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Abstract. In this paper, we investigate the p -Laplacian Δp on a complete noncompact subman-
ifold of a Riemannian manifold with sectional curvature bounded above by a negative constant.
Moreover, we study the weighted p -Laplacian Δp,ϕ on an n -dimensional complete noncom-
pact smooth metric measure space (M,g,e−ϕ dv) with M being a submanifold in the hyperbolic
space H

m(−1) . We obtain some estimates for their first eigenvalues. They reflect the relations
between the first eigenvalues of these two kinds of nonlinear operators and the geometrical data
of manifolds. Our results cover a result derived by Lin (Nonlinear Anal., 148 (2017), 126-137)
for the Laplacian, some results of Du and Mao (J. Math. Anal. Appl., 456 (2017), 787-795) for
the drifting Laplacian and the p -Laplacian.

1. Introduction

In this paper, we are concerned with lower bounds of the first eigenvalues of the p -
Laplacian and the weighted p -Laplacian. This question is related to the first eigenvalue
λ1(M) of the Laplacian Δ on M . According to Schoen and Yau [15], it is an important
question to find conditions which implies λ1(M) > 0. For an n -dimensional, com-
plete noncompact, simply connected Riemannian manifold whose sectional curvature
bounded above by −c2 , Mckean [12] showed that

λ1(M) � (n−1)2c2

4
. (1.1)

It is sharp in the sense that the equality holds for the hyperbolic space H
n(−c2) with

the constant curvature −c2 . The hyperbolic space is an important kind of space form.
In 2001, for an n -dimensional complete noncompact submanifold M in the hyperbolic
space H

m(−1) with the mean curvature vector H , Cheung and Leung [2] proved that
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if |H| � κ for some constant κ < n− 1, then the first eigenvalue of the Laplacian on
M (with the Dirichlet boundary condition) satisfies

λ1(M) � 1
4
(n−1−κ)2. (1.2)

It implies that if Mn be a complete minimal submanifold in the hyperbolic space
H

m(−1) , then

λ1(M) � 1
4
(n−1)2. (1.3)

Moreover, (1.3) is sharp because the equality holds when M is totally geodesic. In
2017, Lin [11] proved that the first eigenvalue of the Laplacian of M satisfies

λ1(M) � (n−1)2c2

4

(
1−nD(n)‖H‖n

)2

, (1.4)

where M is an n dimensional complete noncompact submanifold in N , a complete
simply connected Riemannian manifold with sectional curvature KN satisfying KN �
−c2 for a positive constant c > 0, and the mean curvature vector H of M in N satisfies

‖H‖n <
1

nD(n)
, being D(n) = 2n(1+n)

n+1
2 (n−1)−1σ−1/n

n , ‖H‖n = (
∫
M |H|ndv)

1
n and

σn is the volume of the unit ball in R
n . In fact, D(n) is the constant which governs a

L1 -Sobolev inequality due to Hoffman and Spruck [6]. In particular, if M is a complete
noncompact minimal submanifold in N , it holds

λ1(M) � (n−1)2c2

4
. (1.5)

In the last few years, as a quasilinear elliptic partial differential operator, the p -
Laplacian has emerged from some physical problems (cf. [7]). The definition of the p -
Laplacian is as follows. Let Ω be a bounded domain of an n -dimensional Riemannian
manifold M . For 1 < p < ∞ and any u ∈W 1,p

0 (Ω) , the p -Laplacian Δp is defined by

Δpu = div
(|∇u|p−2∇u

)
,

where div is the divergence operator and ∇ is the gradient operator. The p -Laplacian
has some important applications in non-Newtonian fluids, glaciology, turbulence the-
ory, climatology, nonlinear diffusion, flow through porous media and so on. For exam-
ple, the following equation

−Δpu(x) = λu(x)+ k f (|u|)u(x) (1.6)

is described dilatant fluids when p > 2, pseudoplastics when p < 2, whereas p = 2
corresponds to Newtonian fluids.

