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ON THE ITERATED MEAN TRANSFORMS OF OPERATORS

SUNGEUN JUNG, EUNGIL KO AND MEE-JUNG LEE ∗

(Communicated by M. Praljak)

Abstract. Let T = U |T | be the polar decomposition of an operator T ∈ L (H ) . For given
s,t � 0 , we say that T̂s,t := sU |T |+ t|T |U is the weighted mean transform of T . In this paper,

we study properties of the k -th iterated weighted mean transform T̂ (k)
s,t of T = U |T | when

U is unitary. In particular, we give the polar decomposition of such T̂ (k)
s,t and investigate its

applications. Finally, we consider the iterated weighted mean transforms of a weighted shift.

1. Introduction

Let H be a separable complex Hilbert space and let L (H ) denote the algebra
of all bounded linear operators on H . If T ∈ L (H ) , we write σ(T ) , σp(T ) , and
σap(T ) for the spectrum, the point spectrum, and the approximate point spectrum of
T , respectively. For 0 < p < ∞ , we say that an operator T ∈ L (H ) is p -hyponormal
if (T ∗T )p � (TT ∗)p . In particular, 1-hyponormal (resp. 1

2 -hyponormal) operators
are said to be hyponormal (resp. semi-hyponormal). By Löwner-Heinz inequality, p -
hyponormality implies q -hyponormality for 0 < q < p < ∞ .

A closed subspace M of H is called an invariant subspace for an operator T ∈
L (H ) if TM ⊂ M . The collection of all subspaces of H invariant under T is
denoted by Lat(T ) . We say that M ⊂H is a hyperinvariant subspace for T ∈L (H )
if M is an invariant subspace for every S ∈ L (H ) commuting with T (see [15] for
more details).

For an operator T ∈L (H ) , there exists a unique polar decomposition T =U |T | ,
where |T | = (T ∗T )

1
2 and U is the partial isometry satisfying ker(U) = ker(T ) . Un-

der this polar decomposition, we define the operator T̃ A := |T | 1
2U |T | 1

2 , so-called the
Aluthge transform of T . Taking the Aluthge transform, we obtain the advantages to
understand the structure of the original operator. For example, it is known that if
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T ∈ L (H ) is p -hyponormal, then T̃ A is (p + 1
2)-hyponormal (see [1]). Further-

more, if T̃ A has a nontrivial invariant subspace, then so does T (see [6]). We refer to
[1], [4],[5], [6], [7], [8], and [10] for the Aluthge transforms.

For an operator T ∈ L (H ) with polar decomposition T = U |T | , we define the
weighted mean transform of T as

T̂s,t := sT + tT̃D = sU |T |+ t|T |U,

where s and t are nonnegative real numbers and T̃ D denotes the Duggal transform of
T given by T̃D := |T |U (see [9], [13], etc.). In particular, if s = t = 1

2 ,

T̂1
2 , 1

2
:=

1
2
(T + T̃D)

is called the mean transform of T .
The mean transform was introduced recently in [11]. According to [9], there are

several connections between an operator and its mean transforms in terms of spectral
and local spectral theory. Note that every operator T ∈ L (H ) satisfies that ‖T̂s,t‖ �
(s+ t)‖T‖ for s, t � 0.

Given s, t � 0, the k -th iterated weighted mean transform of an operator T ∈
L (H ) is defined as T̂ (1)

s,t = T̂s,t and T̂ (k+1)
s,t =

̂
(T̂ (k)

s,t )s,t for every positive integer k .

We note that T̂ (k)
0,1 is the k -th iterated Duggal transform and T̂ (1)

0,1 = T̃ D . In [9], S.
Jung, E. Ko and S. Park showed that if W is a weighted shift with weights {βn}∞

n=0 of

positive real numbers, then Ŵ (k)
1
2 , 1

2
is hyponormal if and only if

k

∑
n=0

(
k
n

)
(β j+k −β j+k+1) � 0

for each nonnegative integer j . Thus, the hyponormality of a weighted shift is pre-
served under its iterated weighted mean transforms.

In this paper, we study properties of the k -th iterated weighted mean transform

T̂ (k)
s,t of T = U |T | when U is unitary. In particular, we give the polar decomposition

of such T̂ (k)
s,t and investigate its applications. Finally, we consider the iterated weighted

mean transforms of a weighted shift.

