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ON WEIGHTED HARDY–TYPE INEQUALITIES

CHIAN YEONG CHUAH, FRITZ GESZTESY ∗ , LANCE L. LITTLEJOHN, TAO MEI,
ISAAC MICHAEL AND MICHAEL M. H. PANG

(Communicated by F. Hansen)

Abstract. We revisit weighted Hardy-type inequalities employing an elementary ad hoc ap-
proach that yields explicit constants. We also discuss the infinite sequence of power weighted
Birman–Hardy–Rellich-type inequalities and derive an operator-valued version thereof.

1. Introduction

To put the results derived in this paper into some perspective, we very briefly recall
some of the history of Hardy’s celebrated inequality. We will exclusively focus on the
continuous case even though Hardy originally started to investigate the discrete case
(i.e., sums instead of integrals).

Hardy’s inequality, in its primordial version, is of the form∫ ∞

0
dx | f ′(x)|2 � 4−1

∫ ∞

0
dx x−2| f (x)|2, f ∈C∞

0 ((0,∞)), (1)

with the constant 4−1 being optimal and the inequality being a strict one for f �= 0.
(This extends to all f ∈ AC([0,R]) for all R > 0, f ′ ∈ L2((0,∞);dx) , with f (0+) = 0,
but we will not dwell on this improvement right now.) Hardy’s work on his celebrated
inequality started in 1915, [18], see also [19]–[21], and the historical comments in [26,
Chs. 1, 3, App.]. Soon afterwards, Hardy also proved a weighted Hardy inequality
(with power weights) of the form (cf. [22], [23, Sect. 9.8]),∫ b

0
dx xα | f ′(x)|p �

( |α − p+1|
p

)p ∫ ∞

0
dx xα−p| f (x)|p,

p ∈ [1,∞), α ∈ R, f ∈C∞
0 ((0,∞)).

(2)

Again, the constant (|α − p+1|/p)p is optimal and the inequality is strict for f �= 0.
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Equation (2) represents just the tip of an iceberg of weighted inequalities of Hardy-
type. More generally, modern treatments of this subject are devoted to weighted in-
equalities of the form(∫ b

a
dxv(x)| f ′(x)|p

)1/p

� Cp,q

(∫ b

a
dxw(x)| f (x)|q

)1/q

, f ∈C∞
0 ((a,b)), (3)

for appropriate a,b ∈ R∪{±∞} , a < b , p,q ∈ [1,∞)∪{∞} , and appropriate weight
functions 0 � v,w ∈ L1

loc((a,b);dx) . Again, this extends to certain optimal spaces for
f , far beyond f ∈C∞

0 ((a,b)) . We refer to [26, Chs. 2–5], [27, Chs. 1,2], [34, Ch. 1],
and the extensive literature cited therein. In particular, we mention the following inte-
gral versions of the two-weighted Hardy-type inequality (3) (the former is sometimes
referred to as the differential version),(∫ b

a
dxv(x)|F(x)|p

)1/p

� Cp,q

(∫ b

a
dxw(x)

∣∣∣∣∫ x

a
dx′F(x′)

∣∣∣∣q)1/q

,

F ∈C∞
0 ((a,b)),

(4)

and its companion (or “dual”) version(∫ b

a
dxv(x)|F(x)|p

)1/p

� Cp,q

(∫ b

a
dxw(x)

∣∣∣∣∫ b

x
dx′F(x′)

∣∣∣∣q)1/q

,

F ∈C∞
0 ((a,b)).

(5)

We note that many authors make the additional assumption F � 0 in (4), (5).
Before describing the results obtained in this paper in some detail, we pause for

a moment to introduce our notation: We start by briefly summarizing essentials on
Bochner integrability and associated vector-valued Lp -spaces. Regarding details of
the Bochner integral we refer, for instance, to [1, p. 6–21], [7, Ch. 1], [11, p. 44–50],
[24, p. 71–86], [28, Sect. 4.2], [29, Ch. III], [38, Sect. V.5]. In particular, if p � 1,
(a,b) ⊆ R is a finite or infinite interval, 0 � w ∈ L1

loc((a,b);dx) is a weight function,
and B a Banach space, the symbol Lp((a,b);wdx;B) denotes the set of equivalence
classes of strongly measurable B -valued functions which differ at most on sets of
Lebesgue measure zero, such that ‖ f (·)‖p

B ∈ L1((a,b);wdx) . The corresponding norm
in Lp((a,b);wdx;B) is given by

‖ f‖Lp((a,b);wdx;B) =
(∫

(a,b)
w(x)dx‖ f (x)‖p

B

)1/p

(6)

and Lp((a,b);wdx;B) is a Banach space. In the special case B = C , we omit C and
just write Lp((a,b);wdx) , respectively, Lp

loc((a,b);wdx) , as usual. If H is a separable
Hilbert space, then so is L2((a,b);wdx;H ) (see, e.g., [3, Subsects. 4.3.1, 4.3.2], [5,
Sect. 7.1]).

One recalls that by a result of Pettis [35], if B is separable, weak measurability
of B -valued functions implies their strong measurability.
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A map f : [c,d] → B (with [c,d] ⊂ (a,b)) is called absolutely continuous on
[c,d] , denoted by f ∈ AC([c,d];B) , if

f (x) = f (x0)+
∫ x

x0

dt g(t), x0,x ∈ [c,d], (7)

for some g ∈ L1((c,d);dx;B) . In particular, f is then strongly differentiable a.e. on
(c,d) and

f ′(x) = g(x) for a.e. x ∈ (c,d) . (8)

In addition, f : [c,d] → B is called locally absolutely continuous, denoted by f ∈
ACloc([c,d];B) , if f ∈ AC([c′,d′];B) on any closed subinterval [c′,d′] ⊂ (c,d) .

For p ∈ [1,∞) , its Hölder conjugate index p′ is given in a standard manner by
p′ = p/(p−1)∈ (1,∞)∪{∞} .

If H represents a complex, separable Hilbert space, then B(H ) denotes the
Banach space (the C∗ -algebra) of bounded, linear operators defined on all of H , and
Bp(H ) denote the �p -based Schatten–von Neumann trace ideals, p ∈ [1,∞) , with
trH (T ) abbreviating the trace of a trace class operator T ∈ B1(H ) .