Some scholars gave some results for eigenvalue estimate of the p -Laplacian Δp .
For example, for an n -dimensional, complete noncompact, simply connected Rieman-
nian manifold M with sectional curvature K �−c2 < 0, Lima, Montenegro and Santos
[10] proved that the p -fundamental tone of the p -Laplacian satisfies

λ1,p(M) � (n−1)pcp

pp . (1.7)
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This result shows an interesting connection between the nonlinear p -Laplacian and
the linear Laplacian. In fact, when p = 2, (1.7) becomes the famous result (1.1) of
Mckean[12] for the Laplacian. Du and Mao [3] gave several upper bounds in terms of
the norm of the mean curvature vector of M for the first non-zero eigenvalue of the
p -Laplacian.

In this paper, we obtain the following results for the p -Laplacian:

THEOREM 1. Let M be an n-dimensional complete noncompact submanifold in
N with the mean curvature vector H , where n > 1 and N is a complete simply con-
nected Riemannian manifold with sectional curvature KN satisfying KN � −c2 for a
positive constant c > 0 . Set

‖H‖n =
(∫

M
|H|ndv

) 1
n

and D(n) = 2n(1+n)
n+1
2 (n−1)−1σ

1
n
n ,

where σn is the volume of the unit ball in R
n . If ‖H‖n <

1
nD(n)

, then the first eigen-

value of the p-Laplacian satisfies

λ1,p(M) �
(n−1)pcp

(
1−nD(n)‖H‖n

)p

pp . (1.8)

REMARK 1. When p = 2, the nonlinear p -Laplacian Δp degenerates into the
linear Laplacian Δ . Correspondingly, the inequality (1.8) becomes (1.4) derived by Lin
[11]. Hence Theorem 1 covers the result (1.4) of Lin [11] for the Laplacian.

From Theorem 1, we can get the following corollary which generalizes the result
(1.5) of [11] for the Laplacian to the p -Laplacian.

COROLLARY 1. Let M be an n-dimensional complete minimal submanifold in
N , where n > 1 and N is a complete simply connected Riemannian manifold with
sectional curvature KN satisfying KN � −c2 for a positive constant c > 0 . Then the
following estimate for the first eigenvalue of the p-Laplacian holds

λ1,p(M) � (n−1)pcp

pp . (1.9)

Furthermore, we study the weighted p -Laplacian on a smooth metric measure
space. For a given complete Riemannian manifold (M,g) with the metric g , the triple
(M,g,e−ϕdv) is called a smooth metric measured space, where ϕ is a smooth real-
valued function on M and dv is the Riemannian volume element associated with g .
In recent years, the metric measure space has been studied extensively in the geometry
and analysis (cf. [16]). The most remarkable example is Perelman’s entropy formula
for the Ricci flow in [14]. On (M,g,e−ϕdv) , we can define the weighted p -Laplacian
Δp,ϕ as follows

Δp,ϕu = div(‖∇u‖p−2∇u)−‖∇u‖p−2g(∇ϕ ,∇u).
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On the one hand, when p = 2, the weighted p -Laplacian Δp,ϕ becomes the drifting
Laplacian Δϕ defined by

Δϕu = Δu−g(∇ϕ ,∇u).

The drifting Laplacian is also called the weighted Laplacian, the ϕ -Laplacian or the
Witten-Laplacian in the previous literature. Futaki, Li and Li [5], Li and Wei [9] gave
some lower bounds for the first nonzero eigenvalue of the drifting Laplacian on a com-
pact smooth metric measure space without boundary or with boundary. In 2017, for
an n -dimensional complete noncompact smooth metric measure space with M being a
submanifold in the hyperbolic space H

m(−1) , Du and Mao[4] proved that if the mean
curvature vector H of M in H

m(−1) satisfies |H| � κ for some constant κ < n− 1,
and |∇ϕ | � C for some constant C , then the first eigenvalue λ1,ϕ(M) of the drifting
Laplacian on M satisfies

λ1,ϕ(M) � (n−1−κ−C)2

4
. (1.10)

Notice that when ϕ is a constant, (1.10) for the weighted Laplacian becomes (1.2)
of Cheung and Leung for the Laplacian. On the other hand, if ϕ is a constant, the
weighted p -Laplacian Δp,ϕ becomes the p -Laplacian. For an n -dimensional complete
noncompact submanifold in the hyperbolic space H

m(−1) , Du and Mao[4] also proved
that if |H|� κ for some constant κ < n−1, then the first eigenvalue of the p -Laplacian
on M satisfies

λ1,p(M) �
(

n−1−κ
p

)p

. (1.11)

Contrary to the Laplacian, there is little knowledge about the first eigenvalue of
the weighted p -Laplacian. In 2016, Wang and Li [17] gave an estimate for lower
bound of the first eigenvalue of the weighted p -Laplacian on a closed smooth metric
measure space (M,g,e−ϕdv) under the assumption of m-dimensional Bakry-Émery
curvature on M bounded by K . Moreover, they showed that the above bound still holds
for the weighted p -Laplacian under the Dirichlet boundary condition or the Neumann
boundary condition. In this paper, we get the following results for the weighted p -
Laplacian.

