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Abstract. We derive a new Sawyer’s type sufficient condition for the fractional order Poincare
inequality with weights

(∫
Ω

| f (x)− f v,Ω|q v(x)dx
) 1

q � C
(∫∫
Ω×Ω

| f (x)− f (y)|p ω(x,y)dxdy
) 1

p

to hold in a non-regular domain Ω⊂ Rn of finite volume, where ω(x,y) = |x−y|−n−α pω0(x,y),
0 < α < 1, q � p > 1, f ∈C(Ω), and v(·), ω(·, ·) are positive measurable functions such that
ω1−p′(x, ·)vp′ (·) ∈ L(Ω) a.e. x ∈ Ω and f v,Ω = 1

v(Ω)
∫
Ω

f vdx.

1. Introduction

The aim of this paper is to further investigate the fractional order weighted Poincare’s
inequality

(∫
Ω

| f (x)− f v,Ω|qv(x)dx
) 1

q � C
(∫∫

Ω

| f (x)− f (y)|pω(x,y)dxdy
) 1

p
, (1)

in a bounded domain Ω for q � p > 1 and a continuous function f ∈ C(Ω). In this
inequality v,ω are positive measurable functions, Ω is a finite volume non-regular
domain in Rn, n � 1 and f v,Ω = 1

v(Ω)
∫
Ω

f (x)v(x)dx. It is a well-known open Problem

to find necessary and sufficient conditions on the weights v = v(x) and ω = ω(x,y) so
that (1) holds in very simple domains (see the book [25] and the references therein).
However, such kind of inequalities and sufficiency conditions on a domain Ω ( e.g.
c-John domain, a domain satisfying fat condition on its complementary set, measure
density condition domains, etc.) are subject of many studies. Fractional inequalities
have important applications e.g. in the study of Brownian motion, in the censored stable
processes, in the investigation of transience and boundary behavior of the underlying
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Levi and Markov processes, where the right hand side of the inequalities appears in a
Dirichlet form (see, e.g. [3, 9, 19, 21, 36]). One important reason for that is that such
inequalities find application in interpolation theory, boundedness of maximal function
in Lorentz spaces, and in the study of compactness problems for non-smooth domains.

We continue by giving an elementary background of this type of inequalities. The
Hardy inequality on finite interval (0, l) reads

l∫
0

(1
x

x∫
0

f (t)dt
)p

dx �
( p

p−1

)p
l∫

0

f (x)p dx, (2)

where f is a positive measurable function on (0, l) and p > 1. The constant
( p

p−1

)p
is

sharp and nowadays it is also known that the integral on the right hand side in (2) can

be replaced by
l∫
0

f (x)p
[
1− (x

l

) p−1
p
]
dx.

After the change of variable y = l− x in the left hand side of (2) we get that it is
equal to

l∫
0

( 1
l− y

l∫
y

g(s)ds
)p

dy =
l∫

0

( 1
l− y

l−y∫
0

f (t)dt
)p

dy =
l∫

0

(1
x

x∫
0

f (t)dt
)p

dx,

where g(t) = f (l − t). Changing again the variable t = l− s on the right hand side of
(2), we find that it is equal to

( p
p−1

)p
l∫

0

f (t)p dt =
( p

p−1

)p
l∫

0

f (l− s)p ds =
( p

p−1

)p
l∫

0

g(s)p ds.

Therefore, by (2), it yields that

l∫
0

( 1
l− y

l∫
y

g(s)ds
)p

dy �
( p

p−1

)p
l∫

0

g(s)p ds. (3)

Let u be an absolutely continuous function on R+ satisfying that u(0) = u(l) = 0. Then

u(x)
x(l− x)

=
1
l

(u(x)
x

+
u(x)
l− x

)
=

1
lx

x∫
0

u′(x)dx+
1

l(l− x)

l∫
x

(−u′(x))dx.