Finally, we are in a position to briefly describe the principal result of our paper
in Section 2. Assume that −∞ � a < b � ∞ , p ∈ [1,∞) , and suppose that 0 � w1 ∈
ACloc((a,b)) , 0 � [−w′

1] a.e. on (a,b) , 0 � w2 ∈ L1
loc((a,b);dx) , and [−w′

1]
1−pwp

2 ∈
L1

loc((a,b);dx) . If F ∈C0((a,b);B) , then we prove that∫ b

a
dxw1(x)p[−w′

1(x)]
1−pw2(x)p‖F(x)‖p

B

�p−p
∫ b

a
dx [−w′

1(x)]
(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p

.

(9)

Moreover, we prove the companion result with
∫ x
a dx′ . . . replaced by

∫ b
x dx′ . . . . As

an important special case of (9) one recovers the classical form of the power weighted
Hardy inequality∫ b

0
dx xα ‖F(x)‖p

B �
( |α +1− p|

p

)p ∫ b

0
dx xα−p

(∫ x

0
dx′ ‖F(x′)‖B

)p

,

0 < b � ∞, p ∈ [1,∞), α < p−1.

(10)

As alluded to earlier, the constant [(|α − p+ 1|)/p]p on the right-hand side of (10) is
best possible, and equality holds if and only if F = 0 a.e. on (0,b) . After describing
appropriate iterations of (10) (again, including the companion results with

∫ x
a dx′ . . .

replaced by
∫ b
x dx′ . . . ), we also recover as a special case the entire infinite sequence of

the power weighted Birman–Hardy–Rellich-type inequalities (cf. [4, p. 48], [13], [14,
p. 83–84]) at the end of Section 2, namely,∫ b

0
dx xα | f (n)(x)|p �

∏k
j=1 |α − jp+1|p

pkp

∫ b

0
dx xα−kp| f (n−k)(x)|p,

0 < b � ∞, p ∈ [1,∞), 1 � k � n, n ∈ N, α ∈ R, f ∈C∞
0 ((0,b)).

(11)
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Replacing the restrictive hypothesis F ∈C0((a,b);B) by the finiteness condition
of the left-hand side in (9), and a detailed discussion of best possible constants in these
inequalities are the principal subjects of Section 3.

Finally, in Section 4 we consider extensions of (10) and of the infinite sequence
of Birman–Hardy–Rellich-type inequalities to the operator-valued context, extending
some results of Hansen [16]. More specifically, assuming F : (0,b) → B(H ) is a
weakly measurable map satisfying ‖F( ·)‖Bp(H ) ∈ Lp((0,b);xαdx) , we derive the in-
equality

trH

(∫ b

0
dx xα |F(x)|p

)
�

( |α − p+1|
p

)p

trH

(∫ b

0
dx xα−p

∣∣∣∣∫ x

0
dx′F(x′)

∣∣∣∣p)
,

0 < b � ∞, p ∈ [1,∞), α < p−1. (12)

Again, the constant [(|α − p+ 1|)/p]p on the right-hand side of (12) is best possible,
and equality holds if and only if F = 0 a.e. on (0,b) .

Moreover, for p ∈ [1,2] , we remove the trace in inequality (12) as follows: Sup-
pose that F : (0,∞) →B(H ) is a weakly measurable map satisfying F( ·) � 0 a.e. on
(0,∞) , and

∫ ∞
0 dx xαF(x)p ∈ B(H ) , then we derive the operator-valued inequality∫ ∞

0
dx xα F(x)p �

( |α − p+1|
p

)p ∫ ∞

0
dx xα−p

(∫ x

0
dx′F(x′)

)p

,

p ∈ [1,2], α < p−1.

(13)

Once again, the constant [(|α − p+1|)/p]p on the right-hand side of (13) is best pos-
sible, and equality holds if and only if F = 0 a.e. on (0,∞) . We also derive the corre-
sponding companion results with

∫ x
a dx′ . . . replaced by

∫ b
x dx′ . . . .

We emphasize that (12) and (13) with α = 0 (and hence p > 1) were proved by
Hansen in [16].

2. Weighted Hardy-type inequalities employing an ad hoc approach

In this section we derive weighted Hardy inequalities employing an elementary ad
hoc approach.

We begin by deriving a weighted Hardy inequality for B -valued functions and
hence make the following assumptions.

HYPOTHESIS 2.1. Let −∞ � a < b � ∞ , p ∈ [1,∞) , and assume that 0 � w2 ∈
L1

loc((a,b);dx) .

(i) Suppose that 0 � w1 ∈ ACloc((a,b)) , 0 � [−w′
1] a.e. on (a,b) , and [−w′

1]
1−pwp

2 ∈
L1

loc((a,b);dx) .

(ii) Suppose that 0 � w1 ∈ ACloc((a,b)) , 0 � w′
1 a.e. on (a,b) , and [w′

1]
1−pwp

2 ∈
L1

loc((a,b);dx) .

The principal result of this section then reads as follows:
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THEOREM 2.2. Let p ∈ [1,∞) , and suppose that F ∈C0((a,b);B) .

(i) Assume Hypothesis 2.1 (i) , then

∫ b

a
dxw1(x)p[−w′

1(x)]
1−pw2(x)p‖F(x)‖p

B

�p−p
∫ b

a
dx [−w′

1(x)]
(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p

.

(14)

(ii) Assume Hypothesis 2.1 (ii) , then

∫ b

a
dxw1(x)p[w′

1(x)]
1−pw2(x)p‖F(x)‖p

B

�p−p
∫ b

a
dxw′

1(x)
(∫ b

x
dx′w2(x′)‖F(x′)‖B

)p

.

