |x− x∗k|∞ < |x− x∗s |∞, s �= k}, (18)

where P(3hn;x∗k) is the cube from B(3hn) that contains x∗k . Then sets Vk are pairwise

disjoint. Moreover,
|S(n)|⋃
k=1

Vk ⊂ Q and mes

(
Q\

|S(n)|⋃
k=1

Vk

)
= 0.

We set
c∗k := mesVk,k = 1, . . . , |S(n)|. (19)

The following lemma states some of the properties of the sets S(n) and Vk defined
above.

LEMMA 4. Let Q ⊂ R
d be a Jordan measurable set, n ∈ N be sufficiently large,

and hn be defined by (14). Then the following properties hold:

1. S(n)⊂ Q and |S(n)|� n.

2. If x ∈Vk then |x− x∗k|∞ � 6hn .

3. By Rn we denote the union of cubes P ∈ A(hn) with centers that belong to S(n) .
Then mesRn = mesQ+o(1) as n → ∞ .

4. For each cube P ∈ B(hn) , |P∩S(n)|� 1 .

5. If x ∈ S(n)∩Vk is the center of the cube P ∈ A(hn) , then P = Vk ∩Rn .

6. We denote by Uk := Vk \Rn . Then mes
|S(n)|⋃
k=1

Uk = o(1) , n → ∞ .
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Proof. Let n be sufficiently large, so that |S1(n)|� n (see (16)). Properties 1 and 4
follow from the definition of the set S(n) , Property 2 follows from the definition of the
sets Vk , since Vk ⊂ P(3hn;x∗k) .

Property 5 holds, since by the construction of the set S(n) , for every cube P from
the set B(3hn) either P

⋂
S(n) ⊂ a(hn) (and Rn

⋂
P is composed of |P⋂S(n)| cubes,

with centers that generate their own Vk ), or |P⋂S(n)|= 1, P
⋂

a(hn) = /0 , and, hence,
P
⋂

Rn = /0 .
From (15) and (17) it follows, that |a(hn)

⋂
S(n)| = n + o(n) , n → ∞ . Hence

mesRn = n(1+o(1))(2hn)d = mesQ+o(1) as n → ∞ , and Property 3 is proved. Prop-
erty 6 follows from Property 3. The lemma is proved. �

4.3.2. Optimal recovery formulae

An asymptotically optimal solution of the integral optimal recovery problem in the
case of bounded convex domain is given by the following theorem.

THEOREM 5. Let d ∈N , p∈ (d,∞] , and a bounded, open, convex set Q be given.
Then

En

(
W∇

p (Q)
)

= c(d, p)
(

mesQ
2d

) 1
d + 1

p′ · 1+o(1)

n
1
d

, n → ∞,

where the constant c(d, p) is defined in Theorem 3. The asymptotically optimal infor-
mation set is S(n) that was defined in Chapter 4.3.1. The optimal recovery method
is

Φ̃n( f (x1), . . . , f (x|S(n)|)) =
|S(n)|
∑
k=1

c∗k f (xk),

where the weights c∗k are defined by (19).

The estimate from below (for arbitrary admissible domain Q) is proved in the
following lemma.

LEMMA 5. Let d ∈ N , p ∈ (d,∞] and an admissible set Q be given. Then

En

(
W∇

p (Q)
)

� c(d, p)
(

mesQ
2d

) 1
d + 1

p′ · 1+o(1)

n
1
d

, n → ∞.

Let Rn be as defined in Property 3 of Lemma 4. Using arguments similar to the ones
used to obtain the estimate from below in the proof of Theorem 4 (Lemma 2 needs to
be applies to the domain R = Rn ), we obtain the inequality

En

(
W ∇

p (Q)
)

� c(d, p)

n
1
d

[
mesRn

2d

] 1
d + 1

p′
=

c(d, p)

n
1
d

[
mesQ+o(1)

2d

] 1
d + 1

p′

= c(d, p)
(

mesQ
2d

) 1
d + 1

p′ · 1+o(1)

n
1
d

, n → ∞. (20)
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The lemma is proved.
The next lemma gives an estimate from above for arbitrary admissible domain Q .