By now applying the triangle inequality of norms together with the inequalities (2) and
(3) we get the inequality

l∫
0

∣∣∣ u(x)
x(l− x)

∣∣∣pdx �
( 2p

l(p−1)

)p
l∫

0

|u′(x)|p dx (4)
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for all absolutely continuous functions u(x) on the interval (0, l), with u(0)= u(l) = 0.
J. Necas, in [34], proposed the following extension of (4) for any n dimensional

bounded Lipschitz domain Ω for p > 1 :∫
Ω

| f (x)|p
dist(x,∂Ω)p dx � Cn,p(Ω)

∫
Ω

|∇ f |p dx, f ∈C∞
0 (Ω), (5)

where ∇ f denotes the gradient of f . Moreover, for a fractional scale α ∈ (0,1) exten-
sion of (5), it was suggested the following modeling inequality∫

Ω

| f (x)|p
dist(x,∂Ω)α p dx � Cn,p,α(Ω)

∫∫
Ω×Ω

| f (x)− f (y)|p
|x− y|n+α p dxdy, α p > 1, (6)

where dist(x,∂Ω) denotes the distance from x to the boundary ∂Ω of Ω.
In general, inequality (6) does not hold in non-regular domains. If α p < 1, then

there are examples showing that such inequality fails even for smooth domains (see
e.g. [12, 39]). For this inequality to hold in Lipshitz domains see [4, 10] and for fat
complementary condition domains see [8].

Another extensions of Hardy’s inequality (4) was concentrated around its follow-
ing fractional order analogue. If n � 1, 0 < α < 1, then the inequality∫

Ω

| f (x)|p
|x|α p dx � Cn,α ,p

∫∫
Ω×Ω

| f (x)− f (y)|p
|x− y|n+α p dxdy (7)

holds for all f ∈C∞
0 (Ω) in the case 1 � p < n

α , and for all f ∈C∞
0 (Ω\{0}) in the case

p > n
α . Note that the domain in this inequality need not to be bounded or smooth (for

the case 1 � p < n
α of this inequality see also [28] and [27, Theorems 1, 3 ]). For a

more exact description of the history and current status of such fractional order Hardy
inequalities we refer to Chapter 5 of the new book [25], see also the references therein.

The first study of fractional order Hardy’s type inequalities (7) was started in [17,
20] and after that such research was continued e.g. in [6, 7, 16, 18, 22, 23, 24, 26, 40]
-essentially in one-dimensional cases. An essential use on boundedness and derivative
identities for Hardy’s operator and its conjugate was made in those studies. For the
inequality (7) see also R.L. Frank and R. Seiringer [14, Theorem 1.1] for exact constant
problem, B.Dyda and A.V. Vahakangas [13, Corollary 2] for a generalization of |x|−α p

to regularly varying functions.
There are many generalizations of (7) to the general weighted cases. See Chapter

5 of the book [25] and the references therein. Moreover, it is still an open problem
to find necessary and sufficient conditions on the weights v(x) and ω(x,y) so that the
weighted version of (7) holds even in the one-dimensional case (see p.295 in [25]).
Our study in this paper concerns Poincare’s inequality in non-regular domains. We
refer to R. Hurri-Syrjanen and her coauthors concerning the fractional order Poincare’s
inequality in the c-John domains (see [37, 38])(∫

Ω

| f (x)− f Ω|q∗ dx
) 1

q∗ � C
(∫∫
Ω×Ω

| f (x)− f (y)|p
|x− y|n+α p dxdy

) 1
p
, (8)
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where 0 < α < 1, 1
p − 1

q∗ = α
n and f Ω = 1

|Ω|
∫
Ω

f (x)dx. See also [11]. For this inequality

to hold in smooth domains see V.G. Mazya and T.O. Shaposhnikova [32, 33].
In this paper we are influenced by some ideas from [27, 28, 30, 31]. However, we

derive a much more general inequality which, in particular, do not use Muckenhoupt’s
condition A∞. This allows us to consider more general weights and we can avoid ad-
ditional difficulties with checking the weight assumptions in order to derive effective
sufficient conditions. The obtained much weaker condition (10) below on the pair of
weights v(x) and ω(x,y) in Theorem 1 could be considered as a Sawyer’s type condi-
tion for fractional order Poincare’s inequality (1). Another essential fact is that in our
conditions we do not use integration over all balls, instead we only need to consider
the parts contained in domain Ω (see e.g. Theorem 1). Note especially the Poincare-
Sobolev type inequalities play a fundamental role in the study of qualitative properties
of partial differential equations (especially [15] and also e.g. [1, 2, 29, 30]).

