REMARKS TO A THEOREM OF SINCLAIR AND VAALER

LÁSZLÓ LosoncZi

(Communicated by Z. Páles)

Abstract

Sinclair and Vaaler in [6] Theorem 1.2 found sufficient conditions, nonlinear in the coefficients depending on a parameter $p \geqslant 1$, for self-inversive polynomials to have all their zeros on the unit circle. Here we discuss the dependence of the conditions on the parameter and through it we show that applying Theorem 1 of Lakatos and Losonczi [4] their result can be strengthened by giving the locations of the zeros.

1. Introduction

Let $P_{m}(z)=\sum_{k=0}^{m} A_{k} z^{k}=A_{m} \prod_{k=0}^{m}\left(z-z_{k}\right) \in \mathbb{C}[z]$ be a polynomial of degree m with zeros z_{1}, \ldots, z_{m}. Further let P_{m}^{*} be the polynomial defined by

$$
P_{m}^{*}(z):=z^{m} \bar{P}(1 / z)=\sum_{k=0}^{m} \bar{A}_{k} z^{m-k}=\bar{A}_{0} \prod_{k=0}^{m}\left(z-z_{k}^{*}\right)
$$

whose zeros are $z_{k}^{*}=1 / \bar{z}_{k}, k=0, \ldots, m$ (the inverses of z_{k} with respect to the unit circle).

DEFINITION 1. A polynomial $P_{m}(z)$ of degree m is said to be self-inversive if there exists an $\varepsilon \in \mathbb{C},|\varepsilon|=1$ such that $P_{m}^{*}(z)=\varepsilon P_{m}(z)$.

There are several equivalent definitions of self-inversive polynomials. It is well-known (see e.g. [5]) that for a polynomial $P_{m}(z)=\sum_{k=0}^{m} A_{k} z^{k}$ of degree m the following statement are equivalent:

1. P_{m} is self-inversive,
2. $\bar{A}_{k}=\varepsilon A_{m-k}, k=0, \ldots, m$, where $|\varepsilon|=1$,
3. for the zeros z_{k} of P_{m} we have $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}=\left\{1 / \bar{z}_{1}, 1 / \bar{z}_{2}, \ldots, 1 / \bar{z}_{m}\right\}$.
[^0]If a polynomial with real coefficients is self-inversive then ε is necessarily real hence either $\varepsilon=1$ our polynomial is called reciprocal, or $\varepsilon=-1$ and our polynomial is called antireciprocal.
C. D. Sinclair and J. D. Vaaler in [6] Theorem 1.2 found sufficient conditions, nonlinear in the coefficients, for self-inversive polynomials to have all their zeros on the unit circle.

Their results reads as follows (the notations and formulation are slightly changed).
THEOREM 1. (Sinclair and Vaaler) If $P_{m}(z)=\sum_{k=0}^{m} A_{k} z^{k}$ is a monic self-inversive polynomial of degree m with $L \geqslant 3$ non-zero coefficients such that for some $p \geqslant 1$

$$
\begin{equation*}
\left|P_{m}\right|_{p}^{p} \leqslant 2+\frac{2^{p}}{(L-2)^{p-1}} \tag{1}
\end{equation*}
$$

then P_{m} has all of its zeros on the unit circle.
Here the p norm $\left|P_{m}\right|_{p}$ is defined by

$$
\left|P_{m}\right|_{p}:=\left(\left|A_{m}\right|^{p}+\left|A_{m-1}\right|^{p}+\cdots+\left|A_{0}\right|^{p}\right)^{1 / p} \quad(p \geqslant 1)
$$

Since here P_{m} is monic $L \geqslant 2$, in case of $L=2$ clearly all zeros of P_{m} are on the unit circle. thus we may assume that $L \geqslant 3$.

The authors remark that their result is similar in spirit to recent results of Schinzel [7] and Lakatos and Losonczi [3].

Here we show that condition (1) is the strongest (gives the largest set of polynomials) if $p=1$ and for this value (1) is identical to the sufficient condition (ii)-1 in Theorem 1 of Lakatos and Losonczi [4]. Applying this theorem the result of Sinclair and Vaaler can be strengthened by giving the location of zeros.

2. Results

To find the dependence of (1) on p first we rewrite it in an equivalent form as

$$
\begin{equation*}
\left(\sum_{k=1}^{m-1}\left|A_{k}\right|^{p} /(L-2)\right)^{1 / p} \leqslant 2 /(L-2) \tag{2}
\end{equation*}
$$

For positive p let

$$
\mathscr{M}_{p}\left(x_{1}, \ldots, x_{n}\right):=\left(\sum_{i=1}^{n} x_{i}^{p} / n\right)^{1 / p}
$$

be the p th power mean of the (nonnegative) numbers x_{1}, \ldots, x_{n}.
It is well known (see e.g. [1] p.16) that $\mathscr{M}_{p}\left(x_{1}, \ldots, x_{n}\right)$ is an nondecreasing function of p, strictly increasing unless $x_{1}=\cdots=x_{n}$ and $\lim _{p \rightarrow \infty} \mathscr{M}_{p}\left(x_{1}, \ldots, x_{n}\right)=$ $\max _{1 \leqslant i \leqslant n} x_{i}$.