2. Preliminaries

An operator T ∈ L (H ) is said to have the single-valued extension property (or
SVEP) if for every open set G in C and every analytic function f : G→H with (T −
z) f (z) ≡ 0 on G , we have f (z) ≡ 0 on G . For an operator T ∈ L (H ) and a vector
x∈H , the set ρT (x) , called the local resolvent of T at x , consists of elements z0 in C

such that there exists an H -valued analytic function f (z) defined in a neighborhood of
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z0 which verifies (T − z) f (z) ≡ x . The local spectrum of T at x is given by σT (x) :=
C \ρT (x) . Moreover, we define the local spectral subspace of T as HT (F) := {x ∈
H : σT (x) ⊂ F} , where F is a subset of C . An operator T ∈ L (H ) is said to have
the Dunford’s property (C) if HT (F) is closed for each closed subset F of C. We say
that T ∈ L (H ) has the Bishop’s property (β ) if for every open subset G of C and
every sequence fn : G → H of H -valued analytic functions such that (T − z) fn(z)
converges uniformly to 0 in norm on compact subsets of G , then fn(z) converges
uniformly to 0 in norm on compact subsets of G . The following implications are well
known (see [3] and [12] for more details):

Bishop’s property (β ) ⇒ Dunford’s property (C) ⇒ SVEP.

3. Main results

In this section, we study the iterated weighted mean transforms T̂ (k)
s,t of an operator

T ∈ L (H ) and give various connections between T and T̂ (k)
s,t . If t = 0, then T̂ (k)

s,t
becomes a scalar multiple of T , and hence we may assume that t > 0. We first give the
polar decomposition of the iterated weighted mean transforms of operators.

THEOREM 1. Let T =U |T | be the polar decomposition of an operator T ∈L (H )
where U is unitary. Suppose that s � 0, t > 0, and k is a positive integer k . Then T̂ (k)

s,t
has the polar decomposition

T̂ (k)
s,t = U |T̂ (k)

s,t |
where

|T̂ (k)
s,t | =

k

∑
j=0

(
k
j

)
sk− jt jU∗ j|T |U j.

Moreover, if T is invertible, then (̂T−1)
(k)

s,t has the polar decomposition

(̂T−1)
(k)

s,t = U∗|(̂T−1)
(k)

s,t |

where

|(̂T−1)
(k)

s,t | =
k

∑
j=0

(
k
j

)
sk− jt jU j|T ∗|−1U∗ j =

k

∑
j=0

(
k
j

)
sk− jt jU j+1|T |−1U∗ j+1.

Proof. In order to find the polar decomposition of T̂ (k)
s,t , we use the induction on k .

Since U is unitary, it is evident that T̂s,t = U(s|T |+ tU∗|T |U) . Moreover, we get that

(T̂s,t)∗T̂s,t = (s|T |U∗ + tU∗|T |)(sU |T |+ t|T |U)
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= s2|T |2 + t2U∗|T |2U + stU∗|T |U |T |+ st|T |U∗|T |U
= (s|T |+ tU∗|T |U)2,

which gives |T̂s,t | = s|T |+ tU∗|T |U . It remains to prove ker(T̂s,t) = ker(U) = {0} . If
x ∈ ker(T̂s,t) , then

0 = 〈|T̂s,t |x,x〉 = s〈|T |x,x〉+ t〈U∗|T |Ux,x〉.
Since both |T | and U∗|T |U are positive operators and t > 0, we have 〈U∗|T |Ux,x〉 =
0, i.e., |T | 1

2Ux = 0. Since ker(|T | 1
2 ) = ker(U) = {0} , we get that x = 0, namely

ker(T̂s,t) = {0} .
We now assume that the result is true for k = n . Then

T̂ (n+1)
s,t = sU |T̂ (n)

s,t |+ t|T̂ (n)
s,t |U

= U
( n

∑
j=0

(
n
j

)
sn+1− jt jU∗ j|T |U j

)
+UU∗

( n

∑
j=0

(
n
j

)
sn− jt j+1U∗ j|T |U j

)
U

= U
( n

∑
j=0

(
n
j

)
sn+1− jt jU∗ j|T |U j +

n+1

∑
j=1

(
n

j−1

)
sn+1− jt jU∗ j|T |U j

)
= U

(n+1

∑
j=0

(
n+1

j

)
sn+1− jt jU∗ j|T |U j

)
. (1)

Since U∗ j|T |U j � 0 for each nonnegative integer j , it is not difficult to show that

|T̂ (n+1)
s,t | =

n+1

∑
j=0

(
n+1

j

)
sn+1− jt jU∗ j|T |U j

and ker(|T̂ (n+1)
s,t |) = ker(U) = {0} . Hence, (1) is the polar decomposition of T̂ (n+1)

s,t .
If T is invertible, then U is unitary and

T−1 = |T |−1U∗ = (U∗|T ∗|U)−1U∗ = U∗|T ∗|−1.