The main result of this paper (Theorem 1) is presented in Section 2. Moreover,
some applications, comparisons with related results and remarks can be found there.
The detailed proof of the main result is given in Section 3.

2. The main result with applications

In this paper we use the following notation:
By C,C1,C2, ... we denote different constants that may change the values, which

are unessential for purposes of the paper, at each appearance.
By Ω we denote an open domain in Rn and by Q(x,r) we denote the Euclidean

ball with center x and radius r. For a measurable set E ⊂ Rn the |E| denotes its Leg-
esgue measure. For a measurable function v and measurable set E, v(E) denotes the
integral of this function over the set E , i.e. v(E) =

∫
E v(x)dx. C(Ω) denotes the class

of continuous functions in Ω.

DEFINITION 1. For a domain Ω we define σΩ as the system of balls:

σΩ =
{

Q = Q(x,t) : x ∈ Ω, 0 < t < d(Ω)
}
. (9)

The main result of this paper reads:

THEOREM 1. (Main) Let q � p > 1, n∈ Z+, 0 < α < 1 and Ω ⊂ Rn be a domain
with finite volume. Suppose that the positive measurable functions v(x),ω(x,y) are
such that

v(·), ω1−p′(x, ·)vp′(·) ∈ L(Ω) a.e. x ∈ Ω,

where ω(x,y) = |x− y|−n−α pω0(x,y).
Then for the inequality (1) to hold ∀ f ∈C(Ω) it is sufficient that

1
|Q∩Ω|

(∫∫
Q∩Ω

ω(x,y)1−p′v(y)p′dxdy
)1/p′

� A
( ∫

Q∩Ω

v(x)dx
)1/q′

(10)
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for some A > 0 and for all Q ∈ σΩ, where, in (1), the constant C = C0A with C0

depending only on n, p and q.

Observe that we do not require that the non-regular domain Ω a priory satisfy any
regularity condition like the conditions (11) or (12) below.

Let the bounded domain Ω ⊂ Rn satisfy the following measure density condition:
there exists a constant δ > 0 such that

|Q∩Ω|� δ |Q| (11)

for any ball Q ∈ σΩ.

Inserting in Theorem 1 v(x) = 1, ω = |x− y|−n−α p with 0 < α < 1 we get the
following assertion for such domains. We remark that this fact is usually deduced from
the extension assertion by Y. Zhou [41]. However, Corollary 1 gives a direct proof (cf.
also [11]).

COROLLARY 1. Let n ∈ Z+, 0 < α < 1, 1 < p < n
α , α

n − 1
p + 1

q∗ = 0 and Ω ⊂ Rn

be a domain with finite volume and satisfying property (11). Then the inequality (8)
holds for any function f ∈C(Ω).

Concerning this inequality in smooth domains see e.g [27, 32]. It is extended to
the c-John domains by R. Hurry-Syrjanen, B. Dyda et al. [11, 37, 38]. Moreover, J.
Bourgain, H. Brezis, and P. Mironescu even found the optimal constant C in (8) when
Ω is a cube, see [5, Theorem 1].

Let s � 1, Ω be a domain satisfying the following property: there exists a c > 0
such that for any Q ∈ σQ it holds that

|Q∩Ω|� cdns
Q · (12)

Inserting in Theorem 1 v(x) = 1, ω(x,y) = |x− y|−n−α p i.e. ω0(x,y) ≡ 1 with
0 < α < 1 we get the following statement for a domain Ω satisfying condition (12).

COROLLARY 2. Let n ∈ Z+, 0 < α < 1, 1 < p <
n(2s−1)

α , α
n − 2s−1

p + s
q̃ = 0 and

Ω ⊆ Rn be a finite volume domain satisfying (12). Then the inequality

(∫
Ω

| f (x)− f Ω|q̃ dx
) 1

q̃ � C
(∫∫

Ω

| f (x)− f (y)|p
|x− y|n+α p dxdy

) 1
p

holds for any function f ∈C(Ω), with f Ω = 1
|Ω|
∫
Ω

f (x)dx.