THEOREM 2. Let (M,g,e−ϕdv) be an n-dimensional complete noncompact smooth
metric measure space with n > 1 , |∇ϕ | � C for some constant C and M being a sub-
manifold in the hyperbolic space H

m(−1) . Denote H by the mean curvature vector of
M in H

m(−1) . If |H| � κ for some constant κ < n−1−C, then the first eigenvalue
λ1,p,ϕ(M) of the weighted p-Laplacian on M satisfies

λ1,p,ϕ(M) �
(

n−1−κ−C
p

)p

. (1.12)

REMARK 2. It is easy to find that (1.12) becomes (1.10) when p = 2. Hence
we generalizes (1.10) of [4] for the drifting Laplacian to the weighted p -Laplacian.
Moreover, if ϕ is a constant, then the constant C in Theorem 2 can be chosen to be
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C = 0. Correspondingly, the estimate (1.12) becomes (1.11). Therefore, (1.11) of Du
and Mao [4] is included by Theorem 2 as a special case.

If M is minimal, then κ = 0. Hence we have the following corollary:

COROLLARY 2. Let (M,g,e−ϕdv) be an n-dimensional smooth metric measure
space with n > 1 , |∇ϕ | � C for some constant C and M being a complete minimal
submanifold in the hyperbolic space H

m(−1) . Then the first eigenvalue λ1,p(M) of the
weighted p-Laplacian on M satisfies

λ1,p,ϕ(M) � 1
pp (n−1−C)p. (1.13)

REMARK 3. According to McKean’s results in [12], we know that the first eigen-
value of the Laplaican on H

n(−1) satisfies λ1(Hn(−1)) = 1
4 (n−1)2 . This shows that

the estimate (1.13) is sharp for the totally geodesic submanifold H
n(−1) in H

m(−1)
for p = 2 and ϕ is a constant.

2. Proof of Theorem 1 for the p -Laplacian

In this section, we investigate eigenvalue estimate for the p -Laplacian and give
the proof of Theorem 1. For the convenience of reader, we first give some knowledge
about the p -fundamental tone and the first nonzero eigenvalue of the p -Laplacian.

Let Ω be a bounded domain in a smooth Riemannian manifold M . Denote by
C∞

0 (Ω) the set of smooth functions with compact support in Ω . The Sobolev space

W 1,p
0 (Ω) is given by the closure of C∞

0 (Ω) with the norm

‖u‖1,p =
(∫

Ω
|u|pdv+

∫
Ω
‖∇u‖pdv

) 1
p

, (2.1)

where dv is the Riemannian volume element on M and ‖ ·‖ denotes the norm of some
prescibed vector field on M with respect to the metric of M .

Because the solutions of the following nonlinear eigenvalue problem

Δpu = −λ |u|p−2u (2.2)

are only locally C1,α(Ω) for any p > 1 (exceptions for the case p = 2), they must be
described in the sense of distribution. That is to say, u ∈ W 1,p

0 (Ω) \ {0} is an eigen-
function associated to the eigenvalue λ , if∫

Ω
‖∇u‖p−2〈∇u,∇ψ〉dv = λ

∫
Ω
|u|p−2uψdv, (2.3)

for any test function ψ ∈ C∞
0 (Ω). It is known that the set σp(M) of eigenvalues of

problem (2.2) is an unbounded subset of [0,∞) whose infimum in fσp = μ1,p(Ω) is an
eigenvalue. It is also known that for geodesic balls of space forms the first eigenvalue
is simple and the first eigenfunction is radial (cf. [13]).
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For a bounded domain Ω with smooth boundary in a Riemannian manifold, the
Dirichlet, the Neumann and some other classes of non-linear eigenvalue problems asso-
ciated to the p -Laplacian have the following properties: There exists a nondecreasing
sequence if nonnegative eigenvalues obtained by the Ljusternik-Schnirelman principle,
(λn)n , tending to ∞ as n → ∞ . The first eigenvalue is simple and isolated. Only eigen-
functions associated with the first eigenvalue do not change sign.