(15)

Proof. It suffices to prove (14) and then hint at the analogous proof of (15). Since

d
dx

(
w1(x)

(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p)
=w′

1(x)
(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p

+pw1(x)
(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p−1

w2(x)‖F(x)‖B,

(16)

one obtains

∫ b

a
dx

d
dx

(
w1(x)

(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p)
=w1(x)

(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p∣∣∣∣b
x=a

= w1(b)
(∫ b

a
dx′w2(x′)‖F(x′)‖B

)p

=
∫ b

a
dx w′

1(x)
(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p

+ p
∫ b

a
dx w1(x)

(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p−1

w2(x)‖F(x)‖B. (17)

Here we used that by hypothesis, 0 � w1 is monotonically decreasing, and that the
right-hand side of (17) exists employing F ∈C0((a,b);B) . Thus, with p−1 +[p′]−1 =



630 C. Y. CHUAH, F. GESZTESY, L. L. LITTLEJOHN, T. MEI, I. MICHAEL AND M. M. H. PANG

1, an application of Hölder’s inequality yields

w1(b)
(∫ b

a
dx′w2(x′)‖F(x′)‖B

)p

+
∫ b

a
dx [−w′

1(x)]
(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p

=p
∫ b

a
dx w1(x)

(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p−1

w2(x)‖F(x)||B

�p

[∫ b

a
dx [−w′

1(x)]
(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p]1/p′

×
[∫ b

a
dx w1(x)p[−w′

1(x)]
1−pw2(x)p‖F(x)‖p

B

]1/p

. (18)

In particular, ∫ b

a
dx [−w′

1(x)]
(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p

�p

[∫ b

a
dx [−w′

1(x)]
(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p]1/p′

×
[∫ b

a
dx w1(x)p[−w′

1(x)]
1−pw2(x)p‖F(x)‖p

B

]1/p

(19)

and hence [∫ b

a
dx [−w′

1(x)]
(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p]1/p

�p

[∫ b

a
dx w1(x)p[−w′

1(x)]
1−pw2(x)p‖F(x)‖p

B

]1/p

,

(20)

completing the proof of item (i) .
For the proof of item (ii) one notes the identity

d
dx

(
w1(x)

(∫ b

x
dx′w2(x′)‖F(x′)‖B

)p)
=w′

1(x)
(∫ b

x
dx′w2(x′)‖F(x′)‖B

)p

−pw1(x)
(∫ b

x
dx′w2(x′)‖F(x′)‖B

)p−1

w2(x)‖F(x)‖B,

(21)

and then obtains upon integrating (21) with respect to x from a to b ,

w1(a)
(∫ b

a
dx′w2(x′)‖F(x′)‖B

)p

+
∫ b

a
dxw′

1(x)
(∫ b

x
dx′w2(x′)‖F(x′)‖B

)p

=p
∫ b

a
dx w1(x)w2(x)

(∫ b

x
dx′w2(x′)‖F(x′)‖B

)p−1

‖F(x)‖B. (22)
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In particular,

∫ b

a
dx w′

1(x)
(∫ b

x
dx′w2(x′)‖F(x′)‖B

)p

�p
∫ b

a
dx w1(x)w2(x)

(∫ b

x
dx′w2(x′)‖F(x′)‖B

)p−1

‖F(x)‖B,

(23)

and now one can repeat the Hölder inequality argument as in item (i) . (Alternatively,
if b < ∞ , one can also prove item (ii) by the change of variable x �→ a+(b− x) , i.e.,
by reflecting the interval (a,b) at its midpoint).

We illustrate our general result with the following well-known special case, the
power-weighted Hardy inequality. For pertinent references on inequalities (24), (25)
below, we recall, for instance, [2, Theorem 1.2.1], [22], [23, p. 245–246], [26, p. 23,
43], [27, p. 9–11], [34, Lemma 1.3], and the references therein.

EXAMPLE 1. Let p ∈ [1,∞) , a = 0, b ∈ (0,∞)∪{∞} , w2(x) = 1, and suppose
that F : (0,∞) → B is weakly measurable satisfying ‖F( ·)‖B ∈ Lp((0,b);xαdx) .
(i) If w1(x) = |α − p+ 1|−1x−|α−p+1| , α < p− 1, then (14) reduces to the classical
form

∫ b

0
dx xα ‖F(x)‖p

B �
( |α − p+1|

p

)p ∫ b

0
dx xα−p

(∫ x

0
dx′ ‖F(x′)‖B

)p

. (24)

(ii) If w1(x) = [|α − p+ 1|]−1x|α−p+1| , α > p− 1, then (15) reduces to the comple-
mentary classical form

∫ b

0
dx xα ‖F(x)‖p

B �
( |α − p+1|

p

)p ∫ b

0
dx xα−p

(∫ b

x
dx′ ‖F(x′)‖B

)p

. (25)

In both cases (i) and (ii) , the constant [(|α − p+1|)/p]p is best possible and equality
holds if and only if F = 0 a.e. on (0,b) .

The case F ∈C0((0,b);B) in Example 1 is a corollary of Theorem 2.2 and opti-
mality of the constants on the right-hand sides of (24), (25), and the fact that equality
is only attained in the trivial case F = 0 a.e. on (0,b) , is a classical result (see, e.g.,
[2, Theorem 1.2.1]). The extension of Example 1 to the case F ∈ Lp((0,b);xαdx;B) ,
p∈ [1,∞) , follows along the lines in [34, Theorem 1.14, Sects. 1.3, 1.5]. We will briefly
return to this issue after Theorem 3.4

Iterating the weighted Hardy inequality yields the sequence of vector-valued Bir-
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man inequalities as follows. Consider the iterated Hardy-type operators,

(H−,1F)(x) =
∫ x

a
dt1 F(t1),

(H−,�F)(x) = H−,1

(∫ .
a

dt2 · · ·
∫ t�−1

a
dt� F(t�)

)
(x) =

∫ x

a
dt1

∫ t1

a
dt2 · · ·

∫ t�−1

a
dt� F(t�)

= [(�−1)!]−1
∫ x

a
dt (x− t)�−1F(t), � ∈ N, � � 2, (26)

F ∈ Lp((a,c);dx) for all c ∈ (a,b),

(H+,1F)(x) =
∫ b

x
dt1 F(t1),

(H+,�F)(x) = H+,1

(∫ b

. dt2 · · ·
∫ b

t�−1

dt� F(t�)
)

(x) =
∫ b

x
dt1

∫ b

t1
dt2 · · ·

∫ b

t�−1

dt� F(t�)

= [(�−1)!]−1
∫ b

x
dt (x− t)�−1F(t), � ∈ N, � � 2, (27)

F ∈ Lp((c,b);dx) for all c ∈ (a,b).