It is easily seen that the exponent of maximal integration for domains with property
(12) fall down if to consider the domains with s > 1, i.e. q̃ = spn

(2s−1)n−λ p < q∗ =
pn

n−λ p and equals to the Sobolev’s power for s = 1. This result extends (8) to domains
satisfying (12) covering those obtained by H. Surjanen for s-John domains.
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REMARK 1. Using our approaches in this paper we can produce the Poincare’s
type inequality (1) under the condition

1
|Q|2

(∫
Q

vdx
) 1

q
(∫∫
Q×Q

ω1−p′(x,y)dxdy
) 1

p′ � A (13)

for the pair of weights v(x) ∈ A∞ and ω(x,y) := |x− y|−n−α pω0(x,y), exponents q �
p � 1 and the domain satisfying condition (11)(cf. [27, Theorem 3] ). Inserting in
it q = p > 1, v = dist(x,∂Ω)−α p, ω(x,y) = |x− y|−n−α p and assuming the following
estimate ∀Q ∈ σΩ on John domains∫

Q

dist(x,∂Ω)−α pdx � CQ1− α p
n ,

we obtain the inequality

∫
Ω

| f (x)− f v,Ω|p
dist(x,∂Ω)α p dx � Cn,p,α(Ω)

∫∫
Ω×Ω

| f (x)− f (y)|p
|x− y|n+α p dxdy, 1 < α p < n, (14)

for those domains. For that we will invoke Whitney decomposition technique dividing
each cube into sufficiently small dyadic sub-cubes (see e.g. [37, p. 391]).To check that
v ∈ A2 , in addition, we use the elementary inequality∫

Q

dist(x,∂Ω)α pdx � CQ1+ α p
n .

3. Proof of Theorem 1

Proof. Let the fixed number a ∈ R be such that

min
{

a ∈ R : v
({x ∈ Ω : f (x) � a})}� 1

2
v(Ω). (15)

We denote Ωα = {x ∈ Ω : f (x) > a+ α} for α > 0. Note that Ωα is an open set
since f is continuous. It is clear that

v
({x ∈ Ω : f (x) � a})� 1

2
v
(
Ω
)
.

Let γ be a sufficiently small positive number that will be specified later. Suppose
that α > 0 is a fixed number such that Ωα is nonempty. Choose a connected component
Ω j

α ⊂ Ωα ( j = 1,2, ...). We denote the parts of Ω3α and Ω2α contained in Ω j
α by

Ω3α , j and Ω2α , j, respectively (the sets Ω3α , j and Ω2α , j may be disconnected).
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Let the set Ω3α , j ⊂ Ω j
α be nonempty.

For any fixed point x ∈ Ω3α , j there exists a ball Q = Q(x,ρ(x)) such that

v
(
Q∩Ω\Ω j

α

)
= γv(Q∩Ω) . (16)

Indeed, if 0 < γ < 1, then the continuous function

F(t) =
1
γ

v
(
Q(x,t)∩Ω\Ω j

α

)
− v
(
Q(x, t)∩Ω

)
, t > 0,

is negative for sufficiently small t > 0 since x is an interior point of Ω3α , j . In view
of our choice of a from (15), F(t) is positive for t = d(Ω) :

F(d(Ω)) =
1
γ

v
(
Q(x,d(Ω))∩Ω\Ω j

α

)
− v
(
Q(x,d(Ω))∩Ω

)

� 1
2γ

v(Ω)− v
(
Q(x,d(Ω))∩Ω

)
=
(

1
2γ

−1

)
v
(
Ω
)

> 0.

By applying Cauchy’s theorem, we find that

F (t∗) = 0 for some t∗ ∈ (0,d(Ω)),

so setting ρ(x) = t∗ we can conclude that (16) holds.

1) If
v
(
Q∩Ω3α , j

)
� γv(Q∩Ω) , (17)

then by using (16) it follows that

v(Q∩Ω) = v
(
Q∩Ω\Ω j

α

)
+ v
(
Q∩Ω j

α

)
� γv(Q∩Ω)+ v

(
Q∩Ω j

α

)
.