Let Ω ⊂ M a domain in a Riemannian manifold. The p -fundametal tone of Ω ,
denoted by λ ∗

p(Ω) is defined as follows:

λ ∗
p(Ω) = inf

{∫
Ω ‖∇ f‖pdv∫

Ω | f |pdv

∣∣∣∣ f ∈W 1,p
0 (Ω), f 	= 0

}
. (2.4)

When Ω is a relatively compact domain with smooth smooth boundary, the p -fundamental
tone λ ∗

p(Ω) coincides with the first eigenvalue λ1,p(Ω) = infσp of the following non-
linear Dirichlet eigenvalue problem of the p -Laplacian on Ω{

Δpu = −λ |u|p−2u, in Ω,

u = 0, on ∂Ω.
(2.5)

Let M be a complete noncompact Riemannian manifold. Denote by B(q,r) a
geodesic ball, with center q and radius r , on M . According to Rayleigh’s Theorem and
the Max-min principle, the first eigenvalue λ1,p(B(q,r)) of problem (2.5) on B(q,r)
can be chracterized by

λ1,p(B(q,r)) = inf

{∫
B(q,r)‖∇ f‖pdv∫

B(q,r) | f |pdv

∣∣∣∣ f ∈W 1,p
0 (B(q,r)), f 	= 0

}
. (2.6)

It is known (cf. [4]) that λ1,p(B(q,r)) decreases as r increases and then it has a limit
independent of the choice of the center q . Thus the first eigenvalue of the p -Laplacian
on M is defined by

λ1,p(M) = lim
r→∞

λ1,p(B(q,r)). (2.7)

Proof of Theorem 1 Let φ : M ↪→N be an isometric immersion, ρ(x) be the geodesic
measured function on N from a fixed point x0 ∈ N \M to x . From the proof of [1], we
know that

Δ(ρ ◦φ) � (n−1)c−n‖H‖. (2.8)

Set r = ρ ◦φ . Taking f ∈C∞
0 (M) , we have

div(| f |p∇r) = 〈∇| f |p,∇r〉+ | f |pΔr

� −p| f |p−1‖∇ f‖+(n−1)c| f |p−n| f |p‖H‖ (2.9)

by using the Cauchy-Bunyakovsky-Schwarz inequality. Integrating both sides of the
inequality (2.9) over M , and using the divergence theorem, we derive

0 � −p
∫
M
| f |p−1‖∇ f‖dv+(n−1)c

∫
M
| f |pdv−n

∫
M
| f |p‖H‖dv. (2.10)
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Hoffman and Spruck [6] showed that if the ambient manifold has non-positive sectional
curvature, then the following L1 -Sobolev inequality

(∫
M

h
n

n−1 dv

) n−1
n

� D(n)
∫

M
(‖∇h‖+n‖H‖h)dv (2.11)

holds for any h ∈C1
0(M) . Hence, using (2.11), we deduce

∫
M
| f |p‖H‖dv �

(∫
M
‖H‖ndv

) 1
n
(∫

M
| f | pn

n−1 dv

) n−1
n

� D(n)‖H‖n

∫
M

(
p| f |p−1‖∇ f‖+n| f |p‖H‖)dv,

(2.12)

where ‖H‖n = (
∫
M ‖H‖ndv)

1
n . It can be rewritten as∫

M
| f |p‖H‖dv � pD(n)‖H‖n

1−nD(n)‖H‖n

∫
M
| f |p−1‖∇ f‖dv. (2.13)

Thereby, using (2.13), the inequality (2.10) can be converted to

0 �− p
∫
M
| f |p−1‖∇ f‖dv− npD(n)‖H‖n

1−nD(n)‖H‖n

∫
M
| f |p−1‖∇ f‖dv

+(n−1)c
∫
M
| f |pdv

=− p
1−nD(n)‖H‖n

∫
M
| f |p−1‖∇ f‖dv+(n−1)c

∫
M
| f |pdv.

