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EXACT UPPER BOUND ON THE SUM OF

SQUARED NEAREST–NEIGHBOR DISTANCES

BETWEEN POINTS IN A RECTANGLE

IOSIF PINELIS

(Communicated by M. A. Hernández Cifre)

Abstract. An exact upper bound on the sum of squared nearest-neighbor distances between
points in a rectangle is given.

1. Introduction and summary

For any natural n � 2 and any positive real numbers a and b , let P1, . . . ,Pn be
distinct points in an a×b rectangle R . For each i ∈ [n] := {1, . . . ,n} , let

di := min
{
PiPk : k ∈ [n]\ {i}}, (1)

where PQ denotes the Euclidean distance between points P and Q . So, di is the dis-
tance from the point Pi to its nearest neighbor among the points P1, . . . ,Pi−1,Pi+1, . . . ,Pn .

THEOREM 1.
n

∑
1

d2
i � 2a2 +2b2. (2)

The upper bound 2a2 + 2b2 on ∑n
1 d2

i is exact in the following sense: it is attained (i)
when n = 2 and the points P1,P2 are opposite vertices of the rectangle R and (ii) when
n = 4 , a = b, and the points P1, . . . ,P4 are the vertices of the square R.

One might note here that, without further restrictions, the exact lower bound on
∑n

1 d2
i is the trivial bound 0, “attained in the limit” when the distinct points P1, . . . ,Pn

are arbitrarily close to one another.
The terms used in definition (1) are similar to those in the definition of the cells

Ci :=
{
P : PPi � mink∈[n]\{i}PPk

}
(3)

of the Voronoi diagram/tessellation {C1, . . . ,Cn} generated by the points P1, . . . ,Pn .
Voronoi diagrams [3] have very broad applications, not only in mathematics, but also
in sciences, engineering, and other fields.

The notion of nearest neighbors is used in various other ways as well, in particular
in statistics [5], computational geometry [1], information theory [6], computer science
[2], biology [7], and elsewhere.
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2. Proof of Theorem 1

If the minimum in the definition (1) of the di ’s were replaced by the maximum,
then it would be very easy to give the exact upper bound on ∑n

1 d2
i . Indeed, since the

largest distance between two arbitrary points of the rectangle R is
√

a2 +b2 , this exact
upper bound on ∑n

1 d2
i would be n(a2 +b2) , attained when all the points Pi are at two

opposite vertices of the rectangle R .
However, despite the great simplicity of the actual statement of Theorem 1, its

proof is not at all simple. The reason for this is that the summands d2
i in the sum in

(2) are the minima, rather than maxima, of a possibly large number of convex functions
of the points P1, . . . ,Pn . So, the sum ∑n

1 d2
i as a function of P1, . . . ,Pn is in general

non-convex, usually with a large number of non-smooth local maxima (some of which
may be global), plus a number of false (or quasi-) non-smooth local “maxima”. Two of
such possible situations are illustrated in Fig. 1, where only one of the many variables
on which the sum ∑n

1 d2
i depends is allowed to actually vary. One can see that the

dependence of ∑n
1 d2

i on just one of the variables may already be quite complicated
and exhibit quite different patterns. Of course, the complexity and variety of patterns
of dependence of the sum ∑n

1 d2
i on all the variables involved (that is, on the all the

coordinates of all the points P1, . . . ,Pn ) is much greater yet.
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Figure 1: Each of the two graphs here is obtained by selecting n = 6 pseudorandom
points in the unit square [0,1]2 , replacing the abscissa of one of the 6 points by a
variable s ∈ [0,1] , and then plotting the resulting varying sum ∑6

1 d2
i against s .

To deal with the described difficulties, we will have to consider a variety of cases,
in each of the cases carefully constructing convex functions that would be tight enough
majorants, at least locally (in an appropriate sense), of the non-convex sum ∑n

1 d2
i .

Similar techniques could possibly be used elsewhere.