This fact and (17) yield that

v
(
Q∩Ω3α , j

)
� γ

1− γ
v
(
Q∩Ω j

α

)
. (18)

2) Now, let
v
(
Q∩Ω3α , j

)
> γv(Q∩Ω) . (19)

Then at least one of the following conditions holds:

a) |Q∩Ω2α , j| � 1
2
|Q∩Ω| (20)

or

b) |Q∩Ω\Ω2α , j| � 1
2
|Q∩Ω|. (21)
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Assume that a) is satisfied. Then, by using (16) and (20), we get that∫
Q
⋂

Ω\Ω j
α

v(y)dy
∫

Q
⋂

Ω2α, j

dx � γ
2
v(Q∩Ω) |Q∩Ω|.

Therefore,

1 � 2
γv(Q∩Ω) |Q∩Ω|

∫
Q
⋂

Ω2α, j

( ∫
Q
⋂

Ω\Ω j
α

v(y)dy
)

dx.

Applying Hölder’s inequality we obtain that

1 � 2
γv(Q∩Ω) |Q∩Ω|

∫
Q
⋂

Ω2α, j

( ∫
Q
⋂

Ω\Ω j
α

ω1/p ·ω−1/p v(y)dy
)

dx

� 2
γv(Q∩Ω) |Q∩Ω|

( ∫
Q
⋂

Ω2α, j

( ∫
Q
⋂

Ω\Ω j
α

ω dy
)
dx
) 1

p×

×
( ∫

Q
⋂

Ω\Ω j
α

( ∫
Q
⋂

Ω2α, j

ω1−p′ dx
)
v(y)p′dy

) 1
p′

.

Hence,

v(Q∩Ω3α , j) � 2
γ|Q∩Ω|

(∫
Q
⋂

Ω\Ω j
α

(∫
Q
⋂

Ω2α, j

ω(x,y)1−p′ dx
)
v(y)p′ dy

)1/p′×

×
(∫

Q
⋂

Ω\Ω j
α

(∫
Q
⋂

Ω2α, j

ω(x,y)dx
)
dy
)1/p

.

We use the condition (10) and find that

v(Q∩Ω3α , j) � 2A
γ

v(Q∩Ω)
1
q′
( ∫

Q
⋂

Ω\Ω j
α

dy
∫

Q
⋂

Ω2α, j

ω(x,y)dx
) 1

p
. (22)

b) Now, assume that

|Q∩Ω\Ω2α , j| � 1
2
|Q∩Ω|. (23)

We may repeat all arguments above, for example, in this case using (19) and (23) it
follows that ∫

Q
⋂

Ω3α, j

(∫
Q
⋂

Ω\Ω2α, j

dx
)
v(y)dy � γ

2
v(Q∩Ω)|Q∩Ω|.

We conclude that

v(Q∩Ω3α , j) � 2A
γ

v(Q∩Ω)
1
q′
(∫

Q
⋂

Ω3α, j

(∫
Q
⋂

Ω\Ω2α, j

ω(x,y)dx
)

dy
) 1

p
, (24)
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where it has been used that, according to (10), it holds that

1
|Q∩Ω|

( ∫
Q
⋂

Ω3α, j

( ∫
Q
⋂

Ω\Ω2α, j

ω(x,y)1−p′dx
)
v(y)p′ dy

) 1
p′ � Av(Q∩Ω)

1
q′ .

By combining (24) and (22), we get that

v(Q∩Ω3α , j) � 2A
γ

v(Q∩Ω)
1
q′
[(∫

Q∩Ω3α, j

(∫
Q
⋂

Ω\Ω2α, j

ω(x,y)dx
)
dy
)1/p

+
(∫

Q
⋂

Ω\Ω j
α

dy
(∫

Q
⋂

Ω2α, j

ω(x,y)dx
)1/p]

. (25)

In case 2) by using (19) and (25) we have the inequality

v(Q∩Ω3α , j) � 2A

γ1+ 1
q′

v(Q∩Ω3α , j)
1
q′
[(∫

Q∩Ω3α, j

(∫
Q
⋂

Ω\Ω2α, j

ω(x,y)dx
)
dy
)1/p

+
(∫

Q
⋂

Ω\Ω j
α

dy
(∫

Q
⋂

Ω2α, j

ω(x,y)dx
)1/p]