It is easy to recognize that the left hand side of (2) is exactly $\mathscr{M}_{p}\left(\left|A_{1}\right|, \ldots,\left|A_{m-1}\right|\right)$ thus (1) has now the form

$$
\begin{equation*}
\mathscr{M}_{p}\left(\left|A_{1}\right|, \ldots,\left|A_{m-1}\right|\right) \leqslant \frac{2}{L-2} \tag{3}
\end{equation*}
$$

Suppose now that (3) holds for some $p \geqslant 1$. Then we have

$$
\frac{\left|A_{1}\right|+\cdots+\left|A_{m-1}\right|}{L-2}=\mathscr{M}_{1}\left(\left|A_{1}\right|, \ldots,\left|A_{m-1}\right|\right) \leqslant \mathscr{M}_{p}\left(\left|A_{1}\right|, \ldots,\left|A_{m-1}\right|\right) \leqslant \frac{2}{L-2}
$$

hence

$$
\begin{equation*}
\left|A_{1}\right|+\cdots+\left|A_{m-1}\right| \leqslant 2\left(=2\left|A_{m}\right|\right) \tag{4}
\end{equation*}
$$

Here strict inequality holds either if (1) holds with strict inequality or if (1) holds with equality, $p>1$ and not all absolute values of the nonzero coefficients (of P_{m}) are equal.

Equality holds in (4) either if (1) holds with equality and $p=1$ or $p>1$ and the absolute values of all nonzero coefficients (of P_{m}) are equal.

In [4] we proved the following
THEOREM 2. (Lakatos and Losonczi) (i) If all zeros of the polynomial $P_{m}(z)=$ $\sum_{k=0}^{m} A_{k} z^{k} \in \mathbb{C}[z]$ of degree $m \geqslant 1$ are on the unit circle then P_{m} is self-inversive.
(ii)-1 If P_{m} is self-inversive and

$$
\begin{equation*}
\left|A_{m}\right| \geqslant \frac{1}{2} \sum_{k=1}^{m-1}\left|A_{k}\right| \tag{5}
\end{equation*}
$$

holds then all zeros of P_{m} are on the unit circle.
Let
$\beta_{m-l}=\arg A_{m-l}\left(\frac{\bar{A}_{0}}{A_{m}}\right)^{\frac{1}{2}}\left(l=0, \ldots,\left[\frac{m}{2}\right]\right), \quad \varphi_{l}=\frac{2\left(l \pi-\beta_{m}\right)}{m}(l=0, \ldots, m)$,
where $\left[\frac{m}{2}\right]$ denotes the integer part of $\frac{m}{2}$.
(ii)-2 If the inequality (5) is strict then the zeros $e^{i u_{l}}(l=1, \ldots, m)$ of P_{m} are simple and can be arranged such that

$$
\begin{equation*}
\varphi_{l-1}<u_{l}<\varphi_{l} \quad(l=1, \ldots, m) \tag{7}
\end{equation*}
$$

(ii)-3 If (5) holds with equality then double zeros may arise. If (5) holds with equality then $e^{i \varphi_{l}}(1 \leqslant l \leqslant m)$ is a zero of P_{m} if and only if the coefficients of P_{m} satisfy the conditions

$$
\begin{equation*}
\cos \left(\beta_{m-k}+\left(\frac{m}{2}-k\right) \varphi_{l}\right)=(-1)^{l+1} \text { for all } k=1, \ldots,\left[\frac{m}{2}\right] \text { for which } A_{k} \neq 0 \tag{8}
\end{equation*}
$$

If (8) holds then $e^{i \varphi_{l}}$ is necessarily a double zero of P_{m}.

One can easily see that (5) is identical to (4) hence the assertions of Theorem 2 can be applied. In this way Theorem 1 of Sinclair and Vaaler can be strengthened to:

THEOREM 3. (j)-1 Let $P_{m}(z)=\sum_{k=0}^{m} A_{k} z^{k}$ be a monic self-inversive polynomial of degree m with $L \geqslant 3$ non-zero coefficients such that for some $p \geqslant 1$

$$
\begin{equation*}
\sum_{k=0}^{m}\left|A_{k}\right|^{p} \leqslant 2+\frac{2^{p}}{(L-2)^{p-1}} \tag{9}
\end{equation*}
$$

(or $\max _{1 \leqslant k \leqslant m-1}\left|A_{k}\right| \leqslant 2 /(L-2)$ obtained from (9) by $p \rightarrow \infty$) then P_{m} has all of its zeros on the unit circle.