REMARK 1. One may realize at this point that, for each natural n , finding the
exact upper bound on ∑n

1 d2
i is a problem of real algebraic geometry (also referred to

as semialgebraic geometry); see e.g. [4]. In principle, for each given n such a problem
can be solved completely algorithmically. However, even for n = 3, it takes minutes
of computer time, in addition to quite a bit of preparation and manual post-processing
of the computer algebra system output, to obtain the following exact upper bound on
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∑n
1 d2

i = ∑3
1 d2

i :

S3(a,b) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 +
9b2

4
if

b
a

� 1√
3
,

3a2

4
+3b2 if

1√
3

� b
a

�
√

3
2

,

12
(
a2−

√
3ab+b2) if

√
3

2
� b

a
� 2√

3
,

3a2 +
3b2

4
if

2√
3

� b
a

�
√

3,

9a2

4
+b2 if

b
a

�
√

3.

(4)

It follows that

S3(a,b) � 12
7

(a2 +b2), (5)

with the equality if b/a ∈ {2/
√

3,
√

3/2} , and 12
7 ≈ 1.71. Also, S3(a,b) =

6(2−√
3)(a2 +b2) ≈ 1.61(a2 +b2) for a = b .

For values of n greater than 4 (and also for n = 4 with a �= b ), the problem of
finding the exact upper bound on ∑n

1 d2
i is likely much more difficult than it is for n = 3.

Let us now turn to the actual proof of Theorem 1. For any finite set S of points on
the Euclidean plane, let Σ(S ) denote the sum of squared nearest-neighbor distances
between the points in S . So, (2) can be rewritten as

Σ(P)
(?)
� 2a2 +2b2, (6)

where
P := {P1, . . . ,Pn}.

Let us prove (6) by induction on n . For n = 2, (6) is obvious. Suppose now that
n � 3.

Without loss of generality (wlog), R = [0,a]× [0,b] . “Partition” R into the four
congruent a

2 × b
2 rectangles

R1 := [0, a
2 ]× [0, b

2 ], R2 := [ a
2 ,a]× [0, b

2 ], R3 := [0, a
2 ]× [ b

2 ,b], R4 := [ a
2 ,a]× [ b

2 ,b] .

For each j ∈ {1, . . . ,4} , let

P j := Rj ∩P and n j := cardP j,

where card denotes the cardinality.
Case 1: n1, . . . ,n4 � 2. Then 2 � n j < n for all j ∈ {1, . . . ,4} . So, by induction,

Σ(P) � Σ(P1)+ · · · + Σ(P4) � 4[2( a
2)2 +2( b

2)2] = 2a2 +2b2,

which proves (6) in Case 1.
The consideration of the next two cases is based in part on the following result.
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LEMMA 1. Suppose that n1 � 2 and n2 = 1 , so that there is exactly one point,
say Q, in the set P2 . Then

Σ(P1)+d(Q,P1)2 � a2 +b2.

Here and in what follows, for any point P and any set S of points,

d(P,S ) := inf
A∈S

PA,

the shortest distance from P to the points in S .

Proof. Let s be the largest abscissa of all the n1 points in P1 , so that 0 � s �
a
2 . Let (u,v) := Q , so that a

2 � u � a and 0 � v � b
2 . By vertical symmetry, wlog

0 � v � b
4 , and hence d(Q,P1)2 � (u− s)2 +( b

2 − v)2 . Also, by induction, Σ(P1) �
2s2 +2( b

2)
2 . Therefore and in view of the mentioned ranges of the variables s,u,v ,

Σ(P1)+d(Q,P1)2 � 2s2 +2( b
2)

2 +(u− s)2 +( b
2 − v)2

� 2s2 +2( b
2)

2 +(a− s)2 +( b
2)2 � a2 + 3

4 b2 � a2 +b2,

which proves Lemma 1.
Case 2: One of the n j ’s is 1 , and the other n j ’s are � 2. Here wlog n1,n3,n4 � 2

and n2 = 1. Then, in view of Lemma 1 and by induction,

Σ(P) � Σ(P1)+d(Q,P1)2 + Σ(P3)+ Σ(P4) � a2 +b2 +2[2( a
2)

2 +2( b
2)

2]

= 2a2 +2b2.