Applying (24) and (25) iteratively in the form (with a = 0)

∫ b

0
dxxγ−p[(H∓,1(G�( ·))(x)]p �

(
p

|γ − p+1|
)p ∫ b

0
dxxγG�(x)p, p ∈ [1,∞), γ ≶ p−1,

(28)

for appropriate 0 � G� ∈ Lp((0,b);xγdx) , p ∈ [1,∞) , then yields for F : (0,∞) → B a
weakly measurable map satisfying ‖F( ·)‖B ∈ Lp((0,b);xαdx)

∫ b

0
dx xα‖F(x)‖p

B �
�

∏
k=1

( |α − kp+1|
p

)p ∫ b

0
dx xα−�p[(H∓,�‖F( ·)‖B)(x)]p, (29)

0 < b � ∞, p ∈ [1,∞), α ≶
{

p−1,

�p−1,
� ∈ N.

It is well-known that the constants in (24), (25) and (29) are all optimal and that, in fact,
these inequalities are all strict unless F = 0 on (0,b) .

Turning to the differential form of the iterated (integral) Hardy inequalities (29),
and adding appropriate boundary conditions for F at both endpoints a,b , permits one
to avoid the gap (p−1, �p−1) for α in (29) as follows: Assuming F ∈C∞

0 ((a,b);B)
for simplicity, and introducing

f̃ (x) =
∫ x

0
dx′‖F(x′)‖B, x ∈ (0,b), f̃ (n)(a) = 0, n ∈ N,

g̃(x) =
∫ b

x
dx′‖F(x′)‖B, x ∈ (0,b), g̃(n)(b) = 0, n ∈ N,

(30)
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inequalities (24) and (25) become∫ b

0
dx xα[

f̃ ′(x)
]p �

( |α − p+1|
p

)p ∫ b

0
dx xα−p f̃ (x)p, α < p−1, (31)∫ b

0
dx xα[− g̃ ′(x)

]p �
( |α − p+1|

p

)p ∫ b

0
dx xα−pg̃(x)p, α > p−1. (32)

As a special case one obtains∫ b

0
dx xα | f ′(x)|p �

( |α − p+1|
p

)p ∫ b

0
dx xα−p| f (x)|p,

0 < b � ∞, p ∈ [1,∞), α ∈ R, f ∈C∞
0 ((0,b)).

(33)

Iterating (33) yields the well-known result

∫ b

0
dx xα | f (n)(x)|p �

∏k
j=1 |α − jp+1|p

pkp

∫ b

0
dx xα−kp| f (n−k)(x)|p,

0 < b � ∞, p ∈ [1,∞), 1 � k � n, n ∈ N, α ∈ R, f ∈C∞
0 ((0,b)).

(34)

For additional results on higher-order (overdetermined) Hardy-type inequalities
see also [27, Ch. 4], [31], [32], [33].

3. More on weighted Hardy-type inequalities

To remove the assumption F ∈C0((0,b);B) in Theorem 2.2 and to take a closer
look at the issue of best possible constants in the inequality, we next recall (a gener-
alization of) a celebrated 1969 result due to Talenti [36], Tomaselli [37], and shortly
afterwards by Chisholm and Everitt [8] and Muckenhoupt [30], followed by Chisholm,
Everitt, and Littlejohn [9]. For exhaustive textbook presentations we refer, for instance,
to [2, Sect. 1.2], [10, Sect. 5.3], [12, Sect. 2.2], [23, Sects. 9.8, 9.9], [26, Chs. 3, 4], [27,
Chs. 1, 3, 4], [34, Sects. 1.1–1.3, 1.5, 1.6, 1.10].

In addition to H∓,1 in (26), (27), we now also introduce the generalized (weighted)
Hardy operators as follows.

HYPOTHESIS 3.1. Let −∞ � a < b � ∞ and p ∈ [1,∞) .

(i) Assume that v and w are weight functions satisfying v,w measurable on (a,b) ,
v > 0, w > 0 a.e. on (a,b) .

(ii) Suppose that φ∓,ψ∓ satisfy for all c ∈ (a,b) ,

0 < φ∓ a.e. on (a,b), 0 < ψ∓ a.e. on (a,b),

φ− ∈ Lp((c,b);vdx), ψ− ∈ Lp′((a,c);w−p′/pdx
)
, (35)

φ+ ∈ Lp((a,c);vdx), ψ+ ∈ Lp′((c,b);w−p′/pdx
)
.
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Given Hypothesis 3.1 we introduce

(H−,φ−,ψ−F)(x) = φ−(x)
∫ x

a
dx′ ψ−(x′)F(x′), x ∈ (a,b), (36)

F ∈ Lp((a,c);wdx) for all c ∈ (a,b),

(H+,φ+,ψ+F)(x) = φ+(x)
∫ b

x
dx′ ψ+(x′)F(x′), x ∈ (a,b), (37)

F ∈ Lp((c,b);wdx) for all c ∈ (a,b).

In particular, H∓,1,1 = H∓,1 .
The following result, Theorem 3.2, is well-known and a special case of more

general situations recorded in the literature. For instance, we refer to [6], [15], [26,
p. 38–40], [27, Theorem 2.3] (after specializing to the case ϕ1 = ψ1 = 1), and [34,
Theorem 1.14, Lemma 5.4 in Ch. 1] (choosing q = p in their results).

THEOREM 3.2. Assume Hypothesis 3.1 (i) .

(i) There exists a constant C− ∈ (0,∞) such that

C−
(∫ b

a
dx w(x)F(x)p

)1/p

�
(∫ b

a
dx v(x)[(H−,1F)(x)]p

)1/p

(38)

for all F measurable on (a,b) and F � 0 a.e. on (a,b) , if and only if

A− := sup
c∈(a,b)

(∫ b

c
dx v(x)

)1/p(∫ c

a
dx w(x)−p′/p

)1/p′

< ∞. (39)

(If p = 1 and hence p′ = ∞ , the second factor in the right-hand side of (39) is
interpreted as ‖1/w‖L∞((a,c);dx) .) Moreover, the smallest constant C0,− ∈ (0,∞)
in (38) satisfies

A− � C0,− � p1/p(p′)1/p′A−, p ∈ (1,∞),
C0,− = A−, p = 1.

(40)

(ii) There exists a constant C+ ∈ (0,∞) such that

C+

(∫ b

a
dx w(x)F(x)p

)1/p

�
(∫ b

a
dx v(x)[(H+,1F)(x)]p

)1/p

(41)

for all F measurable on (a,b) and F � 0 a.e. on (a,b) , if and only if

A+ := sup
c∈(a,b)

(∫ c

a
dx v(x)

)1/p(∫ b

c
dx w(x)−p′/p

)1/p′

< ∞. (42)
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(If p = 1 and hence p′ = ∞ , the second factor in the right-hand side of (42) is
interpreted as ‖1/w‖L∞((c,b);dx) .) Moreover, the smallest constant C0,+ ∈ (0,∞)
in (41) satisfies

A+ � C0,+ � p1/p(p′)1/p′A+, p ∈ (1,∞),
C0,+ = A+ p = 1.