(2.14)

The Young inequality shows: for any α,β > 0, if 1
s + 1

t = 1, then it holds

αβ � αs

s
+

β t

t
. (2.15)

It implies that for any ε > 0, the next inequality holds:

αβ � εαs +(εs)−
t
s
1
t

β t . (2.16)

Therefore, taking α = | f |p−1| , β = ‖∇ f‖ , s = p
p−1 and t = p in (2.16), we obtain

| f |p−1‖∇ f‖ � ε(| f |p−1)
p

p−1 +(ε
p

p−1
)1−p 1

p
‖∇ f‖p, (2.17)

where ε is a positive constant to be determined later. Then it follows from (2.14) and
(2.17) that

0 �− 1
1−nD(n)‖H‖n

∫
M

[
pε| f |p +

(
ε

p
p−1

)1−p

‖∇ f‖p

]
dv

+(n−1)c
∫
M
| f |pdv.

(2.18)
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It implies that

∫
M
‖∇ f‖pdv �

[
(n−1)c

(
1−nD(n)‖H‖n

)
− pε

](
ε

p
p−1

)p−1 ∫
M
| f |pdv. (2.19)

Consider the function

ζ (ε) = (n−1)c
(

1−nD(n)‖H‖n

)
ε p−1− pε p.

Now we calculate the maximum of this function. According to

ζ ′(ε) = ε p−2
[
(p−1)(n−1)c

(
1−nD(n)‖H‖n

)
− p2ε

]
, (2.20)

the critical points of ζ are given by

ε1 = 0 and ε2 =
p−1
p2 (n−1)c

(
1−nD(n)‖H‖n

)
.

Moreover, we have

ζ ′′(ε) = (p−1)ε p−3
[
(p−2)(n−1)c

(
1−nD(n)‖H‖n

)
− p2ε

]
. (2.21)

It is from a straightforward calculation that the function ζ (ε) takes the maximum

ζ (ε2) =
(p−1)p−1(n−1)pcp

(
1−nD(n)‖H‖n

)p

p2p−1 (2.22)

at the point ε2 . Taking ε = ε2 in (2.19), we find that the Rayleigh quotient satisfies

∫
M ‖∇ f‖pdv∫

M | f |pdv
�

(n−1)pcp

(
1−nD(n)‖H‖n

)p

pp . (2.23)

According to (2.6), (2.7) and (2.23), we know that (1.8) is true. This completes the the
proof of Theorem 1. �

3. Proof of Theorem 2 for the weighted p -Laplacian

In this section, we study eigenvalue estimate for the weighted p -Laplacian on a
smooth metric measure space and give the proof of Theorem 2.

A smooth metric measure space (M,g,e−ϕdv) is actually a Riemannian manifold
equipped with some measure which is conformal to the usual Riemannian measure. For
every smooth function u on M , the weighted p -Laplacian Δp,ϕ can also defined by

Δp,ϕu = e−ϕdiv(eϕ‖∇u‖p−2∇u).
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Consider the following nonlinear Dirichlet eigenvalue problem of the weighted p -
Laplacian Δp,ϕ on B(q,r){

Δp,ϕu = −λ |u|p−2u, in B(q,r),
u = 0, on ∂B(q,r).

(3.1)

Similar to the case of the p-Laplacian, the first Dirichlet eigenvalue of problem (3.1) of
the weighted p-Laplacian Δp,ϕ on B(q,r) can be characterized by

λ1,p,ϕ(B(q,r)) = inf

{∫
B(q,r) ‖∇ f‖pe−ϕdv∫

B(q,r) | f |pe−ϕdv

∣∣∣∣ f ∈W 1,p
0 (B(q,r))

}
. (3.2)

Then the first eigenvalue of the weighted p -Laplacian Δp,ϕ on M can be defined by

λ1,p,ϕ(M) = lim
r→∞

λ1,p,ϕ(B(q,r)). (3.3)

It was proved in [8] that the infimum

ςp,ϕ(M) = in f

{∫
M
‖∇ f‖pe−ϕdv

∣∣∣∣ f ∈W 1,p(M),
∫

M
| f |pe−ϕdv = 1,

∫
M
| f |p−2ue−ϕdv = 0

}

is achieved by a C1,α eigenfunction u which satisfies the Euler-Lagrange equation

Δp,ϕu = −ςp,ϕ(M)|u|p−2u.