. (26)

It is not difficult to see that sup
x∈Ω3α, j

ρ(x) < ∞. By now applying Besikoviche’s cov-

ering Lemma (see e.g. [35]) to the system of balls {Q = Q(x,ρ(x))}x∈Ω3α, j that covers
Ω3α , j , we find a countable subcover {Qi}, i ∈ N, such that

∑
i

χQi(x) � κn, Ω3α , j ⊂
⋃
i

Qi. (27)

From (26) and (18) it follow that

v(Qi ∩Ω3α , j) � 2A

γ1+ 1
q′

v(Qi∩Ω3α , j)
1
q′
[(∫

Qi∩Ω3α, j

(∫
Qi⋂Ω\Ω2α, j

ω(x,y)dx
)
dy
)1/p

+
(∫

Qi⋂Ω\Ω j
α

dy
(∫

Qi⋂Ω2α, j

ω(x,y)dx
)1/p]

+
γ

1− γ
v
(
Qi ∩Ω j

α

)
.

(28)

Summing (28) over i ∈ N, applying (27) and using Hölder’s inequality, we obtain that

v(Ω3α , j) � 2A

γ1+ 1
q′

(
∑
i

(
v(Qi ∩Ω3α , j

) p′
q′
) 1

p′
[
∑
i

( ∫
Qi⋂Ω3α, j

( ∫
Qi⋂Ω\Ω2α, j

ω dx
)

dy
)

+∑
i

( ∫
Qi⋂Ω\Ω j

α

( ∫
Qi∩Ω2α, j

ω dx
)

dy
)] 1

p
+

γ
1− γ ∑

i
v
(
Qi ∩Ω j

α

)
.
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Since p′
q′ � 1, we also have that

v(Ω3α , j) � 2A

γ1+ 1
q′

v
(⋃

i

Qi ∩Ω3α , j
) 1

q′
[( ∫
⋃
i
Qi⋂Ω3α, j

( ∫
⋃
i
Qi⋂Ω\Ω2α, j

ω dx
)

dy
)

+
( ∫
⋃
i
Qi⋂Ω\Ω j

α

( ∫
⋃
i
Qi∩Ω2α, j

ω dx
)

dy
)]1/p

+
γ

1− γ
v

(⋃
i

Qi ∩Ω j
α

)
.

Therefore,

v(Ω3α , j) � 2κ
1
q′
n A

γ1+ 1
q′

v(Ω3α , j)
1
q′
[( ∫

Ω3α, j

( ∫
Ω\Ω2α, j

ω dx
)

dy
)

+
( ∫

Ω\Ω j
α

( ∫
Ω2α, j

ω dx
)

dy
)]1/p

+
κnγ
1− γ

v
(

Ω j
α

)
.

Again summing this inequality over j , keeping in mind the constructions in the begin-
ning, and the assumption q

p � 1, we get that

v(Ω3α) � 2κ
1
q′
n A

γ1+ 1
q′

v(Ω3α)
1
q′
[( ∫

Ω3α

( ∫
Ω\Ω2α

ω dx
)

dy
)

+
( ∫

Ω\Ωα

( ∫
Ω2α

ω dx
)

dy
)] 1

p +
κnγ
1− γ

v(Ωα) . (29)

In particular, it follows from (29) that,

v
(
x ∈ Ω : f (x)−a > 3α

)

� 21+ 1
p κ

1
q′
n A

γ1+ 1
q′

v(Ω+
3α)

1
q′
( ∫∫
{

x∈Ω+ : | f (x)− f (y)|>α
}ω dxdy

) 1
p
+

cnγ
1− γ

v(Ωα) . (30)

Considering the function a− f (x) in place of f (x)− a and the domain Ω− =
{x∈ Ω : a− f (x) > 0} in place of Ω+ = {x ∈ Ω : f (x)−a > 0}, we get the analogous
inequality

v
(
x ∈ Ω : a− f (x) > 3α

)

� 21+ 1
p κ

1
q′
n A

γ1+ 1
q′

v(Ω−
3α)

1
q′
( ∫∫
{

x∈Ω− : | f (x)− f (y)|>α
}ω dxdy

) 1
p
+

cnγ
1− γ

v(Ωα) . (31)
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This fact can be proved absolutely similarly as we proved (30) so we delete the
details.