(43)

We emphasize that items (i) and (ii) in Theorem 3.2 do not exclude the trivial
case where the left-hand sides of (38) and (41) are infinite.

We also note that Theorem 3.2 naturally extends to p = ∞ , but as we will not use
this in this note we omit further details (cf. [34, Sect. 1.5]). Moreover, [34, Sects. 1.3,
1.5] actually discuss the more general case with p replaced by q ∈ [1,∞)∪{∞} on the
right-hand sides of (38), (41).

To extend the considerations in Theorem 3.2 to the case where H∓,1 is replaced by
the weighted Hardy operator H∓,φ∓,ψ∓ one recalls the following elementary fact, still
assuming F � 0 a.e. on (a,b) .

‖H−,φ−,ψ−F‖Lp((a,b);vdx) = ‖H−,1(ψ−F)‖Lp((a,b);vφ p
−dx)

=
(∫ b

a
dx v(x)φ−(x)p

∣∣∣∣∫ x

a
dx′ψ−(x′)F(x′)

∣∣∣∣p)1/p

�C̃−
(∫ b

a
dx w(x)ψ−(x)−p[ψ−(x)F(x)]p

)1/p

=C̃−‖F‖Lp((a,b);wdx) = C̃−‖ψ−F‖Lp((a,b);wψ−p
− dx), (44)

as well as

‖H+,φ+,ψ+F‖Lp((a,b);vdx) = ‖H+,1(ψ+F)‖Lp((a,b);vφ p
+dx)

=
(∫ b

a
dx v(x)φ+(x)p

∣∣∣∣∫ b

x
dx′ ψ+(x′)F(x′)

∣∣∣∣p)1/p

�C̃+

(∫ b

a
dx w(x)ψ+(x)−p[ψ+(x)F(x)]p

)1/p

= C̃+‖F‖Lp((a,b);wdx)

=C̃+‖ψ+F‖Lp((a,b);wψ−p
+ dx), (45)

are equivalent to ∥∥H−,1F̃−
∥∥

Lp((a,b);vφ p
−dx) � C̃−

∥∥F̃−
∥∥

Lp((a,b);wψ−p
− dx), (46)∥∥H+,1F̃+

∥∥
Lp((a,b);vφ p

+dx) � C̃+
∥∥F̃+

∥∥
Lp((a,b);wψ−p

+ dx), (47)

upon identifying F̃∓ = ψ∓F � 0 and replacing the original weights v and w by ṽ = vφ p
∓

and w̃ = wψ−p
∓ , respectively.

Thus, one obtains the following consequence of Theorem 3.2, (44)–(47) (see also
[27, Theorem 2.3]):
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COROLLARY 3.3. Assume Hypothesis 3.1.

(i) There exists a constant C̃− ∈ (0,∞) such that

(
C̃−

)p
∫ b

a
dx w(x)G(x)p �

∫ b

a
dx v(x)[(H−,φ−,ψ−G)(x)]p (48)

for all G measurable on (a,b) and G � 0 a.e. on (a,b) , if and only if

Ã− := sup
c∈(a,b)

(∫ b

c
dx v(x)φ−(x)p

)1/p(∫ c

a
dx w(x)−p′/pψ−(x)p′

)1/p′

< ∞.

(49)
(If p = 1 and hence p′ = ∞ , the second factor in the right-hand side of (49)
is interpreted as ‖ψ−/w‖L∞((a,c);dx) .) Moreover, the smallest constant C̃0,− ∈
(0,∞) in (48) satisfies

Ã− � C̃0,− � p1/p(p′)1/p′Ã−, p ∈ (1,∞),

C̃0,− = Ã−, p = 1.
(50)

(ii) There exists a constant C̃+ ∈ (0,∞) such that

(
C̃+

)p
∫ b

a
dx w(x)G(x)p �

∫ b

a
dx v(x)[(H+,φ+,ψ+G)(x)]p (51)

for all measurable G on (a,b) and G � 0 a.e. on (a,b) , if and only if

Ã+ := sup
c∈(a,b)

(∫ c

a
dx v(x)φ+(x)p

)1/p(∫ b

c
dx w(x)−p′/pψ+(x)p′

)1/p′

< ∞.

(52)
(If p = 1 and hence p′ = ∞ , the second factor in the right-hand side of (52)
is interpreted as ‖ψ+/w‖L∞((c,b);dx) .) Moreover, the smallest constant C̃0,+ ∈
(0,∞) in (51) satisfies

Ã+ � C̃0,+ � p1/p(p′)1/p′Ã+, p ∈ (1,∞),

C̃0,+ = Ã+, p = 1.
(53)

An application of Corollary 3.3 then permits one to remove the hypothesis F ∈
C0((0,b);B) in Theorem 2.2, Example 1, and (29) as follows.

THEOREM 3.4. Let p ∈ [1,∞) .

(i) In addition to Hypothesis 2.1 (i) , assume that wj > 0 a.e. on (a,b) , j = 1,2 ,
and that

F ∈ Lp((a,b);wp
1 [−w′

1]
1−pwp

2 dx;B
)
. (54)
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Then ∫ b

a
dxw1(x)p[−w′

1(x)]
1−pw2(x)p‖F(x)‖p

B

�p−p
∫ b

a
dx [−w′

1(x)]
(∫ x

a
dx′w2(x′)‖F(x′)‖B

)p

.

(55)

(ii) In addition to Hypothesis 2.1 (ii) , assume that wj > 0 a.e. on (a,b) , j = 1,2 ,
and that

F ∈ Lp((a,b);wp
1 [w

′
1]

1−pwp
2 dx;B

)
. (56)

Then ∫ b

a
dx w1(x)p[w′

1(x)]
1−pw2(x)p‖F(x)‖p

B

�p−p
∫ b

a
dx w′

1(x)
(∫ b

x
dx′w2(x′)‖F(x′)‖B

)p

.