In order to prove Theorem 2, we need the following lemma obtained by Du and
Mao [4].

LEMMA 1. Assume that (M,g,e−ϕdv) is an n-dimensional smooth metric mea-
sure space with M being a submanifold in the hyperbolic space H

m(−1) . Then we
have

Δϕ coshr = ncoshr+ 〈H,
−
∇r〉|M · sinhr− sinhr ·g(∇r,∇ϕ) (3.4)

and

Δϕr =
(
n−‖∇r‖2)cothr+ 〈H,

−
∇r〉|M −g(∇r,∇ϕ), (3.5)

where r is measured from a fixed point in H
m(−1)\M.

Now we give the proof of Theorem 2.

Proof of Theorem 2 Let r denote the distant measured function from a fixed point in
H

m(−1)\M . Taking f ∈C∞
0 (Ω) , we have

div(| f |pe−ϕ∇r) = g(∇(| f |p),∇r)e−ϕ + | f |pe−ϕΔr−| f |pe−ϕg(∇r,∇ϕ). (3.6)
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Denote by
−
∇ the gradient operator on H

m(−1) . Then we know that ‖
−
∇r‖ = 1. Hence

it implies |∇r| � 1. Due to Lemma 1 of [4], we have

Δϕr = (n−‖∇r‖2)cothr+ 〈H,
−
∇r〉|M −g(∇r,∇ϕ)

� n−1−‖H‖ · ‖
−
∇r‖−‖∇ϕ‖ · ‖∇r‖

� n−1−κ−C.

(3.7)

Combining (3.6) and (3.7), and using the Cauchy-Bunyakovsky-Schwarz inequality, we
can obtain

div(| f |pe−ϕ∇r) = g(∇| f |p,∇r)e−ϕ + | f |pe−ϕΔϕr

�
[
− p| f |p−1‖∇ f‖+(n−1−κ−C)| f |p

]
e−ϕ .

(3.8)

Similar to (2.17), it follows from the Young inequality that

− p| f |p−1‖∇ f‖ � −pε| f |p −
(

ε
p

p−1

)1−p

‖∇ f‖p (3.9)

for all ε > 0. Substituting (3.9) into (3.8), we get

div(| f |p∇re−ϕ) �
[
− pε| f |p−

(
ε

p
p−1

)1−p

‖∇ f‖p

+(n−1−κ−C)| f |p
]
e−ϕ ,

(3.10)

where ε is a positive constant to be determined later. Integrating both sides of inequal-
ity (3.10) on M , and using the divergence theorem, we derive

∫
M

[
pε| f |p +

(
ε

p
p−1

)1−p

‖∇ f‖p

]
e−ϕdv �

∫
M

(n−1−κ−C)| f |pe−ϕdv. (3.11)

It implies

∫
M
‖∇ f‖pe−ϕdv � (n−1−κ−C− pε)

(
ε

p
p−1

)p−1 ∫
M
| f |pe−ϕdv. (3.12)

In order to choose a suitable constant ε , we consider the maximum of the function

ξ (ε) = (n−1−κ−C− pε)
(

ε
p

p−1

)p−1

.

Then the derivative of the function ξ (ε) is

ξ ′(ε) = p

(
ε

p
p−1

)p−2 (
n−1−κ−C− p2

p−1
ε
)

.
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Hence we can get two critical points of the function ξ (ε) as follows

ε1 = 0 and ε2 =
p−1
p2 (n−1−κ−C).

By a direct calculation, we have

ξ ′′(ε) =
p2

p−1

(
ε

p
p−1

)p−3 [
(p−2)(n−1−κ−C)− p2ε

]
.

Hence, noticing that κ < n−1−C and p > 1, we find that

ξ ′′(ε2) = − p3

p−1

(
n−1−κ−C

p

)p−2

< 0.

Consequently, we find that the function ξ (ε) takes the maximum

ξ (ε2) =
(

n−1−κ−C
p

)p

.

Taking ε = ε2 in (3.12), we derive
∫
M ‖∇ f‖pe−ϕdv∫

M | f |pe−ϕdv
� 1

pp (n−1−κ−C)p. (3.13)

Therefore, we know that (1.12) holds according to (3.2), (3.3) and (3.13). This finishes
the proof of Theorem 2. �
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