Since (T−1)∗T−1 = (TT ∗)−1 = (|T ∗|−1)2 , we have |T−1| = |T ∗|−1 . Moreover, since
ker(T−1) = ker(U∗) = {0} , the factorization T−1 = U∗|T ∗|−1 is the polar decom-

position of T−1 . Using the polar decomposition of T̂ (k)
s,t , we obtain that (̂T−1)

(k)

s,t =

U∗|(̂T−1)
(k)

s,t | is the polar decomposition of (̂T−1)
(k)

s,t with

|(̂T−1)
(k)

s,t | =
k

∑
j=0

(
k
j

)
sk− jt jU j|T ∗|−1U∗ j.

Since |T ∗|−1 = U |T |−1U∗ , the latter representation also holds. �

An operator T ∈ L (H ) is a quasiaffinity if it has trivial kernel and dense range.
Remark that the partial isometric part U of a quasiaffinity T = U |T | must be unitary.
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COROLLARY 1. Let s � 0 and t > 0. If T ∈L (H ) is a semi-hyponormal oper-

ator with dense range, then T̂ (k)
s,t is semi-hyponormal for every positive integer k .

Proof. Assume that T = U |T | is the polar decomposition and k is any positive
integer. If T is semi-hyponormal and has dense range, then ker(T ) ⊂ ker(T ∗) = {0}
by [1], which ensures that T is a quasiaffinity and U is unitary. From Theorem 1, we
obtain that

|T̂ (k)
s,t |− |(T̂ (k)

s,t )∗| = |T̂ (k)
s,t |−U |T̂ (k)

s,t |U∗

=
k

∑
j=0

(
k
j

)
sk− jt jU∗ j(|T |−U |T |U∗)U j

=
k

∑
j=0

(
k
j

)
sk− jt jU∗ j(|T |− |T ∗|)U j

� 0.

Hence T̂ (k)
s,t is semi-hyponormal. �

COROLLARY 2. Assume T = U |T | is the polar decomposition of T in L (H )
where U is unitary. If k is a positive integer, then T̂ (k)

0,1 is hyponormal if and only if

T is hyponormal. In particular, T̂ (k)
0,1 is hyponormal for some positive integer k , then

T has the Bishop’s property (β ) , the Dunford’s property (C) , and the single-valued
extension property.

Proof. If T̂ (k)
0,1 is hyponormal for some positive integer k , then Theorem 1 implies

that

0 � (T̂ (k)
0,1 )∗(T̂ (k)

0,1 )− (T̂ (k)
0,1 )(T̂ (k)

0,1 )∗

= (U∗k|T |Uk−1)(U∗k−1|T |Uk)− (U∗k−1|T |Uk)(U∗k|T |Uk−1)
= U∗k|T |2Uk −U∗k−1|T |2Uk−1.

Hence U∗k|T |2Uk � U∗k−1|T |2Uk−1 , i.e., |T |2 � U |T |2U∗ . Therefore T is hyponor-
mal.

Conversely, if T is hyponormal and k is any positive integer, then |T |2 �U |T |2U∗ .
Since U is unitary, we get that U∗|T |2U � |T |2 . Hence

(T̂ (k)
0,1 )∗(T̂ (k)

0,1 )− (T̂ (k)
0,1 )(T̂ (k)

0,1 )∗ = U∗k−1(U∗|T |2U −|T |2)Uk−1 � 0.

Hence T̂ (k)
0,1 is hyponormal.

If T̂ (k)
0,1 is hyponormal for some positive integer k , then T is hyponormal. Every

hyponormal operator has the Bishop’s property (β ) (see [14]). So, we complete the
proof by [3] or [12]. �

Recall that an operator T ∈ L (H ) is called quasinormal if T (T ∗T ) = (T ∗T )T .
We say that T ∈ L (H ) is binormal if (T ∗T )(TT ∗) = (TT ∗)(T ∗T ) . It is known that



602 S. JUNG, E. KO AND M.-J. LEE

quasinormal operators are hyponormal and binormal. For an operator T ∈ L (H )
with polar decomposition T = U |T | and s,t > 0, it is easy to see that the equation
T̂s,t = (s+ t)T is equivalent to |T |U =U |T | , that is, T is quasinormal.