Case 3: Two of the n j ’s are 1 ’s, and the other n j ’s are � 2. Here wlog either
n1,n3 � 2 and n2 = n4 = 1 (the “adjacent” subcase) or n1,n4 � 2 and n2 = n3 = 1 (the
“non-adjacent” subcase). In the “adjacent” subcase, let Q be the only point in P2 , and
let T be the only point in P4 . Then, in view of Lemma 1 and by induction,

Σ(P) �
(
Σ(P1)+d(Q,P1)2)+

(
Σ(P3)+d(T,P3)2) � (a2 +b2)+ (a2 +b2)

= 2a2 +2b2.

The “non-adjacent” subcase is considered quite similarly, by interchanging R3 and R4 .
Case 4: Three of the n j ’s are 1 ’s, and the other n j is � 2. Here wlog n1 � 2

and n2 = n3 = n4 = 1. Let Q2 = (p,q),Q3 = (u,v),Q4 = (x,y) be the unique points in
P2,P3,P4 , respectively, so that p,x ∈ [ a

2 ,a] , v,y ∈ [ b
2 ,b] , u ∈ [0, a

2 ] , q ∈ [0, b
2 ] .

Let s and t be, respectively, the largest abscissa and the largest ordinate of all the
n1 points in P1 . Then

Σ(P) � B4 := Σ(P1)+Q2S
2 +Q3T

2 +
Q4Q2

2 +Q4Q2
3

2
, (7)

where S is a point (among the n1 points in P1 ) with the largest abscissa s , and T
is a point (among the n1 points in P1 ) with the largest ordinate t , so that S = (s,η)
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for some η ∈ [0, t] , and T = (ξ ,t) for some ξ ∈ [0,s] . Of course, Q2S2 is a convex
function of η ∈ [0, t] , and so, for S0 := (s,0) and St := (s, t) we have

Q2S
2 � max(Q2S

2
0,Q2S

2
t ) = (p− s)2 +max(q2,(q− t)2).

Similarly,
Q3T

2 � max(u2,(u− s)2)+ (v− t)2.

Next,
Q4Q

2
2 +Q4Q

2
3 = (x− p)2 +(y−q)2 +(x−u)2 +(y− v)2,

which is convex in (x,y) , with the maximum in (x,y)∈ [ a
2 ,a]× [ b

2 ,b] attained at (x,y) =
(a,b) , for any given p ∈ [ a

2 ,a] , v ∈ [ b
2 ,b] , u ∈ [0, a

2 ] , q ∈ [0, b
2 ] . Further, by induction,

Σ(P1) � 2s2 +2t2 . Thus, by (7),

Σ(P) � B4 � B̃4 := 2s2 +2t2 +max
(
q2,(q− t)2)+max

(
(u− s)2,u2)

+(p− s)2 +(v− t)2 + 1
2

(
(a− p)2 +(b−q)2)

+ 1
2

(
(a−u)2 +(b− v)2) .

Clearly, B̃4 is convex in (p,v) , and one can see that the maximum of B̃4 in (p,v) ∈
[ a
2 ,a]× [ b

2 ,b] is attained at (p,v) = (a,b) , for any given s ∈ [0, a
2 ] , t ∈ [0, b

2 ] , u∈ [0, a
2 ] ,

q ∈ [0, b
2 ] . So,

B̃4 � B41 +B42 +B43,

where

B41 := max
(
q2,(q− t)2)−bq+q2/2,

B42 := max
(
u2,(u− s)2)−au+u2/2,

B43 := 3
2 (a2 +b2)−2as−2bt+3(s2 + t2).

Since B41 is convex in q and B42 is convex in u , one can see that

B41 � t2 and B42 � s2

for q,t ∈ [0, b
2 ] and u,s ∈ [0, a

2 ] . So,

Σ(P) � B̃4 � B41 +B42 +B43 � 3
2 (a2 +b2)+4(s− a

2)s+4(t− b
2 )t � 3

2 (a2 +b2)

� 2a2 +2b2.