It follows from (30) and (31) that

v
(
x ∈ Ω : | f (x)−a| > 3α

)

� 21+ 1
p κ

1
q′
n A

γ1+ 1
q′

v(Ω3α)
1
q′
( ∫∫
{

x∈Ω: | f (x)− f (y)|>α
}ω dxdy

) 1
p
+

cnγ
1− γ

v(Ωα) .

By integrating this and again applying Hölder’s inequality we obtain that

∞∫
0

v(Ω3α)dαq

� 21+ 1
p κ

1
q′
n A

γ1+ 1
q′

( ∞∫
0

v(Ω3α)dαq
) 1

q′
( ∞∫

0

( ∫∫
| f (x)− f (y)|>α

ω dxdy
) q

p
dαq

) 1
q

+
κnγ
1− γ

∞∫
0

v(Ωα)dαq.

By using Minkowski’s inequality, we find that

( ∞∫
0

( ∫∫
| f (x)− f (y)|>α

ω dxdy
) q

p
dαq

) 1
q �

(∫∫
Ω

( | f (x)− f (y)|∫
0

ω(x,y)
q
p dαq

) p
q
dxdy

) 1
p

(32)

=
(∫∫

Ω

| f (x)− f (y)|pω(x,y)dxdy
) 1

p ·

Since
∞∫

0

v
(
x ∈ Ω : | f (x)−a| > 3α

)
dαq =

1
3q

∫
Ω

| f (x)−a|qv(x)dx

and
∞∫

0

v(Ωα)dαq =
∫
Ω

| f (x)−a|qv(x)dx,

by using the last inequality and (32), it follows that( 1
3q −

κnγ
1− γ

)∫
Ω

| f (x)−a|qv(x)dx

� 21+ 1
p κ

1
q′
n A

3
1
q′ γ1+ 1

q′

(∫
Ω

| f (x)−a|qv(x)dx
) 1

q′
(∫∫

Ω

| f (x)− f (y)|pω(x,y)dxdy
) 1

p
.
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Up to now we have only made the restriction γ < 1 on the crucial parameter γ but
now we do the final restriction and choose γ as a sufficiently small positive number so
that 1

3q − κnγ
1−γ > 0 and we can conclude that

(∫
Ω

| f (x)−a|qv(x)dx
) 1

q

� c0A
(∫∫

Ω

| f (x)− f (y)|pω dxdy
)1/p

,

with c0 = 21+ 1
p κ

1
q′
n A

3
1
q′ γ

1+ 1
q′

(
1
3q − cnγ

1−γ

)−1
.

To finalize the proof of Theorem 1 it remains to prove that∥∥∥v(.) 1
q

(
f − f Ω,v

)∥∥∥
Lq(Ω)

� 2
∥∥∥v(.) 1

q
(
f (.)−a

)∥∥∥
Lq(Ω)

.

(see, e.g. inequality (3.26) in [30] or (22) in [27]). Indeed, using an elementary con-
vexity inequality

(ξ + η)q � 2q−1(ξ q + ηq), ξ ,η � 0, q � 1,

we get that ∥∥∥v(.) 1
q
(
f (.)− f Ω,v

)∥∥∥q

Lq(Ω)

� 2q−1
∥∥∥v(.) 1

q
(
f (.)−a

)∥∥∥q

Lq(Ω)
+2q−1

∥∥∥v(.) 1
q
(
a− fΩ,v

)∥∥∥q

Lq(Ω)

� 2q
∥∥∥v(.) 1

q
(
f (.)−a

)∥∥∥q

Lq(Ω)
,

since, by Hölder’s inequality,∥∥∥v(.) 1
q
(
a− f Ω,v

)∥∥∥
Lq(Ω)

=
∥∥∥v(.) 1

q

∣∣∣ 1
v(Ω)

∫
Ω

v(x)
(
f (x)−a

)
dx
∣∣∣ ∥∥∥

Lq(Ω)
�
∥∥∥v(.) 1

q
(
f (.)−a

)∥∥∥
Lq(Ω)

.

The proof is complete.
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