COROLLARY 3. Let T ∈ L (H ) have the polar decomposition T =U |T | where
U is unitary. Suppose that s,t > 0 and k is a positive integer. If U2|T | = |T |U2 , then
the following statements hold:

(i) T̂ (k)
s,t is quasinormal if and only if s = t or T is quasinormal.

(ii) T̂ (k)
s,t is binormal if and only if s = t or T is binormal.

In particular, T̂ (k)
0,1 is quasinormal (resp. binormal) if and only if T is quasinormal (resp.

binormal).

Proof. (i) From Theorem 1, we know that T̂ (k)
s,t is quasinormal if and only if U

and |T̂ (k)
s,t | commute where |T̂ (k)

s,t | = ∑k
j=0

(k
j

)
sk− jt jU∗ j|T |U j . Note that

U |T̂ (k)
s,t | =

k

∑
j=0

(
k
j

)
sk− jt jUU∗ j|T |U j

= skU |T |+
k

∑
j=1

(
k
j

)
sk− jt jU∗ j−1|T |U j.

Since U2|T | = |T |U2 , one can compute that

U∗ j−1|T |U j =

{
U∗ j−1U j|T | = U |T | if j is even

|T |U∗ j−1U j = |T |U if j is odd.

Thus, it holds that

U |T̂ (k)
s,t | = ∑

0� j�k
j : even

(
k
j

)
sk− jt jU |T |+ ∑

0� j�k
j : odd

(
k
j

)
sk− jt j|T |U

= akU |T |+bk|T |U

where ak = (s+t)k+(s−t)k
2 and bk = (s+t)k−(s−t)k

2 . Similarly, we have

|T̂ (k)
s,t |U =

k

∑
j=0

(
k
j

)
sk− jt jU∗ j|T |U j+1

= ∑
0� j�k
j : even

(
k
j

)
sk− jt j|T |U + ∑

0� j�k
j : odd

(
k
j

)
sk− jt jU |T |

= ak|T |U +bkU |T |.
Since

U |T̂ (k)
s,t |− |T̂ (k)

s,t |U = (ak −bk)(U |T |− |T |U),
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it follows that T̂ (k)
s,t is quasinormal if and only if ak = bk or U |T |= |T |U . Since ak = bk

is equivalent to s = t , we obtain the quasinormality of T̂ (k)
s,t exactly when s = t or T is

quasinormal.

(ii) Note that T̂ (k)
s,t is binormal if and only if

|T̂ (k)
s,t ||(T̂ (k)

s,t )∗| = |(T̂ (k)
s,t )∗||T̂ (k)

s,t |. (2)

Claim. If k is any positive integer, then{
|T̂ (k)

s,t | = ak|T |+bk|T ∗|
|(T̂ (k)

s,t )∗| = bk|T |+ak|T ∗|

where ak = (s+t)k+(s−t)k
2 and bk = (s+t)k−(s−t)k

2 .

Since U2|T | = |T |U2 , we have |T ∗| = U |T |U∗ = U∗|T |U . This implies that{
|T̂s,t | = s|T |+ t|T∗| = a1|T |+b1|T ∗|
|(T̂s,t)∗| = U |T̂s,t |U∗ = b1|T |+a1|T ∗|.

Hence, the claim is true for k = 1. If the claim holds for k = n , then

|T̂ (n+1)
s,t | = |̂(T̂ (n)

s,t )s,t |
= a1|T̂ (n)

s,t |+b1|(T̂ (n)
s,t )∗|

= a1(an|T |+bn|T ∗|)+b1(bn|T |+an|T ∗|)
= (a1an +b1bn)|T |+(a1bn +b1an)|T ∗|
= an+1|T |+bn+1|T ∗|

and

|(T̂ (n+1)
s,t )∗| = U |T̂ (n+1)

s,t |U∗ = bn+1|T |+an+1|T ∗|.

Therefore, our claim is satisfied for all positive integers k .

Applying the claim above, we see that

|T̂ (k)
s,t ||(T̂ (k)

s,t )∗|− |(T̂ (k)
s,t )∗||T̂ (k)

s,t |
= (ak|T |+bk|T ∗|)(bk|T |+ak|T ∗|)− (ak|T ∗|+bk|T |)(bk|T ∗|+ak|T |)
= (a2

k −b2
k)(|T ||T ∗|− |T∗||T |).