(57)

Proof. It suffices to consider item (i) as item (ii) is proved analogously. Identi-
fying

G( ·) = ‖F( ·)‖B , w = wp
1 [−w′

1]
1−pwp

2 , v = [−w′
1], φ− = 1, ψ− = w2 (58)

in Corollary 3.3 (i) , the estimate (48) proves boundedness of the weighted Hardy oper-
ator

H−,1,w2 ∈ B
(
Lp((a,b);wp

1 [−w′
1]

1−pwp
2 dx

)
,Lp((a,b); [−w′

1]dx
))

(59)

if and only if

Ã− = sup
c∈(a,b)

[(∫ b

c
dx [−w′

1(x)]
)1/p

×
(∫ c

a
dx

{
w1(x)p[−w′

1(x)]
1−pw2(x)p}−p′/p

w2(x)p′
)1/p′

]

= sup
c∈(a,b)

[(∫ b

c
dx [−w′

1(x)]
)1/p(∫ c

a
dxw1(x)−p′ [−w′

1(x)]
)1/p′

]
< ∞, (60)

employing −p′/p = 1− p′ , −(1− p)p′/p = 1, temporarily assuming p ∈ (1,∞) . The
constant Ã− is easily estimated and one obtains

Ã− = sup
c∈(a,b)

[
[w1(c)−w1(b)]1/p

[
w1(c)1−p′ −w1(a)1−p′

p′ −1

]1/p′
]

� (p′ −1)−1/p′ sup
c∈(a,b)

[
w1(c)(1/p)+[(1−p′)/p′]]

= (p′ −1)−1/p′ = (p/p′)1/p′ < ∞, p ∈ (1,∞). (61)
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Thus, C̃− ∈ (0,∞) as in (48) exists, implying (59). Given the estimate (61), the smallest
constant C̃0,− as in (48), (50) satisfies

C̃0,− � p1/p(p′)1/p′Ã− � p1/p(p′)1/p′(p/p′)1/p′ = p, (62)

proving the estimate (55).
In the case p = 1, p′ = ∞ , the analog of (60) becomes

Ã− = sup
c∈(a,b)

[(∫ b

c
dx [−w′

1(x)]
)
‖1/w1‖L∞((a,c);dx)

]
= sup

c∈(a,b)

[
[w1(c)−w1(b)]‖1/w1‖L∞((a,c);dx)

]
= sup

c∈(a,b)

[
[w1(c)−w1(b)]w1(c)−1]

= sup
c∈(a,b)

[
1− [w1(b)/w1(c)]

]
=

[
1− [w1(b)/w1(a)]

]
� 1, p = 1, (63)

and hence the fact C̃0,− = Ã− , according to (49), also yields (55) for p = 1.

In particular, we now removed the hypothesis F ∈ C0((0,b);B) in Theorem 2.2
and replaced it by (54), (56). Consequently, this illustrates that Example 1 and (29)
now extend from F ∈C0((0,b);B) to F ∈ Lp((a,b);xαdx;B) .

Due to the fundamental importance of the constants Ã∓ in connection with small-
est constants C̃0,∓ in Hardy-type inequalities (as detailed in (50), (53)), we now take a
second look at them.

LEMMA 3.5. Let p ∈ [1,∞) .

(i) Assume Hypothesis 2.1 (i) , then

Ã− =

⎧⎨⎩(p/p′)1/p′
[
1− [

w1(b)1/p/w1(a)1/p
]]

, p ∈ (1,∞),[
1− [w1(b)/w1(a)]

]
, p = 1.

(64)

In particular, if w1(b) = 0 , or 1/w1(a) = 0 , then

Ã− =

{
(p/p′)1/p′ , p ∈ (1,∞),

1, p = 1.
(65)

(ii) Assume Hypothesis 2.1 (ii) , then

Ã+ =

⎧⎨⎩(p/p′)1/p′
[
1− [

w1(a)1/p/w1(b)1/p
]]

, p ∈ (1,∞),[
1− [w1(a)/w1(b)]

]
, p = 1.

(66)

In particular, if w1(a) = 0 , or 1/w1(b) = 0 , then

Ã+ =

{
(p/p′)1/p′ , p ∈ (1,∞),

1, p = 1.
(67)
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Proof. Again, we prove item (i) only. Starting with the case p ∈ (1,∞) , we first
prove (65) directly (even though that is not necessary). Suppose that w1(b) = 0, then

Ã− = sup
c∈(a,b)

w1(c)p′/(pp′)
[

w1(c)1−p′ −w1(a)1−p′

p′ −1

]1/p′

= (p′ −1)−1/p′ sup
c∈(a,b)

[
1− w1(c)p′−1

w1(a)p′−1

]1/p′

= (p′ −1)−1/p′ = (p/p′)1/p′ , (68)

as the supremum is attained for c = b . Similarly, if 1/w1(a) = 0, then

Ã− = sup
c∈(a,b)

[w1(c)−w1(b)]1/p

[
w1(c)1−p′

p′ −1

]1/p′

= (p′ −1)−1/p′ sup
c∈(a,b)

[
1− w1(b)

w1(c)

]1/p

= (p′ −1)−1/p′ = (p/p′)1/p′ , (69)

as the supremum is attained for c = a . To deal with the general case (64) (which of
course, directly yields (68), (69)) one can proceed as follows.

Ã− = sup
c∈(a,b)

{
[w1(c)−w1(b)]1/p

[
w1(c)1−p′ −w1(a)1−p′

p′ −1

]1/p′}

= (p′ −1)−1/p′ sup
c∈(a,b)

{[
1− w1(b)

w1(c)

]1/p[
1− w1(c)p′−1

w1(a)p′−1

]1/p′
}

. (70)

To maximize the right-hand side of (70), we introduce the absolutely continuous func-
tion

η(c) :=
[
1− w1(b)

w1(c)

]1/p[
1− w1(c)p′−1

w1(a)p′−1

]1/p′

, c ∈ (a,b), (71)

and note that η ′(c) = 0 is equivalent to

w1(c) = w1(a)1/pw1(b)1/p′ . (72)

Relation (72) yields a maximum of η on (a,b) (c ∈ {a,b} being excluded as a max-
imum since η(a) = η(b) = 0 if p ∈ (1,∞)) and insertion of (72) into the right-hand
side of (70) then yields (64) for p ∈ (1,∞) .