Case 5: This case obtains from Cases 2, 3, 4 by replacing there some of the con-
ditions of the form n j = 1 by n j = 0. This case immediately follows from Cases 2, 3,
4, because now the nonnegative contributions of the singleton sets P j corresponding
to n j = 1 will be replaced by 0 — with the only exception occurring when three of
the n j ’s are 0 and hence the remaining one of the n j ’s (say n1 ) equals n . Indeed,
in the latter exceptional subcase, we cannot use the induction, since n1 = n �< n . The
remedy in this case is to continue the “partitioning” of the smaller rectangles containing
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all the n points into yet smaller congruent rectangles until we no longer have such an
exceptional situation. This process will stop. Indeed, if it never stopped, then all the n
distinct points (with n � 3) would be eventually contained in a singleton set, which is
a contradiction.

So far, we have considered all the cases when at least one of the n j ’s is � 2.
Otherwise, we have n j � 1 for all j ∈ {1, . . . ,4} and hence n � n1 + · · ·+ n4 � 4.
Since n � 3, it remains to consider the following two cases.

Case 6: n = 3. By shrinking the rectangle R horizontally and vertically, we can
obtain a possibly smaller rectangle R̃⊆ R , with side lengths ã � a and b̃ � b , such that
R̃ still contains all the points P1,P2,P3 and each side of R̃ contains at least one of the
three points P1,P2,P3 . If we can then show that Σ({P1,P2,P3}) � 2ã2 + 2b̃2 , then the
desired inequality Σ({P1,P2,P3}) � 2a2 +2b2 will obviously follow. So, wlog we may
assume that each side of R contains at least one of the three points P1,P2,P3 . Then,
by the pigeonhole principle, at least two sides of the rectangle R must share one of the
three points. Also, wlog none of the points P1,P2,P3 is in the interior of R . Indeed,
if e.g. P3 is in the interior of R , then we can move P3 away from the line �(P1,P2)
(through P1,P2 ) in the direction perpendicular to �(P1,P2) (till we hit the boundary of
R), so that all the pairwise distances between the points P1,P2,P3 may only increase,
and then Σ(P) may only increase.

Hence, wlog P1 = (0,0),P2 = (u,b),P3 = (a,v) for some u ∈ [0,a] and v ∈ [0,b] .
So,

Σ(P) � B6 :=
P1P2

2 +P1P2
3

2
+

P2P2
1 +P2P2

3

2
+

P3P2
2 +P3P2

1

2
= P1P

2
2 +P1P

2
3 +P2P

2
3 .

Since B6 is convex in (u,v) , its maximum in (u,v) ∈ [0,a]× [0,b] is attained when
(u,v) ∈ {0,a}×{0,b} , and this maximum is 2a2 +2b2 . More explicitly, one may also
note that

1
2 B6− (a2 +b2) = −(a−u)u− (b− v)v� 0.

This proves Case 6.
Case 7: n = 4. Again, by shrinking the rectangle R , wlog we may assume that

each side of R contains at least one of the four points P1,P2,P3,P4 . Also, wlog each of
the four points P1,P2,P3,P4 is either (i) in the convex hull of the other three points or
(ii) on the boundary of R . Indeed, otherwise wlog P4 is in the interior of R , but not in
the convex hull of P1,P2,P3 . Then there is a closed half-plane, say H , containing the
points P1,P2,P3 but not containing the point P4 . So, then we can move P4 away from
the half-plane H in the direction perpendicular to the boundary line of H (till we hit
the boundary of R), so that all the pairwise distances between the points P1,P2,P3,P4

may only increase, and then Σ(P) may only increase. Therefore, wlog we have one of
the following two subcases.

Subcase 7.1: P4 is in the convex hull of P1,P2,P3 . Then P4 = (1− s− t)P1 +
sP2 + tP3 for some s,t such that s,t � 0 and s+ t � 1. Also, here, as in Case 6, wlog
P1 = (0,0),P2 = (u,b),P3 = (a,v) for some u ∈ [0,a] and v ∈ [0,b] . Hence

Σ(P) � B71 := P1P
2
4 +P2P

2
4 +P3P

2
4 +[(1− s− t)P4P

2
1 + sP4P

2
2 + t P4P

2
3 ].
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Clearly, B71 is convex in (u,v) and hence attains its maximum in (u,v) ∈ [0,a]× [0,b]
at one of the four vertices of the rectangle [0,a]× [0,b] . To complete the consideration
of Subcase 7.1, it remains to note that, given the above conditions on s and t ,