According to (2), we conclude that T̂s,t is binormal if and only if ak = bk or T is
binormal. So, we complete the proof. �

REMARK 1. In [11], the authors showed that if T ∈L (H ) has the polar decom-
position T = U |T | where U2|T | = |T |U2 and U is unitary, then T̂1

2 , 1
2

is quasinormal.
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We give some properties for the case when s = t in Corollary 3, as follows:

COROLLARY 4. Let T =U |T | be the polar decomposition of T ∈L (H ) , where

U is unitary, and let s > 0. If U2|T | = |T |U2 , then T̂ (k)
s,s is quasinormal and T̂ (k)

s,s =
(2s)k−1T̂s,s for each positive integer k .

Proof. We know from Corollary 3 that T̂ (k)
s,s is quasinormal for each positive inte-

ger k . In particular, T̂s,s is quasinormal and then T̂ (2)
s,s = 2sT̂s,s . Since T̂ (2)

s,s is quasinor-

mal, it follows that T̂ (3)
s,s = 2sT̂ (2)

s,s = (2s)2T̂s,s and T̂ (3)
s,s is also quasinormal. Repeating

this method, we derive that T̂ (k)
s,s is quasinormal and T̂ (k)

s,s = (2s)k−1T̂s,s for all positive
integers k . �

We next provide some examples for Theorem 1 and Corollary 3.

EXAMPLE 1. Let T =
(

0 I
A 0

)
∈ L (H ⊕H ) where A is a quasiaffinity that is

not an isometry. Then the polar decomposition T = U |T | is given by U =
(

0 I
UA 0

)
and |T |=

(|A| 0
0 I

)
where UA is the partial isometric part of A . Note that UA is unitary

since A is a quasiaffinity. Fix s � 0 and t > 0. A simple calculation shows that

T̂s,t =
(

0 s+ t|A|
sA+ tUA 0

)
and T̂s,t has the polar decomposition T̂s,t = U |T̂s,t | with

U =
(

0 I
UA 0

)
and |T̂s,t | =

(
s|A|+ t 0

0 s+ t|A|
)

due to Theorem 1. Observe that T̂s,t is not necessarily binormal, although T is bi-
normal. But, if A is quasinormal, then U2|T | = |T |U2 . Hence, T̂s,t is binormal by
Corollary 3. We also indicate that T̂s,t is not quasinormal whenever s �= t .

For another example, we consider some finite matrices.

EXAMPLE 2. Consider the matrix T =

⎛⎝0 0 1
1 2 0
2 −1 0

⎞⎠ on C3 . Then it is straight-

forward to see that |T | =

⎛⎝√
5 0 0

0
√

5 0
0 0 1

⎞⎠ and U = T |T |−1 =

⎛⎜⎝ 0 0 1
1√
5

2√
5

0
2√
5
− 1√

5
0

⎞⎟⎠ . Using

Theorem 1, we know that

|T̂s,t | = s|T |+ tU∗|T |U
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= s

⎛⎝√
5 0 0

0
√

5 0
0 0 1

⎞⎠+ t

⎛⎜⎝ 4+
√

5
5

−2+2
√

5
5 0

−2+2
√

5
5

1+4
√

5
5 0

0 0
√

5

⎞⎟⎠
=

⎛⎜⎝
√

5s+ 4+
√

5
5 t −2+2

√
5

5 t 0
−2+2

√
5

5 t
√

5s+ 1+4
√

5
5 t 0

0 0 s+
√

5t

⎞⎟⎠
for s � 0 and t > 0. Therefore, the weighted mean transform T̂s,t has the polar decom-
position

T̂s,t = U |T̂s,t | =

⎛⎜⎝ 0 0 1
1√
5

2√
5

0
2√
5
− 1√

5
0

⎞⎟⎠
⎛⎜⎝
√

5s+ 4+
√

5
5 t −2+2

√
5

5 t 0
−2+2

√
5

5 t
√

5s+ 1+4
√

5
5 t 0

0 0 s+
√

5t

⎞⎟⎠
for s � 0 and t > 0. We note that T is binormal, but T̂s,t is not for any s � 0 and t > 0;
indeed,

|(T̂s,t)∗| = U |T̂s,t |U∗ =

⎛⎝s+
√

5t 0 0
0

√
5(s+ t) 0

0 0
√

5s+ t

⎞⎠
does not commute with |T̂s,t | . Hence U2|T | �= |T |U2 by Corollary 3. When s = t = 1

2 ,

we also compute that none of T̂ (2)
1
2 , 1

2
, T̂ (10)

1
2 , 1

2
, and T̂ (20)

1
2 , 1

2
are binormal using the Maple

program.