LEMMA 6. Let d ∈ N , p ∈ (d,∞] , and an admissible set Q be given. Then

En
(
W∇

p (Q)
)

� sup
f∈W∇

p (Q)

∣∣∣∣∣∣
|S(n)|

∑
k=1

∫
Uk

[ f (x)− f (x∗k)]dx

∣∣∣∣∣∣
+ c(d, p)

(
mesQ
2d

) 1
d + 1

p′ · 1+o(1)

n
1
d

, n → ∞,

where sets Uk are defined in Property 6 of Lemma 4.

Proof. Indeed,

En

(
W∇

p (Q)
)

= inf
x1,...,xn∈Q

inf
Φ : Rn→R

sup
f∈W∇

p (Q)

∣∣∣∣∣∣
∫
Q

f (x)dx−Φ( f (x1), . . . , f (xn))

∣∣∣∣∣∣
� sup

f∈W∇
p (Q)

∣∣∣∣∣∣
∫
Q

f (x)dx− c∗k
|S(n)|
∑
k=1

f (x∗k)

∣∣∣∣∣∣= sup
f∈W∇

p (Q)

∣∣∣∣∣∣
|S(n)|
∑
k=1

∫
Vk

[ f (x)− f (x∗k)]dx

∣∣∣∣∣∣
� sup

f∈W∇
p (Q)

∣∣∣∣∣∣
|S(n)|
∑
k=1

∫
Vk
⋂

Rn

[ f (x)− f (x∗k)]dx

∣∣∣∣∣∣+ sup
f∈W∇

p (Q)

∣∣∣∣∣∣
|S(n)|
∑
k=1

∫
Uk

[ f (x)− f (x∗k)]dx

∣∣∣∣∣∣ .
Lemma 3, Property 5 of Lemma 4, and (17) imply that

sup
f∈W∇

p (Q)

∣∣∣∣∣∣
|S(n)|
∑
k=1

∫
Vk
⋂

Rn

[ f (x)− f (x∗k)]dx

∣∣∣∣∣∣�
c(d, p)

n
1
d · (1+o(1))

[
mesRn

2d

] 1
d + 1

p′

= c(d, p)
(

mesQ
2d

) 1
d + 1

p′ · 1+o(1)

n
1
d

, n → ∞.

The lemma is proved. �
In order to finish the proof of the theorem, it is now sufficient to prove the follow-

ing lemma.

LEMMA 7. Let d ∈ N , p ∈ (d,∞] , and a bounded, open, convex set Q be given.
Then

sup
f∈W∇

p (Q)

∣∣∣∣∣∣
|S(n)|
∑
k=1

∫
Uk

( f (x)− f (x∗k))dx

∣∣∣∣∣∣� o(n−
1
d ), n → ∞. (21)
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Proof. Using Theorem 1 and the fact that Q is a convex domain, we obtain the
following estimate for each function f ∈W∇

p (Q) :

∣∣∣∣
|S(n)|
∑
k=1

∫
Uk

[ f (x)− f (x∗k)]dx

∣∣∣∣=
∣∣∣∣∣∣
|S(n)|
∑
k=1

∫
Uk

∫ 1

0
(x− x∗k,∇ f (x∗k + t(x− x∗k))

∣∣∣∣∣∣dtdx

�
|S(n)|
∑
k=1

1∫
0

∫
Uk

|x− x∗k|∞ · |∇ f (x∗k + t(x− x∗k))|1dxdt

�
|S(n)|
∑
k=1

1∫
0

⎛
⎝∫

Uk

|x− x∗k|p
′

∞ dx

⎞
⎠

1
p′

·
⎛
⎝∫

Uk

|∇ f (x∗k + t(x− x∗k))|p1dx

⎞
⎠

1
p

dt

� 6hn

|S(n)|
∑
k=1

(mesUk)
1
p′ ·

1∫
0

⎛
⎝∫

Uk

|∇ f (x∗k + t(x− x∗k))|p1dx

⎞
⎠

1
p

dt. (22)