The case p = 1 (and hence, p′ = ∞) follows from

Ã− = sup
c∈(a,b)

{
[w1(c)−w1(b)]‖1/w1‖L∞((a,c);dx)

}
= sup

c∈(a,b)

{
[w1(c)−w1(b)]/w1(c)

}
=

[
1− w1(b)

w1(a)

]
, (73)

as the supremum is attained at c = a .
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REMARK 1. (i) One observes that the first lines on the right-hand sides of (64)–
(67) indeed converge to the second lines on the right-hand sides of (64)–(67) as p ↓ 1
and p′ ↑ ∞ .
(ii) If w1(b) �= 0 and 1/w1(a) �= 0 (resp., if w1(a) �= 0 and 1/w1(b) �= 0), then (64)
(resp., (66)) proves in conjunction with (50) (resp., (53)) that inequality (55) (resp.,
(57)), and hence our ad hoc inequality (14) (resp., (15)) is not optimal, that is, the
constant p−p in (55) and (57) is not optimal.

4. Some applications to the operator-valued case

The principal purpose of this section is to extend Example 1 to the operator-valued
situation.

We start with a few preparations. Given a separable, complex Hilbert space H ,
we recall that B(H ) denotes the C∗ -algebra of linear, bounded operators T : H →
H defined on all of H . Similarly, Bp(H ) denote the �p -based Schatten–von Neu-
mann trace ideals, p ∈ [1,∞) .

The eigenvalues of a bounded linear operator B ∈ B(H ) are abbreviated by
λ j(B) , j ∈ J , with J ⊆ N an appropriate index set, and the trace of a trace class
operator A ∈ B1(H ) is denoted by trH (A) and computed via Lidskii’s theorem as

trH (A) = ∑
j∈J

λ j(A). (74)

In particular, if T ∈ Bp(H ) for some p ∈ [1,∞) , |T | is defined by |T | := (T ∗T )1/2 ,
and one recalls the fact,

‖T‖p
Bp(H ) = trH

(|T |p). (75)

Moreover, if A : (0,∞) → B(H ) is weakly measurable, 0 � A( ·) ∈ B1(H ) a.e. on
(0,∞) , and trH (A( ·)) ∈ L1((a,b);dt) , then by an application of the monotone conver-
gence theorem,∥∥∥∥∫ b

a
dt A(t)

∥∥∥∥
B1(H )

= trH

(∫ b

a
dt A(t)

)
= ∑

n∈N

∫ b

a
dt (en,A(t)en)H

=
∫ b

a
dt ∑

n∈N

(en,A(t)en)H =
∫ b

a
dt trH (A(t)) =

∫ b

a
dt ‖A(t)‖B1(H ), (76)

where {en}n∈N represents a complete orthonormal system in H , with N ⊆ N an
appropriate index set. In this context we also recall the well-known fact,∥∥∥∥∫ b

a
dt A(t)

∥∥∥∥
Bp(H )

�
∫ b

a
dt ‖A(t)‖Bp(H ), p ∈ [1,∞), (77)

and similarly with Bp(H ) replaced by B(H ) .
Given these preparations, one can restate Example 1 in the case where B =

Bp(H ) as follows.
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COROLLARY 4.1. Let p ∈ [1,∞) , b∈ (0,∞)∪{∞} , and assume that F : (0,b)→
B(H ) is a weakly measurable map satisfying ‖F( ·)‖Bp(H ) ∈ Lp((0,b);xαdx) , with
α ∈ R chosen according to items (i) and (ii) below:

(i) If α < p−1 , then (24) implies

trH

(∫ b

0
dx xα |F(x)|p

)
�

( |α − p+1|
p

)p

trH

(∫ b

0
dx xα−p

∣∣∣∣∫ x

0
dx′F(x′)

∣∣∣∣p)
.

(78)

(ii) If α > p−1 , then (25) implies

trH

(∫ b

0
dx xα |F(x)|p

)
�

( |α − p+1|
p

)p

trH

(∫ b

0
dx xα−p

∣∣∣∣∫ b

x
dx′F(x′)

∣∣∣∣p)
.

(79)

In both cases (i) and (ii) , the constant [(|α − p+1|)/p]p is best possible and equality
holds if and only if F = 0 a.e. on (0,b) .

Proof. It suffices to consider item (i) . Then an application of (74)–(77) yields( |α − p+1|
p

)p

trH

(∫ b

0
dx xα−p

∣∣∣∣∫ x

0
dx′F(x′)

∣∣∣∣p)
=

( |α − p+1|
p

)p ∫ b

0
dx xα−ptrH

(∣∣∣∣∫ x

0
dx′F(x′)

∣∣∣∣p)
(by (76))

=
( |α − p+1|

p

)p ∫ b

0
dx xα−p

∥∥∥∥∫ x

0
dx′F(x′)

∥∥∥∥p

Bp(H )
(by (75))

�
( |α − p+1|

p

)p ∫ b

0
dx xα−p

(∫ x

0
dx′ ‖F(x′)‖Bp(H )

)p

(by (77))

�
∫ b

0
dx xα‖F(x)‖p

Bp(H ) (by (24))

=
∫ b

0
dx xα trH

(|F(x)|p) (by (75))

=trH

(∫ b

0
dx xα |F(x)|p

)
(by (76)). (80)

The final part about optimality of the constant on the right-hand side in (78) and (79),
and the equality part, then follow as in Example 1.

We note that the case α = 0, b = ∞ , F( ·) � 0 a.e. on (0,∞) in (78) was proved
by Hansen [16, Theorem 2.4] on the basis of a convexity argument (see also [17], [25]).
Our strategy of proof is different and based on that in Theorem 2.2.

Next, following Hansen [16], we will remove the trace in Corollary 4.1 in the case
where p ∈ [1,2] .

We start by recalling [16, Lemma 2.1]:
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LEMMA 4.2. Let p ∈ [1,2] , and suppose that F : (0,∞) → B(H ) is a weakly
measurable map satisfying F( ·) � 0 a.e. on (0,∞) , and

∫ ∞
0 dxx−1F(x)p ∈ B(H ) .

Then, ∫ ∞

0
dx x−1F(x)p �

∫ ∞

0
dx x−1−p

(∫ x

0
dx′F(x′)

)p

. (81)

The constant 1 on the right-hand side of the inequality (81) is best possible.

Employing Lemma 4.2 we can prove the principal result of this section.