Recall that an operator T is normal if T ∗T − TT ∗ = 0 and an operator T is
essentially normal if T ∗T −TT ∗ is compact. Let π : L (H ) → L (H )/K (H ) be
the Calkin map for the ideal K (H ) of compact operators on H .

THEOREM 2. If T =U |T | is essentially normal, then π(T ) = π(T̂ (k)
0,1 ) , so T̂ (k)

0,1 is

essentially normal. Conversely, if T̂ (k)
0,1 is essentially normal, and U is unitary, then T

is essentially normal.

Proof. If T is essentially normal, then T ∗T − TT ∗ is compact, and we obtain
that |T |2 −U |T |2U∗ and |T |2U −U |T |2 are also compact. That is, π(U) commutes
with π(|T |2) . Hence π(U) commutes with the positive square root π(|T |) of π(|T |2) .
Therefore,

π(T̂0,1) = π(|T |U) = π(|T |)π(U) = π(U)π(|T |) = π(T ),

i.e., Thus T̂0,1 is essentially normal. Assume that π(T ) = π(T̂ (n)
0,1 ) for some positive

integer n . Then we have that

π(T̂ (n+1)
0,1 ) = π(|T̂ (n)

0,1 |U) = π(|T̂ (n)
0,1 |)π(U) = π(U)π(|T̂ (n)

0,1 |) = π(T̂ (n)
0,1 ) = π(T ),
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implying that π(T ) = π(T̂ (k)
0,1 ) and T̂ (k)

0,1 is essentially normal for each positive integer
k by induction.

Conversely, if T̂ (k)
0,1 is essentially normal, and U is unitary, then we have that

T̂ (k)∗
0,1 T̂ (k)

0,1 − T̂ (k)
0,1 T̂ (k)∗

0,1 is compact. Therefore, we ensure that |T̂ (k)
0,1 |2 −U |T̂ (k)

0,1 |2U∗ and

|T̂ (k)
0,1 |2U −U |T̂ (k)

0,1 |2 are also compact. It follows that π(U) commutes with the positive

square root π(|T̂ (k)
0,1 |) of π(|T̂ (k)

0,1 |2) . Thus

π(T̂ (k)
0,1 ) = π(U)π(|T̂ (k)

0,1 |) = π(|T̂ (k)
0,1 |)π(U) = π(T̂ (k−1)

0,1 ),

i.e., T̂ (k−1)
0,1 is essentially normal. By the induction hypothesis, T is essentially normal.

�

EXAMPLE 3. Let S =
(

0 Q2

I 0

)
where Q is a positive semidefinite operator in

L (H ) with trivial kernel. Then S∗S =
(

I 0
0 Q4

)
and SS∗ =

(
Q4 0
0 I

)
. Hence |S| =(

I 0
0 Q2

)
and S =

(
0 Q2

I 0

)
= U

(
I 0
0 Q2

)
where U =

(
0 I
I 0

)
. Thus Ŝ(1)

0,1 = |S|U =(
0 I
Q2 0

)
and U is unitary. Hence S∗S− SS∗ =

(
I−Q4 0

0 Q4− I

)
and (Ŝ(1)

0,1)
∗Ŝ(1)

0,1 −

Ŝ(1)
0,1(Ŝ

(1)
0,1)

∗ =
(

Q4− I 0
0 I−Q4

)
. If I −Q4 is compact, then S and Ŝ(1)

0,1 are essenially

normal.

Let us recall Berberian’s technique in [2]. Denote by M a linear space of all
sequences {xn} ⊂ H such that supn ‖xn‖ < ∞ . Consider the quotient space M/N
where N := {{xn} ∈ M : glim{‖xn‖} = 0} and glim is Banach generalized limit (see
[2] or [16] for more details). We will represent an equivalence class of M/N containing
a sequence {xn} as [{xn}] . It is easy to show that

〈x◦,y◦〉 = glim{〈xn,yn〉}, x◦ = [{xn}],y◦ = [{yn}] ∈ M/N

is an inner product in M/N . Moreover, M/N can be completed to a Hilbert space
H ◦ and the Hilbert space H ◦ is an extension of H by identifying a vector x ∈ H
with [{x,x,x, · · ·}] ∈ H ◦ . Let T ◦ be the operator on H ◦ determined by the relation
T ◦x◦ = [{Txn}] for x◦ = [{xn}] ∈ H ◦ . Under the same notations as above, the Hilbert
space H ◦ and the mapping ◦ : L (H ) → L (H ◦) satisfy the following proposition.