For each k = 1, . . . , |S(n)| , set ψk,t(x) := tx+(1− t)x∗k . Substituting y = ψk,t(x) ,
we obtain

1∫
0

⎛
⎝∫

Uk

|∇ f (x∗k + t(x− x∗k))|p1dx

⎞
⎠

1
p

dt =
1∫

0

⎛
⎜⎝ ∫

ψk,t(Uk)

|∇ f (y)|p1 t−ddy

⎞
⎟⎠

1
p

dt

=
1∫

0

t−
d
p

⎛
⎜⎝ ∫

ψk,t(Uk)

|∇ f (y)|p1dy

⎞
⎟⎠

1
p

dt.

Each of the sets Vk is convex, since by the definition Vk , k = 1, . . . , |S(n)| , is an
intersection of a convex set Q and several half-spaces. Hence, for each t ∈ [0,1] and
k = 1, . . . , |S(n)| ψk,t(Uk) ⊂Vk . Since p > d

1∫
0

t−
d
p

⎛
⎜⎝ ∫

ψk,t(Uk)

|∇ f (y)|p1dx

⎞
⎟⎠

1
p

dt �
1∫

0

t−
d
p dt

⎛
⎝∫

Vk

|∇ f (y)|p1dx

⎞
⎠

1
p

= p
p−d

⎛
⎝∫

Vk

|∇ f (y)|p1dx

⎞
⎠

1
p

.

Using the latter inequality and (22), we obtain
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∣∣∣∣∣∣
|S(n)|

∑
k=1

∫
Uk

[ f (x)− f (x∗k)]dx

∣∣∣∣∣∣ � 6phn
p−d

|S(n)|
∑

k=1
(mesUk)

1
p′ ·
⎛
⎝∫

Vk

|∇ f (y)|p1dx

⎞
⎠

1
p

� 6phn
p−d

(
|S(n)|

∑
k=1

mesUk

) 1
p′
·
⎛
⎝|S(n)|

∑
k=1

∫
Vk

|∇ f (y)|p1dx

⎞
⎠

1
p

= 6phn
p−d (mesQ\Rn)

1
p′ ·
⎛
⎝∫

Q

|∇ f (y)|p1dx

⎞
⎠

1
p

� 6phn
p−d (mesQ\Rn)

1
p′ .

Equality (14) and Property 3 in Lemma 4 imply that

6phn

p−d
(mesQ\Rn)

1
p′ = o(n−

1
d ), n → ∞.

The lemma is proved. �
Combining Lemmas 5– 7, we obtain the proof of Theorem 5.
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[8] A. OSTROWSKI, Über die Absolut Abweichung einer differentienbaren Funktionen von ihren Inte-
gralmittelwert, Comment. Math. Hel, 10, 1938, 226–227.

[9] B. G. PACHPATTE, Analytic Inequalities, Atlantis Press, 2012.



ON MULTIVARIATE OSTROWSKI TYPE INEQUALITIES 583

[10] S. A. SMOLYAK,On optimal restoration of functions and functionals of them (in Russian), Candidate’s
Dissertation, Physical-Mathematical Sciences, Moscow State University, 1965.

[11] E. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press,
1970, 287.

(Received December 31, 2018) Vladyslav Babenko
Department of Mathematics and Mechanics

Oles Honchar Dnipro National University
Gagarina pr., 72, Dnipro, 49010, Ukraine

e-mail: babenko.vladislav@gmail.com

Yulia Babenko
Kennesaw State University

Department of Mathematics
850 Polytechnic Lane, MD 9085, Marietta, GA 30060, USA

e-mail: ybabenko@kennesaw.edu

Oleg Kovalenko
Department of Mathematics and Mechanics

Oles Honchar Dnipro National University
Gagarina pr., 72, Dnipro, 49010, Ukraine
e-mail: olegkovalenko90@gmail.com

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