THEOREM 4.3. Let p ∈ [1,2] , and suppose that F : (0,∞) → B(H ) is a weakly
measurable map satisfying F( ·) � 0 a.e. on (0,∞) , and

∫ ∞
0 dxxαF(x)p ∈B(H ) , with

α ∈ R chosen according to items (i) and (ii) below:

(i) If α < p−1 , then∫ ∞

0
dx xα F(x)p �

( |α − p+1|
p

)p ∫ ∞

0
dx xα−p

(∫ x

0
dx′F(x′)

)p

. (82)

(ii) If α > p−1 , then∫ ∞

0
dx xα F(x)p �

( |α − p+1|
p

)p ∫ ∞

0
dx xα−p

(∫ ∞

x
dx′F(x′)

)p

. (83)

In both cases (i) and (ii) , the constant [(|α +1− p|)/p]p is best possible and equality
holds if and only if F = 0 a.e. on (0,b) .

Proof. We start by proving item (i) . Closely following the strategy of proof in
[16, Theorem 2.3], we introduce

G(x) = F
(
xp/|α−p+1|)x(1+α)/|α−p+1|, x > 0, (84)

and the change of variables

y = xp/|α−p+1|, dy = [p/|α − p+1|]x(1+α)/|α−p+1|dx. (85)

Then Lemma 4.2 applied to G yields∫ ∞

0
dx x−1G(x)p =

∫ ∞

0
dx x−1F

(
xp/|α−p+1|)p

xp(1+α)/|α−p+1|

�
∫ ∞

0
dx x−1−p

(∫ x

0
dx′G(x′)

)p

(by (81))

=
∫ ∞

0
dx x−1−p

(∫ x

0
dt F

(
t p/|α−p+1|)t(1+α)/|α−p+1|

)p

=
( |α − p+1|

p

)p ∫ ∞

0
dx x−1−p

(∫ xp/|α−p+1|

0
dyF(y)

)p

. (86)
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Introducing another change of variables

w = xp/|α−p+1|, dw w−1 = [p/|α − p+1|]dx x−1, (87)

then implies( |α − p+1|
p

)∫ ∞

0
dw wαF(w)p

=
( |α − p+1|

p

)∫ ∞

0
dw w−1F(w)pw1+α =

∫ ∞

0
dx x−1F

(
xp/|α−p+1|)p

xp(1+α)/|α−p+1|

�
( |α − p+1|

p

)p ∫ ∞

0
dx x−1−p

(∫ xp/|α−p+1|

0
dyF(y)

)p

(by (86))

=
( |α − p+1|

p

)p+1 ∫ ∞

0
dw w−1−(p−1−α)

(∫ w

0
dyF(y)

)p

(by (87))

=
( |α − p+1|

p

)p+1 ∫ ∞

0
dw wα−p

(∫ w

0
dyF(y)

)p

, (88)

proving (82).
While Φ(F) = x−1 ∫ x

0 dx′F(x′) represents a positive, unital map (i.e., Φ(F) � 0 if
F � 0 and Φ(IH ) = IH ),

∫ ∞
x dx′F(x′) cannot possibly be of this type and hence one

cannot simply follow the proof of [16, Theorem 2.3] to derive (83). Fortunately, the
following elementary alternative approach applies. Introducing the change of variables,

y = 1/x, G(y) = F(1/y)y−2, (89)

in (82) (w.r.t. x on either side in (82) and, especially, w.r.t. x′ on the right-hand side of
(82)) results in∫ ∞

0
dy yβ G(y)p �

( |β − p+1|
p

)p ∫ ∞

0
dx xβ−p

(∫ ∞

x
dyG(y)

)p

, (90)

where β = 2p−2−α , and hence α < p−1 is equivalent to β > p−1.
The final part about optimality of the constant on the right-hand side in (82) and

(83), and the equality part, then follow as in Corollary 4.1 from Example 1 upon taking
the trace on either side of (82) and (83).

Again we note that the case α = 0 in (82) was proved by Hansen [16, Theo-
rem 2.3]; he also proved that Theorem 4.3 does not extend to p > 2.

While we focused on the underlying interval (0,∞) in Theorem 4.3, the analogous
case (0,b) , b ∈ (0,∞) follows upon employing the variable transformations discussed
in [27, p. 36–38].

Extending the definition of (H∓,�F)(x) , x ∈ (0,∞) , � ∈ N , in (26), (27) to the
operator-valued context where F : (0,∞) → B(H ) is a weakly measurable map satis-
fying F( ·) � 0 a.e. on (0,∞) , and for all c ∈ (0,∞) ,

∫ c
0 dxF(x)p ∈ B(H ) in connec-

tion with H−,� and
∫ ∞
c dxF(x)p ∈ B(H ) in connection with H+,� , the facts (82), (83)
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can be rewritten as∫ ∞

0
dx xγ−p[H∓,1(F( ·))(x)]p �

(
p

|γ − p+1|
)p ∫ ∞

0
dx xγF(x)p, p ∈ [1,∞), γ ≶ p−1.

(91)

Thus one obtains the following result.

COROLLARY 4.4. Let p ∈ [1,2] , and suppose that F : (0,∞) → B(H ) is a
weakly measurable map satisfying F( ·) � 0 a.e. on (0,∞) , and

∫ ∞
0 dx xαF(x)p ∈

B(H ) , with α ∈ R chosen according to (92) below. Then

∫ ∞

0
dx xαF(x)p �

�

∏
k=1

( |α − kp+1|
p

)p ∫ ∞

0
dx xα−�p[H∓,�(F( ·))(x)]p, (92)

α ≶
{

p−1,

�p−1,
� ∈ N.

Proof. It suffices to iterate (91) by applying it to appropriate F = F� as in the
derivation of (29).

Replacing F � 0 by |F |= (F∗F)1/2 and mimicking the differential version of the
Hardy inequalities at the end of Section 2 yields∫ ∞

0
dx xα | f ′(x)|p �

( |α − p+1|
p

)p ∫ ∞

0
dx xα−p| f (x)|p,

p ∈ [1,2], α ∈ R, f ∈C∞
0 ((0,∞);B(H )).

(93)

Iterating (93) then yields as in (34)

∫ ∞

0
dx xα | f (n)(x)|p �

∏k
j=1 |α − jp+1|p

pkp

∫ ∞

0
dx xα−kp| f (n−k)(x)|p,

p ∈ [1,2], 1 � k � n, n ∈ N, α ∈ R, f ∈C∞
0 ((0,∞);B(H )).

(94)
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