PROPOSITION 1. [2] Let H be a complex Hilbert space. Then there exist a
Hilbert space H ◦ ⊃ H and a unital linear map ◦ : L (H ) → L (H ◦) such that
(i) (ST )◦ = S◦T ◦ , (T ◦)∗ = (T ∗)◦ , ‖T ◦‖ = ‖T‖ ,
(ii) S◦ � T ◦ whenever S � T ,
(iii) σ(T ) = σ(T ◦) , σap(T ) = σap(T ◦) = σp(T ◦) .
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LEMMA 1. If T = U |T | is the polar decomposition of T in L (H ) , then

T ◦ = U◦|T |◦

is the polar decomposition of T ◦ .

Proof. Since (T ◦)∗T ◦ = (T ∗T )◦ = (|T |2)◦ = (|T |◦)2 and |T |◦ � 0, we have
|T ◦| = |T |◦ . Since T ◦ = U◦|T |◦ , it is enough to show that U◦ is partial isometric
and ker(U◦) = ker(T ◦) . Using UU∗U = U , we see that U◦(U◦)∗U◦ = U◦ and so U◦
is a partial isometry.

To obtain ker(U◦) = ker(T ◦) , let x◦ ∈ ker(T ◦) be given. Write x◦ = y◦+z◦ where
y◦ = [{yn}] and z◦ = [{zn}] for some {yn} ⊂ ker(T )⊥ and {zn} ⊂ ker(T ) . Then z◦ ∈
ker(T ◦) clearly. Since yn ∈ ran(|T |) , choose {wn} ⊂ H such that ‖yn−|T |wn‖ < 1

n .
Since

liminf
n→∞

‖yn−|T |wn‖ � glim{‖yn−|T |wn‖} � limsup
n→∞

‖yn−|T |wn‖,

it holds that

y◦ = |T |◦w◦ ∈ ran(|T |◦) = ran(|T ◦|) = ker(T ◦)⊥

where w◦ = [{wn}] . Since H ◦ = ker(T ◦)⊥⊕ker(T ◦) , we have x◦ = z◦ . Thus we see
that

ker(T ◦) = {x◦ = [{xn}] ∈ H ◦ : {xn} ⊂ ker(T )}.

Since this is true for any T ∈ L (H ) , we get that

ker(T ◦) = {x◦ = [{xn}] ∈ H ◦ : {xn} ⊂ ker(T )}
= {x◦ = [{xn}] ∈ H ◦ : {xn} ⊂ ker(U)}
= ker(U◦).

Therefore, T ◦ = U◦|T |◦ is the polar decomposition of T ◦ . �

THEOREM 3. Assume that T = U |T | is the polar decomposition of an operator
T ∈ L (H ) where U is unitary. Let s � 0 and t > 0. For each positive integer k ,

(̂T ◦)
(k)
s,t = (T̂ (k)

s,t )◦

and (̂T ◦)
(k)
s,t = U◦|(̂T ◦)

(k)
s,t | is the polar decomposition where

|(̂T ◦)
(k)
s,t | =

k

∑
j=0

(
k
j

)
sk− jt j(U◦)∗ j|T |◦(U◦) j.
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Proof. Since T ◦ has the polar decomposition T ◦ = U◦|T |◦ from Lemma 1, we
obtain that

(̂T ◦)s,t = sU◦|T |◦ + t|T |◦U◦ = (sU |T |+ t|T |U)◦ = (T̂s,t)◦.

Since

(̂T ◦)
(k+1)
s,t =

̂(
(̂T ◦)s,t

)(k)

s,t
= ̂(T̂s,t)◦

(k)

s,t ,

one can show that (̂T ◦)
(k)
s,t = (T̂ (k)

s,t )◦ for each positive integer k using the induction on

k , and the expression of |(̂T ◦)
(k)
s,t | follows by Theorem 1 and Lemma 1. �

COROLLARY 5. Assume T = U |T | is the polar decomposition of T in L (H )
where U is unitary. If s � 0, t > 0, and k is a positive integer, then σ(T̂ (k)

s,t ) =

σ((̂T ◦)
(k)
s,t ) and σap(T̂

(k)
s,t ) = σp((̂T ◦)

(k)
s,t ).