Let β_{m-l}, φ_{l} be defined by (6) with the coefficients of our monic polynomial.
(jj)-2 If (9) holds with strict inequality or if (9) holds with equality, $p>1$ and not all absolute values of the nonzero coefficients (of P_{m}) are equal then the zeros $e^{i u_{l}}(l=1, \ldots, m)$ of P_{m} are simple and can be arranged such that

$$
\begin{equation*}
\varphi_{l-1}<u_{l}<\varphi_{l} \quad(l=1, \ldots, m) \tag{10}
\end{equation*}
$$

(jj)-3 If (9) holds with equality and $p=1$ or $p>1$ and the absolute values of all nonzero coefficients (of P_{m}) are equal then double zeros may arise. In this case $e^{i \varphi_{l}}(1 \leqslant l \leqslant m)$ is a zero of P_{m} if and only if the coefficients of the monic P_{m} satisfy the conditions (8) and if this holds then $e^{i \varphi_{l}}$ is necessarily a double zero of P_{m}.

3. The case of degree four reciprocal polynomials

Let us consider a degree four monic reciprocal polynomial $f_{4}(z)=z^{4}+c_{1} z^{3}+$ $c_{2} z^{2}+c_{1} z+1$ with real coefficients. Its zeros are on the unit circle if and only if (see Lakatos [2] p. 659-660) $2 \sqrt{\max \left\{c_{2}-2,0\right\}} \leqslant\left|c_{1}\right| \leqslant \min \left\{4,\left(c_{2}+2\right) / 2\right\}$. Figure 1 shows the closed region D in the $\left(c_{2}, c_{1}\right)$ plane, satisfying these inequalities, colored in gray (green in the pdf). In both figures the horizontal axis is c_{2} the vertical axis is $c_{1} \cdot f_{4}$ satisfies inequality (1) or (9)

$$
\begin{array}{lll}
\text { for } p=1 & \text { if and only if } & 2\left|c_{1}\right|+\left|c_{2}\right| \leqslant 2 \\
\text { for } p=2 & \text { if and only if } & 2\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2} \leqslant 4 / 3 \\
\text { for } p \rightarrow \infty & \text { if and only if } & \max \left|c_{1}\right|,\left|c_{2}\right| \leqslant 2 / 3
\end{array}
$$

Denote by D_{1}, D_{2}, D_{∞} the closed regions corresponding to $p=1$ (the closed rhombus with vertices $(-2,0),(0,1),(2,0),(0,-1))$, to $p=2$ (the interior and boundary of the ellipse with horizontal half-axis $\sqrt{4 / 3}$ vertical half-axis $\sqrt{2 / 3}$), to $p \rightarrow \infty$ (the closed square of sides $2 / 3$) respectively. Figure 2 shows the closed regions $D_{\infty} \subset D_{2} \subset D_{1} \subset$ D together.

Figure 1

Figure 2

REFERENCES

[1] E. F. Beckenbach, R. Bellman, Inequalities, Springer-Verlag, Berlin, Göttingen, Heidelberg (1961).
[2] P. Lakatos, On zeros of reciprocal polynomials, Publ. Math. Debrecen 61, (2002), 645-661.
[3] P. Lakatos, L. Losonczi, On zeros of reciprocal polynomials of odd degree, J. Inequal. Pure Appl. Math. 4 no. 3 (2003) Article 60, 8 pp. (electronic, http://jipam.vu.edu.au).
[4] P. Lakatos, L. Losonczi, Self-inversive polynomials whose zeros are on the unit circle, Publ. Math. Debrecen 65 (2004), 409-420.
[5] G. V. Milovanivić, D. S. Mitrinović, Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, New Jersey, London, Hong Kong (1994).
[6] C. D. Sinclair and J. D. VaAler, Self-inversive polynomials with all zeros on the unit circle, in J. McKee \& C. Smyth (Eds.), Number Theory and Polynomials (London Mathematical Society Lecture Note Series, pp. 312-321), Cambridge University Press (2008).
[7] A. Schinzel, Self-inversive polynomials with all zeros on the unit circle, Ramanujan J. 9, (2005), 19-23.
(Received January 18, 2019)
László Losonczi
Faculty of Economics
University of Debrecen
H-4028 Debrecen, Böszörményi út 26, Hungary
e-mail: losonczi08@gmail.com

[^0]: Mathematics subject classification (2010): 30C15, 12D10, 42C05.
 Keywords and phrases: Self-inversive polynomial, zeros, unit circle, power means. Research supported by the Hungarian Scientific Research Fund (OTKA) Grant K-111651.