B71
∣∣
u=0,v=0− (2a2 +2b2) = a2(t−1)(2t +1)+b2(s−1)(2s+1) � 0,

B71
∣∣
u=a,v=0− (2a2 +2b2) = a2(s+ t)(2(s+ t)−3)+b2(s−1)(2s+1) � 0,

B71
∣∣
u=0,v=b− (2a2 +2b2) = a2(t−1)(2t +1)+b2(s+ t)(2(s+ t)−3)� 0,

B71
∣∣
u=a,v=b− (2a2 +2b2) =

(
a2 +b2)(s+ t)(2(s+ t)−3)� 0.

Alternatively, one may note that the Hessian matrix of B71 with respect to s and
t equals 4G , where G is the Gram matrix of the vectors P2[=

−−→
P1P2 = (u,b)] and P3[=−−→

P1P3 = (a,v)] . So, B71 is convex in (s,t) , and hence attains its maximum in (s,t) at
one of the points (0,0),(0,1),(1,0) . To complete the consideration of Subcase 7.1 this
other way, it remains to note that

B71
∣∣
s=0,t=0− (2a2 +2b2) = (u2−a2)+ (v2−b2) � 0,

B71
∣∣
s=0,t=1− (2a2 +2b2) = −(2a−u)u−2(b− v)v−b2 � 0,

B71
∣∣
s=1,t=0− (2a2 +2b2) = −(2b− v)v−2(a−u)u−a2 � 0.

Subcase 7.2: All the four points P1,P2,P3,P4 are on the boundary of R.
Subsubcase 7.2.1: None of the points P1,P2,P3,P4 is shared by any two sides of

the rectangle R . So, wlog P1 = (s,0),P2 = (0,t),P3 = (u,b),P4 = (a,v) for some
s,u ∈ [0,a] and t,v ∈ [0,b] . Then, similarly to the case of n = 3 (that is, Case 6), here

Σ(P) � B721 :=
P1P2

2 +P1P2
4

2
+

P2P2
1 +P2P2

3

2
+

P3P2
2 +P3P2

4

2
+

P4P2
1 +P4P2

3

2
= P1P

2
2 +P2P

2
3 +P3P

2
4 +P4P

2
1 � 2a2 +2b2,

by convexity. More explicitly, one may also note that

1
2 B721− (a2 +b2) = −(a− s)s− (b− t)t− (a−u)u− (b− v)v� 0.

Subsubcase 7.2.1 is done.
Subsubcase 7.2.2: One of the points P1,P2,P3,P4 (say P1 ) is shared by two sides

of the rectangle R. So, wlog P1 = (0,0) . Suppose that one of the two sides of R (say S1

and S2 ) sharing the point P1 contains one of the points P2,P3,P4 ; let us say this side is
S1 . Then we can move P1 slightly along the side S2 out of its position at (0,0) . In view
of the continuity of Σ(P) in P1 , we can thereby get rid of the sharing and thus reduce
Subsubcase 7.2.2 to Subsubcase 7.2.1 – provided that at least one of the two sides of
R sharing the point P1 contains one of the points P2,P3,P4 . So, wlog P1 = (0,0) and
none of the two sides of R sharing the point P1 contains any of the points P2,P3,P4 .
So, one of the sides of R not sharing the point P1 contains two of the points P2,P3,P4 .
Therefore and by the interchangeability of the horizontal and vertical directions, wlog
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P1 = (0,0),P2 = (u,b),P3 = (a,v),P4 = (a,w) for some u∈ [0,a] and v,w ∈ [0,b] such
that v > w . So,

Σ(P) � B722 := P1P
2
2 +P2P

2
3 +P3P

2
4 +P4P

2
1 � 2a2 +2b2,

again by convexity. More explicitly, one may also note that

1
2 B722− (a2 +b2) = −(a−u)u− (b− v)v− (v−w)w� 0.

Subsubcase 7.2.2 is done, as well as the entire proof of Theorem 1.

The special case of Theorem 1 with a = b = 1 was conjectured by T. Amdeber-
han [8].
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