Proof. Since (̂T ◦)
(k)
s,t = (T̂ (k)

s,t )◦ by Theorem 3, we obtain from Proposition 1 that

σ(T̂ (k)
s,t ) = σ((T̂ (k)

s,t )◦) = σ((̂T ◦)
(k)
s,t )

and

σap(T̂
(k)
s,t ) = σp((T̂

(k)
s,t )◦) = σp((̂T ◦)

(k)
s,t ),

as we desired. �

For a bounded sequence {αn}∞
n=0 of positive real numbers, the weighted shift with

weights {αn}∞
n=0 is the operator W : H →H defined by Wen = αnen+1 for all n � 0,

where {en}∞
n=0 denotes an orthonormal basis for H , which will be fixed from now on.

We finally consider the convergence of iterated weighted mean transforms of weighted
shifts. We first note that the iterated weighted mean transforms of a weighted shift is
also a weighted shift, which is obtained from easy computations.

LEMMA 2. Let W be a weighted shift on H with weights {αn} of positive real
numbers, and let the numbers s � 0 and t > 0. For a positive integer k , the k -th iterated

weighted mean transform Ŵ (k)
s,t is the weighted shift with weights {∑k

j=0

(k
j

)
sk− jt jαn+ j}∞

n=0 .

THEOREM 4. Let W be a weighted shift on H with monotone decreasing weights
{αn} of positive real numbers, and let the numbers s � 0 and t > 0 satisfy s+ t = 1.

Then the sequence {Ŵ (k)
s,t }∞

k=1 converges to (infn αn)U in the norm topology, where U
denotes the shift such that Uen = en+1 for all n � 0.
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Proof. Put β = infn αn . Since {αn}∞
n=0 is a decreasing sequence of positive real

numbers, we see that

k

∑
j=0

(
k
j

)
sk− jt jα j �

k

∑
j=0

(
k
j

)
sk− jt jβ = (s+ t)kβ = β

and

‖Ŵ (k)
s,t −βU‖ =

k

∑
j=0

(
k
j

)
sk− jt jα j −β =

k

∑
j=0

(
k
j

)
sk− jt j(α j −β )

by Lemma 2. Let ε > 0 be arbitrary. Since limn→∞ αn = β , choose a positive integer
N such that 0 < αN −β < ε . Assume that k is any integer with k > 2N . Observe that

‖Ŵ (k)
s,t −βU‖ � (α0 −β )

N−1

∑
j=0

(
k
j

)
sk− jt j +(αN −β )

k

∑
j=N

(
k
j

)
sk− jt j

< (α0 −β )Mk
N−1

∑
j=0

(
k
j

)
+ ε

where M := max{s, t} . Since ∑N−1
j=0

(k
j

)
� N

(k
N

)
, it follows that

‖Ŵ (k)
s,t −βU‖< (α0 −β )NMk

(
k
N

)
+ ε � (α0 −β )N

Mkk!
(k−N)!

+ ε.

Since 0 < M < 1, the series ∑∞
k=1

Mkk!
(k−N)! is convergent by the ratio test and hence

limk→∞
Mkk!

(k−N)! = 0. Since ε > 0 was arbitrary, we have limk→∞ ‖Ŵ (k)
s,t −βU‖= 0. �

COROLLARY 6. Let W be a weighted shift in L (H ) with monotone increasing
weights {αn} of positive real numbers, and let the numbers s � 0 and t > 0 satisfy

s+ t = 1. Then {Ŵ (k)
s,t }∞

k=1 converges to (supn αn)U in the norm topology, where U
denotes the shift such that Uen = en+1 for all n � 0.

Proof. Set γ = supn αn . Since {αn} is monotone increasing, we know that the
sequence {∑k

j=0

(k
j

)
sk− jt jαn+ j}∞

n=0 is also monotone increasing. Hence, we obtain
from Lemma 2 that

‖Ŵ (k)
s,t − γU‖= γ −

k

∑
j=0

(
k
j

)
sk− jt jα j =

k

∑
j=0

(
k
j

)
sk− jt j(γ −α j)

for all k . Given ε > 0, there exists a positive integer N such that 0 < γ −αN < ε . Let
k be an integer with k > 2N , and set M = max{s,t} . Applying the proof of Theorem
4, one can derive that

‖Ŵ (k)
s,t − γU‖ < (γ −α0)N

Mkk!
(k−N)!

+ ε
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for all k . Since limk→∞
Mkk!

(k−N)! = 0 and ε > 0 was arbitrary, we complete the proof.
�
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